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A B S T R A C T

Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative disorders with both sporadic and
genetic forms. Mutations in the progranulin gene (GRN) are a common cause of genetic FTD, causing either a
behavioural presentation or, less commonly, language impairment. Presence on T2-weighted images of white
matter hyperintensities (WMH) has been previously shown to be more commonly associated with GRN muta-
tions rather than other forms of FTD. The aim of the current study was to investigate the longitudinal change in
WMH and the associations of WMH burden with grey matter (GM) loss, markers of neurodegeneration and
cognitive function in GRN mutation carriers.

336 participants in the Genetic FTD Initiative (GENFI) study were included in the analysis: 101 pre-
symptomatic and 32 symptomatic GRN mutation carriers, as well as 203 mutation-negative controls. 39 pre-
symptomatic and 12 symptomatic carriers, and 73 controls also had longitudinal data available. Participants
underwent MR imaging acquisition including isotropic 1mm T1-weighted and T2-weighted sequences. WMH
were automatically segmented and locally subdivided to enable a more detailed representation of the pathology
distribution. Log-transformed WMH volumes were investigated in terms of their global and regional associations
with imaging measures (grey matter volumes), biomarker concentrations (plasma neurofilament light chain,
NfL, and glial fibrillary acidic protein, GFAP), genetic status (TMEM106B risk genotype) and cognition (tests of
executive function).

Analyses revealed that WMH load was higher in both symptomatic and presymptomatic groups compared
with controls and this load increased over time. In particular, lesions were seen periventricularly in frontal and
occipital lobes, progressing to medial layers over time. However, there was variability in the WMH load across
GRN mutation carriers – in the symptomatic group 25.0% had none/mild load, 37.5% had medium and 37.5%
had a severe load – a difference not fully explained by disease duration. GM atrophy was strongly associated with
WMH load both globally and in separate lobes, and increased WMH burden in the frontal, periventricular and
medial regions was associated with worse executive function. Furthermore, plasma NfL and to a lesser extent
GFAP concentrations were seen to be associated with increased lesion burden. Lastly, the presence of the
homozygous TMEM106B rs1990622 TT risk genotypic status was associated with an increased accrual of WMH
per year.

In summary, WMH occur in GRN mutation carriers and accumulate over time, but are variable in their
severity. They are associated with increased GM atrophy and executive dysfunction. Furthermore, their presence
is associated with markers of WM damage (NfL) and astrocytosis (GFAP), whilst their accrual is modified by
TMEM106B genetic status. WMH load may represent a target marker for trials of disease modifying therapies in
individual patients but the variability across the GRN population would prevent use of such markers as a global
outcome measure across all participants in a trial.

• White matter hyperintensities (WMH) accumulate over time in
progranulin mutation carriers.
• WMH in GRN mutation carriers are associated with GM atrophy.
• WMH in GRN mutation carriers are associated with executive dys-
function.
• WMH load is variable across GRN mutation carriers.

1. Introduction

Frontotemporal dementia (FTD) is a neurodegenerative disorder
with both familial and sporadic forms. Around a third of cases are

genetic with mutations in three genes accounting for the majority of
familial FTD: progranulin (GRN), microtubule-associated protein tau
(MAPT) and chromosome 9 open reading frame 72 (C9orf72). Magnetic
resonance imaging (MRI) studies have shown progressive loss of grey
matter (GM), particularly focused on the frontal and temporal lobes, in
all three groups but the presence of white matter hyperintensities
(WMH) is seen only in those with GRN mutations (Caroppo et al., 2014;
Kelley et al., 2009; Sudre et al., 2017a).

Previous studies have shown that only a proportion of those with
GRN mutations have high loads of WMH, with factors leading to the
presence (or absence) of an increased burden still unclear. High levels
of WMH are not purely related to disease severity as an increased load
in presymptomatic GRN mutation carriers close to onset has also been
reported (Sudre et al., 2017a). The underlying pathophysiological basis

Table 1
Baseline demographics, genetic status, biomarker concentrations and neuropsychological scores in controls, and both presymptomatic and symptomatic carriers.
Significant differences are indicated by letters: a, between the symptomatic and control groups, and b, between the symptomatic and presymptomatic groups. Age,
education, disease duration, neuropsychological tests (as z-scores), and NfL and GFAP concentrations are expressed as mean (standard deviation).

Controls Presymptomatic carriers Symptomatic carriers

Number of participants 203 101 32
Female: male 117:86 65:36 18:14
TMEM106B genotype (CC:TC:TT) 6: 49: 36 1: 27: 11 1: 3: 6
Age (years) 46.5 (13.4) 45.5 (11.6) 64.4 (8.5)a,b

Education (years) 14.3 (3.3) 14.8 (3.6) 11.6 (3.6)a,b

Disease duration (years) NA NA 2.8 (2.1)
Trail Making Test part A (time) −0.2 (0.7) 0.0 (0.7) 2.6 (3.2)a

Trail Making Test part B (time) −0.2 (0.7) −0.1 (0.7) 2.0 (2.5)a

WMS-R Digit Span Backwards (score) 0.0 (1.1) −0.1 (1.1) −1.6 (1.2)a,b

WAIS-R Digit Symbol test (score) 0.3 (1.0) 0.2 (1.0) −2.1 (1.4)a,b

NfL concentration (pg/ml) 13.3 (17.7) 11.6 (9.4) 80.1 (42.6)a,b

GFAP concentration (pg/ml) 125.4 (64.4) 136.3 (69) 311.8 (170.6)a,b
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of WMH in GRN mutation carriers is also unknown, although prior
studies have shown no association with vascular risk factors (Sudre
et al., 2017a), and recent histopathological investigation has suggested
that inflammation or astrocytosis may underlie the lesions (Woollacott
et al., 2018).

The only factor that is known to modify phenotype in those with
GRN mutations is a polymorphism in the TMEM106B gene
(Nicholson and Rademakers, 2016). The risk genotype has been asso-
ciated with an earlier age at onset (Cruchaga et al., 2011), decreased
brain volumes (Harding et al., 2017), and impaired connectivity (Premi
et al., 2014). However, no prior study has investigated its association
with WMH.

In this study, we aimed to investigate the cross-sectional presence
and the longitudinal change in WMH over time in GRN-associated FTD,
hypothesizing that for a subgroup of cases, there would be an increase
over time. We also aimed to examine the association between WMH
burden and both GM atrophy and cognitive deficits in FTD, as well as
the association with fluid markers of axonal damage (neurofilament
light chain, NfL) and astrocytosis (glial fibrillary acidic protein, GFAP).
Lastly, we investigated the association of WMH with the presence of the
TMEM106B risk genotype.

2. Material and methods

2.1. Participants

Participants were recruited from the third data freeze of the Genetic
FTD Initiative (GENFI), an international multicentre study of pre-
symptomatic and symptomatic familial FTD (Rohrer et al., 2015). All
participants undergo yearly clinical and cognitive assessment with MR
imaging and fluid biomarker acquisition. All GRNmutation carriers and
all controls (i.e. all mutation negative participants) with usable 3T
volumetric T1- and T2-weighted MR scans were included in the study:
101 presymptomatic carriers, 32 symptomatic carriers and 203 controls
were included (Table 1). For the longitudinal analysis, 124 participants
(39 presymptomatic, 12 symptomatic carriers, and 73 controls) had
follow-up imaging (70 with two scans, 28 with three, 21 with four and 5
with five).

There was no age difference between controls (mean 46.0, standard
deviation 13.5) and presymptomatic (45.5, 11.6) groups (p=0.51), but
symptomatic GRN mutation carriers were significantly older than the
other groups (64.3, 8.5). There were no differences in gender between
the groups: 57.6% of the control population, 64.4% of the presympto-
matic group and 56.3% of the symptomatic group were female.

2.2. MR acquisition

MR protocols had been harmonized at the start of the study and
included a T1-weighted MPRAGE and a T2-weighted isotropic acqui-
sition. Five scanners were used across different sites: 3 subjects were
imaged on a GE Discovery MR750, 108 on a Philips Achieva, 51 on a
Siemens Prisma, 72 on a Siemens Skyra and 102 on a Siemens Trio.
Details of the acquisition protocol across the different scanners are re-
ported as supplementary material (see Supplementary Table 1). The
majority of the participants were scanned longitudinally on the same
scanner but 32 were not scanned on the same scanner at all time points
(24 controls, 9 presymptomatic mutation carriers and 1 symptomatic
mutation carrier).

2.3. Neuropsychological testing

Participants underwent neuropsychological assessment (Rohrer
et al., 2015). Prior studies have shown an association of WMH burden
with tests of executive function and working memory (Dong et al.,
2015; Kennedy and Raz, 2009; Prins et al., 2005), and so our analysis
focused on a subset of tests from the GENFI battery: the Trail Making

Test Parts A and B, WMS-R Digit Span Backwards, and WAIS-R Digit
Symbol test. All scores were expressed as a z-score, with language-
specific norms (Rohrer et al., 2015).

2.4. Biological sample acquisition and processing

Plasma samples were collected from 250 participants (152 controls,
75 presymptomatic and 23 symptomatic GRN mutation carriers) and
centrifuged, aliquoted for plasma and stored at −80 °C (Rohrer et al.,
2016). Samples were tested for NfL and GFAP using the Neurology 4-
Plex A kit (102,153, Quanterix Corporation, Lexington, USA) on the
SIMOA HD-1 Analyzer following manufacturer's instructions. To keep
sample processing and plating consistent, participant samples were
thawed at room temperature for two hours and subsequently cen-
trifuged at 10,000 g for five minutes. 150 µl samples were aliquoted in
duplicate in 96-well plates before testing. The lower limit of detection
of the assay for the NfL and GFAP was 0.104 pg/ml and 0.221 pg/ml
respectively. Measurements were carried out at a single site with the
operator blinded to all clinical information, including genetic status.

The rs1990622 TMEM106B polymorphism status was available for
140 subjects: in total 53 had the TT (risk) genotype, 79 had the TC
genotype and only 8 had the CC genotype.

2.5. Image analysis

The first step of the imaging analysis was to obtain the tissue seg-
mentation and brain parcellation using an automated unified label fu-
sion framework (Geodesic Information Flow - GIF) (Cardoso et al.,
2015). The output of the label fusion algorithm provides subject-spe-
cific probability maps of anatomical tissues (GM WM, CSF, and others)
that were used to initialise the WMH segmentation framework. Since
the accuracy of the registration process at the core of the label fusion
technique may be affected by the presence of WM lesions, and in turn
affect the accuracy of the brain tissue segmentation, an iterative process
was adopted to optimise the GM segmentation. This is notably im-
portant for the segmentation of subcortical structures such as caudate
or putamen and overall measures of atrophy. Thus, to achieve a more
accurate segmentation of GM regions, the two-step solution proposed
by Valverde et al. (2014) in the context of multiple sclerosis was
adopted; first the T1 weighted images were filled with normal ap-
pearing tissue (inpainting procedure) at the location of the detected
lesions using the method described by Prados et al. (2016); second,
once the T1 image was corrected, the label fusion algorithm was run
again to provide the final GM segmentation.

In order to automatically segment the WMH acquired at multiple
time points, the longitudinal extension of the framework presented by
Sudre et al. (2017b) was used to limit intra-subject measurement noise.
In the cross-sectional algorithm, the T2 image is rigidly registered
(Modat et al., 2014) to the T1 image using the NiftyReg package
(https://sourceforge.net/projects/niftyreg) and intensities are jointly
modelled as a multivariate mixture of Gaussian distributions. This
model allows for the simultaneous modelling of normal and unexpected
observations (outliers), updating dynamically the number of required
components to ensure the balance between fit to the data and model
complexity. After convergence of the model, candidate WMH voxels are
selected from the outlier components based on intensity and location
constraints with respect to other tissues. The formed connected com-
ponents are then automatically classified as lesions or artefacts thus
preventing the presence of false positives. When using T2-weighted
images, in order to avoid any ventricular segmentation, a 1 voxel
border is excluded around the ventricles.

In the longitudinal extension of the described automated segmen-
tation, an average image of all time points is first created from an
iterative process that co-registers all time points to an average space,
progressively increasing the allowed number of degrees of freedom
while ensuring intensity matching between time points. The Gaussian
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mixture model is fitted on the obtained average image and finally used
to constrain the segmentation at each individual time point.

In order to further characterize the location of WMH, the volume of
the WM was subdivided using two schemes, following the method de-
scribed in Sudre et al., 2018). The first scheme uses the parcellations
from the label fusion technique to aggregate cortical regions into four
lobes, as previously described (Rohrer et al., 2015); the WM is then
divided into sub-regions according to the closest cortical lobe while the
subcortical region is segmented independently. The second scheme uses
the normalised distance between the ventricular surface and the cor-
tical sheet to separate the WM into 4 equidistant layers. As the two mid
layers (layers 2 and 3) are artificially divided without a clear biological
division we merged them to form a single region, leaving three layers
(peripheral, medial, and periventricular) for each of the lobes.

For both GM and WMH an asymmetry measure was calculated as
the ratio of the difference between the left and right hemisphere and
their sum.

2.6. Statistical analysis

Stata v.14 was used for all analyses. For all imaging derived de-
pendent variables, age, gender, scanner type and total intracranial vo-
lume (TIV, measured using SPM12) were considered as covariates. Due
to the skewness of the data, regional and local WMH volumes were log-
transformed with an offset of 1 voxel to ensure the existence of the
transformation.

Cross-sectional analysis used linear regression models with WMH
burden at the latest time point as the dependent variable to investigate
association with respect to participant clinical status (control, pre-
symptomatic, symptomatic), TMEM106B genetic status, GM volume,
NfL or GFAP concentration. For all models with imaging-derived de-
pendent variables, age, gender, scanner type and TIV were included as
covariates. For the analysis on TMEM106B genetic status, due to the
very limited number of subjects with CC status, only subjects with TT or
TC status were considered. When investigating the association with NfL
and GFAP concentrations the time interval between biological sample
and MR acquisition was further included as covariate. Apart from the
investigation of the relationship with clinical status that explicitly dis-
tinguishes presymptomatic and symptomatic participants, all the other
models were fitted for the whole subset of GRN mutation carriers and
compared when necessary to the fit obtained for the control population.

In order to investigate cross-sectionally the relationship between
neuropsychological tests and lesion volume in the GRN mutation car-
riers, the covariate-adjusted lesion volumes were used with respect to
cognitive scores adjusted for age, gender, and years of education.
Spearman correlation between corrected residuals was then used as a

measure of the observed association.
As GRN mutation carriers have been commonly associated with

asymmetrical GM atrophy (Rohrer et al., 2015) an analysis was per-
formed to investigate whether GM asymmetry was associated with
asymmetry of WMH using the Spearman correlation coefficient on the
residuals after correction for age, gender, TIV and scanner type.

Longitudinally, a two-level linear mixed model to account for within
subject scanner change was used with random slope and random in-
tercept using the log transformed volume of WMH as a dependent
variable. Similarly to the cross-sectional models, age, gender, scanner
type and TIV were used as covariates.

Goodness of fit of the investigated models was assessed via test of
gaussianity over the residuals using a Shapiro-Wilk test.

Due to the strong correlation between dependent variables, the re-
sults are presented without any correction for multiple comparisons
following the rationale developed by Rothman (1990).

3. Results

3.1. Cross-sectional WMH burden (Fig. 1, Table 2)

Raw volumetric values are reported in Table 2. From the adjusted
model, the overall total WMH burden was significantly higher in
symptomatic participants compared to controls (excess of 48.2% [95%
CI: 6.8, 105.7], p=0.019) while there was a trend to a higher load in
the presymptomatic group compared to controls (17.8% [−9.7, 39.7],
p=0.061). The symptomatic mutation carriers had a non-significantly
higher overall burden compared to presymptomatic mutation carriers
(25.8% [−10.4, 76.8], p=0.184) (Table 2).

In the lobar regions, the difference in burden was most noticeable in
the frontal and occipital lobes. The symptomatic group had an excess
WMH load of 116.3% ([35.4, 245.5], p=0.001) and 59.2% ([13.8,
122.5], p=0.006) respectively compared to controls. Symptomatic
subjects also had a significantly higher load compared to the pre-
symptomatic group in the frontal region 82.4% ([12.5, 195.0],
p=0.015). The presymptomatic group had a significantly higher load
in both the occipital and parietal lobes compared to controls (21.6%
[3.9, 42.3], p=0.015; 36.9% [1.5, 84.5], p=0.040 respectively).

With respect to the distance from the ventricles, the most periven-
tricular region was significantly more affected in symptomatic subjects
compared to both the presymptomatic group (excess of 79.9% [13.6,
184.8], p=0.012) and controls (excess of 109% [34.9, 224.6],
p=0.001). WMH in this region in the presymptomatic group was non-
significantly higher compared to controls (excess of 16.4% [−7.7,
46.8], p=0.199). The medial region was significantly more affected in
the symptomatic group compared to controls (91.1% [27.9, 185.6],

Table 2
Raw grey matter (GM) volumes and white matter hyperintensity (WMH) burden (total, by lobe [frontal, parietal, occipital and temporal] and by layer [periven-
tricular, medial and peripheral]. GM volumes are presented as mean (standard deviation) while WMH volumes are reported as median [1st quartile; 3rd quartile].
Significant differences are indicated by letters: a, between the symptomatic and control groups, b, between the symptomatic and presymptomatic groups, c between
the presymptomatic and control groups. All comparisons were performed with correction for age, gender, scanner and TIV. Log transformed volumes were used for
the WMH.

Controls Presymptomatic carriers Symptomatic carriers

GM (mL) Frontal 177.0 (20.2) 178.9 (18.5) 141.5 (21.6)a,b

Parietal 92.8 (10.5) 93.9 (10.1) 79.4 (9.4)a,b

Occipital 72.7 (9.4) 73.3 (8.8) 68.1 (8.0)
Temporal 119.9 (13.3) 120.0 (12.4) 105.8 (11.4)a,b

WMH (mm3) Total 925.9 [576.0; 1375.2] 1037.3 [651.9; 1640.7] 1582.7 [925.0; 3541.2]a

Frontal 225.8 [137.0; 402.9] 255.4 [146.5; 508.9] 988.0 [336.4; 1761.2]a,b

Parietal 79.4 [33.1; 162.4] 84.6 [41.2; 196.9]c 152.9 [68.1; 365.7]
Occipital 177.6 [109.1; 278.7] 208.0 [127.5; 310.2]c 334.7 [169.5; 534.4]a

Temporal 235.4 [148.4; 354.8] 238.7 [161.8; 371.5] 160.8 [106.6; 334.4]b

Periventricular 132.9 [74.1; 235.5] 143.4 [80.1; 277.6] 345.0 [185.2; 821.7]a,b

Medial 302.0 [195.5; 499.6] 338.1 [219.1; 582.2] 725.4 [372.3; 2137.0]a,b

Peripheral 432.9 [265.7; 686.4] 522.4 [278.4; 815.3] 431.3 [286.0; 835.8]b
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p=0.002) and in the symptomatic group compared to the pre-
symptomatic group (65.2% [8.8, 150.8], p=0.019), but this was not
significant between the presymptomatic group and controls (15.7%
[−4.8, 40.5], p=0.142).

In order to further analyse the location of the lesions in the GRN
mutation carriers with the highest WMH burden, the lesion maps were
co-registered into MNI space, and the HARDI atlas of WM tractography
(Zhang and Arfanakis, 2018) was used to determine which tracts were
involved by ranking the number of voxels affected by WM lesions for
each tract. Anteriorly the most affected tracts appeared to be linking the
dorsal striatum with the superior and rostral frontal regions of the
brain, along with the genu of the corpus callosum i.e. the fibre tract
linking right and left frontal lobes (Fig. 2). Further back, the posterior
parts of the superior longitudinal fasciculus and inferior fronto-occipital
fasciculus joining the parietal and temporal lobes appeared to be the
most affected.

3.2. Longitudinal accumulation of wmh (Table 3)

The symptomatic group showed a trend to a greater longitudinal
increase in WMH burden in the frontal lobe compared to controls
(p=0.075) but this was not significant when compared to pre-
symptomatic subjects (p=0.156). However there was a significant
increase in the medial region compared to the presymptomatic group
(p=0.020) with a differential accrual of 15.5% [3.0, 28.9] per year
(Table 3). No significant differences could be observed between the
presymptomatic group and controls.

3.3. Association with grey matter volume (Fig. 3)

A lower total GM volume was associated with a higher WMH burden
in the frontal lobe and both periventricularly and medially for the GRN
mutation carriers (combined presymptomatic and symptomatic). An
overall decrease by 1ml in the GM volume was associated with an in-
crease of 0.83% ([95% CI=0.11,1.54], p=0.024), 0.82% ([0.09,
1.55], p=0.028), and 0.80% ([0.11, 1.48], p=0.024) respectively.
None of these associations were observed in control participants.

Lower volume of GM in the frontal lobe was associated with a larger
volume of WMH in the same lobe for the GRN mutation carriers
(p=0.025), but no such association could be observed for the control
group. Atrophy in all lobes except the temporal region was associated
with larger WMH burden in the periventricular and medial regions. A
1ml loss of GM volume in the frontal, parietal, and occipital lobes was
respectively associated with an excess of 1.33% ([0.13, 2.54],
p=0.030), 2.54% ([−0.23, 5.32], p=0.072), and 4.92% ([1.05,
8.84], p=0.013) in the medial region. For the periventricular region,
1ml of loss of GM volume in the frontal, parietal and occipital lobes
were respectively associated with an excess of 1.35% ([0.13, 2.56],
p=0.030), 3.11% ([0.02, 6.20], p=0.048), and 5.46% ([0.75, 10.17],
p=0.023).

Asymmetry measures of GM and WMH load were strongly asso-
ciated in the frontal lobe in the symptomatic group (r=0.28,
p=0.0006) but not in the other lobes or in the other groups.

Longitudinally, a lower baseline frontal GM volume was associated
with an accelerated accrual in the medial region for the GRN mutation
carriers (p=0.0004, 0.1ml less of frontal volume leading to 5.9% more
of WMH per year). This relationship did not hold for the control group.

Fig. 1. Top row: Marginal average of white matter hyperintensity (WMH) burden in the individual lobes and layers after correction for age, gender, scanner and TIV
in controls, presymptomatic and symptomatic GRN mutation carriers. The bottom row shows a guide to the figures [left, lobar subdivision; right, layer subdivision].
The colour bar represents the average WMH load (increased= red, less= light yellow). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 2. 3D representation of the main tracts
passing through the average white matter le-
sion maps of the GRN mutation carriers: in
orange the tracts affected by the presence of
lesions, and in green the tracts that do not go
through lesions. The average lesion location is
coloured in red. (For interpretation of the re-
ferences to color in this figure legend, the
reader is referred to the web version of this
article.)

Fig. 3. Significant associations between cross-
sectional grey matter (GM) volume
(Tot= total, F=frontal, P=parietal,
O=occipital, T=temporal) and white matter
hyperintensity (WMH) burden (Tot= total,
F= frontal, P=parietal, O=occipital,
T=temporal, 1= periventricular layer,
Med=medial layers, 4= peripheral layer)
within the GRN population. Significance is
defined at a p-value threshold of 0.05 in the
linear regression between GM volume and log
transformed WMH volume after correction for
age, gender, total intracranial volume and
scanner type.
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3.4. Association with cognition (Table 4)

A significant association between impaired cognition and WMH
burden was found for the Digit Span Backwards in the frontal
(r=−0.20, p=0.02), periventricular (r=−0.23, p=0.01), and
medial (r=−0.23, p=0.03) regions (Table 4) as well as the Digit
Symbol test in the periventricular region (r=−0.18, p=0.05, with a
borderline association with the frontal region, r=−0.16, p=0.08).
Borderline associations were also seen in the periventricular and medial
regions for the Trail Making Test Part A (r=0.17, p=0.06 for both).

3.5. Association with fluid biomarkers

In the GRN mutation carriers there was a trend to an association
between WMH and NfL concentration in the frontal lobe (WMH load
excess of 0.63% [−0.14 1.41] per additional pg/ml of NfL, p=0.107)
and periventricularly (excess of 0.73% [−0.03, 1.51], p=0.058) with
significant associations in the medial region (excess of 0.67% [0.11
1.23], p=0.020) and the occipital lobe (excess of 0.54% [0.13, 0.96],
p=0.011). There were no significant associations in the control po-
pulation.

Longitudinally, a higher NfL concentration was associated with an
increased WMH accrual in the medial layer (0.28%/year per additional
pg/ml [0.15, 0.40], p<0.00001) and the occipital region (0.18 [0.04,
0.31], p=0.008) for the GRN mutation carriers. A similar association
was seen in the control population for the medial region with an ad-
ditional accrual per year of 0.20% ([0.02 0.38], p=0.029) but not for
the occipital lobe (0.16% ([−0.14 0.46], p=0.289).

The cross-sectional pattern seen with NfL was reproduced to a lesser
extent when investigating the relationship between GFAP and WMH in
the GRN mutation carriers. There was a trend to an association in the
occipital lobe (a GFAP excess of 1pg/ml was associated with a larger
WMH burden of 0.16% [−0.02 0.35], p=0.078). This association was
not significant for the periventricular layer (0.17% [−0.06, 0.41],
p=0.150). No associations were seen in the control population.

Longitudinally, in the GRN mutation carriers there was only a trend
to an association between GFAP levels and WMH accrual in the occi-
pital lobe (additional accrual of 0.03% [−0.006, 0.064] p=0.100).

3.6. Association with TMEM106B polymorphism

Cross-sectionally, there appeared to be a weak relationship between
TMEM106B genotype and WMH for the total burden in the GRN mu-
tation carriers with higher WMH volume associated with the risk gen-
otype: TT (+30.4% [−16.0; 102.4], p=0.230). The association only
reached significance for the parietal lobe WMH burden (+96.1% [0.55;
282.5], p=0.048).

However, the longitudinal association between the risk TMEM106B
genotype and increase in WMH was stronger. The TT group appeared to
have a faster accumulation of total WMH (+8.2% per year overall [2.9;
13.6], p=0.003) and in the medial region notably (+6.9% per year
[2.1; 11.6], p=0.005). A significant higher accrual of WMH in TT
subjects was also observed in the temporal lobe (+13.1% per year [4.4;
21.7], p=0.005). Such an association was not observed for the control
group.

3.7. Grouping by WMH severity

Finally, we separated the presence of WMH in GRN mutation car-
riers into three groups (none/mild, moderate and severe loads) as is
often done in other pathologies involving WMH such as multiple
sclerosis, with a threshold at 1000mm3 and 2500mm3 in a mean TIV of
1400ml (corresponding to an occupancy of 0.07% and 0.18% of the
TIV) (Table 5). There was no significant difference in age between the
none/mild and moderate groups in either the presymptomatic or
symptomatic carriers although the severe group was older than both.
However, in a separate analysis correcting for age, significant differ-
ences in WMH load were still found between the groups, suggesting that
age was not the only factor driving group differences.

For the symptomatic cases, there was no significant difference in
terms of disease duration between the individuals with most prominent
WM damage (mean, standard deviation 2.5, 2.1 years) and the ones
with none/mild WM (1.6, 0.8). GM volumes were significantly lower in
the group with most severe WMH compared to both other groups (both
when GRN mutation carriers were considered together, Table 5, and
when split into symptomatic and presymptomatic groups, Supplemen-
tary Table 2). Performance on all four of the cognitive tests was sig-
nificantly more impaired in the most severe group compared with the

Table 3
Marginal mean and 95% confidence interval of longitudinal increase in white matter hyperintensities (WMH) per region (%/year). Significant differences are
indicated by letters: a, between the symptomatic and presymptomatic groups.

Controls Presymptomatic carriers Symptomatic carriers

Total 4.32 [−0.49; 9.35] 1.68 [−3.56; 7.21] 9.16 [−4.62; 24.93]
Frontal 6.27 [−0.17; 13.12] 10.38 [3.49; 17.72] 28.63 [5.28; 57.17]
Parietal 4.04 [−3.99; 12.73] 2.23 [−5.47; 10.56] −1.32 [−20.01; 21.75]
Occipital 5.10 [−1.66; 12.31] 2.18 [−4.51; 9.34] 6.14 [−5.14; 18.77]
Temporal 7.37 [1.22; 13.9] 2.78 [−3.04; 8.95] 0.58 [−19.05; 24.98]
Periventricular 15.17 [4.99; 26.33] 12.58 [−0.15; 26.93] 42.76 [4.68; 94.71]
Medial 6.20 [0.56; 12.16] 0.79 [−6.02; 8.10] 16.86 [4.12; 31.16]a

Peripheral 4.79 [−0.23; 10.07] 4.91 [0.18; 9.87] −5.44 [−25.64; 20.25]

Table 4
Spearman correlation coefficient between white matter hyperintensity (WMH) burden and cognitive scores after correction for age, gender, TIV and years of
education (p value in parentheses). Significant correlations are shown in bold, and borderline associations (p<0.1) are in italics.

Trail Making Test Part A Trail Making Test Part B WMS-R Digit Span Backwards WAIS-R Digit Symbol Test

Total 0.13 (0.15) 0.00 (0.97) −0.16 (0.07) −0.06 (0.54)
Frontal 0.12 (0.17) 0.01 (0.95) −0.20 (0.02) −0.16 (0.08)
Parietal 0.02 (0.80) −0.05 (0.57) −0.12 (0.19) −0.02 (0.87)
Occipital 0.06 (0.50) −0.04 (0.68) −0.10 (0.27) 0.01 (0.91)
Temporal −0.04 (0.68) −0.14 (0.12) −0.01 (0.96) 0.13 (0.13)
Periventricular 0.17 (0.06) 0.03 (0.77) −0.23 (0.01) −0.18 (0.05)
Medial 0.17 (0.06) 0.03 (0.74) −0.20 (0.03) −0.10 (0.28)
Peripheral −0.06 (0.51) −0.17 (0.06) −0.03 (0.77) 0.11 (0.22)
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none/mild group (and on all but the Digit Span Backwards in the severe
group compared to the moderate group) when the GRN mutation car-
riers were considered together (with significant group differences in the
Trail Making Test Part A in presymptomatic carriers alone, and the Trail
Making Test Part A and WAIS-R Digit Symbol test in symptomatic
carriers alone, Supplementary Table 2). Plasma concentrations of NfL
and GFAP were also significantly increased in the severe group com-
pared to the other two groups.

4. Discussion

We have shown that WMH burden is increased in GRN mutation
carriers compared with controls, and that this accumulation occurs
particularly in the frontal and occipital regions, initially periven-
tricularly and then extending out towards the cortex into the medial
region. WMH burden increases over time in a subgroup of patients and
is associated with GM volume loss as well as the presence of executive
dysfunction. WMH burden is correlated with NfL concentration more
strongly than GFAP concentration, and higher burden is associated with
the TMEM106B rs1990622 risk genotype.

The cross-sectional finding of increased WMH in the symptomatic
GRN group within periventricular and medial regions, particularly
within the frontal and occipital lobes is consistent with prior studies
(Caroppo et al., 2014; Kelley et al., 2009) including a previous smaller
study in the GENFI cohort (Sudre et al., 2017a). However, this study
extends those findings to show differences within the presymptomatic
cohort, where significant differences were found in the parietal and
occipital lobes. Despite these findings, there remains large variability
within the GRN population – when classified into three groups of in-
creasing severity, 25% of cases still have none or only mild WMH
during the symptomatic phase, whilst 9% of the presymptomatic group
already have severe WMH involvement.

A variable rate of longitudinal accrual of WMH was found in the
GRN population, with the most significant increase in the medial re-
gion, suggesting a spread of WMH from initial periventricular regions

outwards towards the cortex over time.
Forthcoming trials of disease-modifying therapy in GRN mutation

carriers will require robust outcome measures. The presence of WMH
cross-sectionally in only a subset of GRN mutation carriers and the
variable accrual rate of WMH over time seems to preclude WMH vo-
lumes as being a global outcome measure across all participants (with
the confidence intervals of calculated sample sizes being wide, and the
upper limit extremely large). However, it may be possible to use WMH
as markers within individual patients, and further work will be needed
to investigate longitudinal changes over a longer period within the
defined subset of GRN mutation carriers with WMH.

Frontal GM atrophy was found to be associated with frontal, peri-
ventricular and medial lesion load in the GRN mutation carriers but no
such relationship could be found in the controls. Moreover, a long-
itudinal association between decreased baseline frontal GM volume and
increased rate of WMH accrual in the medial region was seen. These
findings are consistent with prior studies (Ameur et al., 2016; Caroppo
et al., 2014; Kelley et al., 2009), and could be interpreted as Wallerian
degeneration (McAleese et al., 2017, McAleese et al., 2015) involving a
fronto-striatal circuit previously implicated in FTD (Looi et al., 2012).
Notably, patients with GRN mutations have early striatal GM volume
loss also (Rohrer et al., 2015). The clinical relevance of such findings
may well be the known association of GRN mutations with parkin-
sonism (including corticobasal syndrome) (Möller et al., 2015;
van Swieten and Heutink, 2008), and further investigation of the as-
sociation between WMH and extrapyramidal symptoms will be im-
portant.

The clinical outcome of increased WMH burden appears to be worse
executive function and slower information processing, with a sig-
nificant association seen with performance on the Digit Span backwards
and Digit Symbol test. This is consistent with studies in other conditions
where WMH predominantly affect anterior areas of the brain
(Kennedy and Raz, 2009). Prior neuroimaging studies of FTD have as-
sociated executive dysfunction with frontal cortical GM disease (Rosen
et al., 2002) but the current study suggests that such cognitive deficits

Table 5
Stratification of GRN population by white matter hyperintensity (WMH) burden severity into three groups: none or mild (0), moderate (1) and severe (2). Significant
differences between groups are indicated in the last column. Results are shown as mean (standard deviation).

Group None/Mild Moderate Severe Significant differences
0 1 2

WMH (% of TIV) 0.0 (0.0) 1.1 (0.3) 4.2 (2.8)
WMH (mm3) 644.8 (201.4) 1550.7 (430.2) 6118.2 (4473.7)
Total number of carriers (Female:Male) 55 (37:18) 57 (34:23) 21 (9:12)
Symptomatic carriers (number (%)) 8 (25.0) 12 (37.5) 12 (37.5)
Age (years) 59.0 (8.1) 62.1 (8.5) 70.2 (5.3) 0 vs 2, 1 vs 2
Disease duration (years) 1.6 (0.8) 3.8 (2.8) 2.5 (2.1) 0 vs 1
Presymptomatic carriers (number (%)) 47 (46.5) 45 (44.5) 9 (8.9)
Age (years) 43.8 (11.7) 45.9 (10.77) 52.6 (13.4) 0 vs 2, 1 vs 2
Grey matter (% of TIV) 35.2 (2.4) 34.9 (2.7) 31.7 (3.1) 0 vs 2, 1 vs 2
Trail Making Test Part A (time) 0.25 (1.15) 0.28 (1.74) 2.36 (3.34) 0 vs 2, 1 vs 2
Trail Making Test Part B (time) 0.19 (1.39) 0.25 (1.56) 1.15 (2.27) 0 vs 2, 1 vs 2
WMS-R Digit Span Backwards (score) −0.08 (1.10) −0.47 (1.31) −1.30 (1.28) 0 vs 2
WAIS-R Digit Symbol test (score) 0.02 (1.21) −0.32 (1.46) −1.25 (1.73) 0 vs 2, 1 vs 2
NfL (pg/ml) 22.5 (32.5) 26.9 (38.1) 47.2 (39.9) 0 vs 2, 1 vs 2
GFAP (pg/ml) 152.6 (87.8) 174.2 (126.9) 270.2 (185.4) 0 vs 2, 1 vs 2
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in GRN mutation carriers are likely to be due to a complex combination
of GM and WM disease.

The association of NfL concentration with WMH burden is perhaps
unsurprising as NfL is often felt to be a generic marker of axonal (and
therefore WM) damage. However, NfL can be increased in FTD in the
absence of WMH, and the increase of NfL in the GRN population is
therefore likely to be a function of both WM tract disease not seen on T1
and T2 MR imaging and WMH. Future multimodal studies combining
T1, T2 and diffusion tensor imaging will be helpful to investigate this
further.

The trend towards an association between GFAP concentration and
WM lesion load is consistent with a recent pathological study of WMH
in a GRN mutation carrier that showed a strong association with the
presence of astrogliosis (Woollacott et al., 2018). However there was
only a weak relationship both cross-sectionally and longitudinally in
our study and further work is required to better understand the role of
GFAP and astrogliosis in the pathophysiology of WMH in GRNmutation
carriers.

The risk genotype (TT) of the rs1990622 TMEM106B polymorphism
was seen to be associated with an overall acceleration of WMH accrual
over time in the GRN population but not in the control group.
TMEM106B appears to regulate progranulin levels and disease pene-
trance in GRN mutation carriers (Finch et al., 2011), and the presence
of the risk genotype is associated with lower GM volume (Harding et al.,
2017) and impaired functional connectivity in the brain (Premi et al.,
2017). This study adds to the knowledge about the role of TMEM106B
in GRNmutation carriers and further work is needed to understand how
the presence of the risk genotype leads to an increased accrual of WMH.

The underlying nature of the WMH in GRNmutation carriers has yet
to be determined, although prior imaging and neuropathological work
suggests that the lesions are not likely to be vascular (Sudre et al.,
2017a; Woollacott et al., 2018) despite a relationship of progranulin
with systemic metabolic disease (Nguyen et al., 2013), but instead are
potentially inflammatory, with evidence of regional microglial dys-
function (Woollacott et al., 2018; Sakae et al., 2019). Recent studies
suggest that lysosomal dysfunction within microglia is a key patho-
physiological mechanism in GRN mutation carriers (Götzl et al., 2018),
and that this is associated with TMEM106B function (Klein et al., 2017),
hence providing a link to the findings in this study of a relationship
between WMH and the TMEM106B risk genotype.

Apart from the fact that T2-weighted imaging may not be the op-
timal sequence of choice to segment WMH (including increased diffi-
culty in segmentation at the ventricular border and the issue of jointly
enlarged perivascular spaces and WMH), limitations of the study may
include the relatively limited number of longitudinal cases available for
analysis. However further data freezes within the GENFI study will
allow larger longitudinal analyses to be performed in the future.

In order to further validate the hypothesis of Wallerian degenera-
tion linking GM loss and WM lesions, the longitudinal evolution of
diffusion tensor imaging metrics on the tracts impacted by lesions will
be useful to investigate. Additionally, recent studies have highlighted
the role of neuroinflammation and microglial activation in GRN mu-
tation carriers, and particularly an association of abnormal, dystrophic
microglia with WMH (Woollacott et al., 2018): it will therefore be
important to correlate WMH burden with measures of inflammation
such as CSF markers or microglial PET imaging in future studies.
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