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Abstract
Background Standard parametric survival models are commonly used to estimate long-term survival in oncology health 
technology assessments; however, they can inadequately represent the complex pattern of hazard functions or underlying 
mechanism of action (MoA) of immuno-oncology (IO) treatments.
Objective The aim of this study was to explore methods for extrapolating overall survival (OS) and provide insights on 
model selection in the context of the underlying MoA of IO treatments.
Methods Standard parametric, flexible parametric, cure, parametric mixture and landmark models were applied to data from 
ATLANTIC (NCT02087423; data cut-off [DCO] 3 June 2016). The goodness of fit of each model was compared using the 
observed survival and hazard functions, together with the plausibility of corresponding model extrapolation beyond the 
trial period. Extrapolations were compared with updated data from ATLANTIC (DCO 7 November 2017) for validation.
Results A close fit to the observed OS was seen with all models; however, projections beyond the trial period differed. Esti-
mated mean OS differed substantially across models. The cure models provided the best fit for the new DCO.
Conclusions Standard parametric models fitted to the initial ATLANTIC DCO generally underestimated longer-term OS, 
compared with the later DCO. Cure, parametric mixture and response-based landmark models predicted that larger propor-
tions of patients with metastatic non-small cell lung cancer receiving IO treatments may experience long-term survival, 
which was more in keeping with the observed data. Further research using more mature OS data for IO treatments is needed.

Key Points for Decision Makers 

Despite similar and reasonable fits to the observed Kaplan–
Meier curve from the evaluated immuno-oncology (IO) 
trial, the long-term overall survival extrapolation differed 
substantially across the various survival models examined.

Cure, parametric mixture and landmark models may 
better account for the potential mechanism of action of 
IO treatments, whereby a plateau in long-term survival is 
observed.

A consistent and scientifically grounded approach to 
survival extrapolations is required to demonstrate the 
potential value of IO treatments.
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1 Introduction

In many developed countries, including Australia, Can-
ada, Denmark, The Netherlands, Norway, Sweden and the 
UK, reimbursement decisions for new interventions rely 
on cost-effectiveness analyses. In oncology, the analy-
ses involve the estimation of lifetime benefits and costs 
of different treatment options [1–4]. To estimate lifetime 
survival, the limited follow-up of clinical trials usually 
necessitates extrapolation of survival data beyond the trial 
period. The accuracy of extrapolation depends on select-
ing the appropriate survival distribution. Guidance exists 
to help with these modelling choices [5, 6]; however, 
emerging immuno-oncology (IO) therapies may increase 
the complexity of underlying hazard functions owing to 
their unique characteristics, including delayed onset of 
treatment effects and the potential for long-term survival 
[7], potentially invalidating the use of simple extrapola-
tion methods.

In metastatic cancer clinical trials, the empirical haz-
ards of death may have a complex shape. For example, the 
use of inclusion and exclusion criteria may suppress the 
risk (or hazard) of death in the early part of the trial by 
selecting patients with a lower risk of death than the gen-
eral metastatic cancer population [8]; however, given that 
trial participants have severe disease, the hazard of death 
is likely to increase after the initial trial period. Delayed 
treatment effects, particularly those of IO therapies, may 
cause a decline of the death hazard in the medium term, 
while in the longer term, competing age-related mortality 
risk may eventually increase the hazard.

Health technology assessments (HTAs) most commonly 
use exponential or Weibull models [5, 6]. In exponential 
models, the hazard remains constant over time, while 
in Weibull models, hazards either increase or decrease 
monotonically with the exponential as a special case. 
Other standard models are similarly restricted by the types 
of hazard changes that they can capture. For example, 
Gompertz models can represent hazards that increase or 
decrease monotonically but assume that the rate of change 
is exponential [9]. Log-logistic, log-normal and general-
ised gamma models can represent one change in direction 
of the hazards but cannot characterise any additional direc-
tional changes in hazard [6, 10]. Standard parametric dis-
tributions may therefore be insufficient to model long-term 
survival with novel therapies such as IO agents, which are 
likely to exhibit more changes in the hazard rate over time 
if they result in delayed effects and long-term survival. 
Flexible parametric models [11, 12], cure models (CM), 
parametric mixture models (PMMs) [13, 14] and response-
based landmark models, in which survival is modelled for 
different groups based on a time point when patients can 

be categorised by treatment response [15], can character-
ise more complex hazard functions with turning points 
and changing slopes. However, the relative strengths and 
limitations of these approaches have not been thoroughly 
studied and to date they have not been extensively used 
in HTAs.

In this paper, we discuss these methods and illustrate their 
application to the ATLANTIC trial (NCT02087423), a phase 
II single-arm study of durvalumab for previously treated, 
advanced non-small cell lung cancer (NSCLC) [16]. Dur-
valumab, a human immunoglobulin G1 (IgG1) monoclonal 
antibody (mAb), which blocks programmed death-ligand 
1 (PD-L1) binding to PD-1 and CD80, is an approved IO 
therapy in NSCLC [17].

2  Methods

2.1  The ATLANTIC Study

ATLANTIC (NCT02087423) is a phase II, open-label,  
single-arm trial of durvalumab in heavily pretreated patients 
with stage IIIB–IV NSCLC with a World Health Organiza-
tion performance status of 0 or 1, who had recurrent or pro-
gressive disease after at least two prior systemic treatment 
regimens (including one platinum-based regimen) [16]. The 
primary endpoint was objective response rate, while sec-
ondary endpoints included disease control rate, duration of 
response, progression-free survival, overall survival (OS) 
and safety. The primary results were published in 2018 [16].

In this analysis, we applied and evaluated different sur-
vival modelling approaches to the OS data in the all-treated 
population from the ATLANTIC trial. OS was measured 
from the date of first dose to the date of death from any 
cause, with patients alive at the time of the analysis censored 
at the date of last contact. The analyses presented in this 
manuscript are based on an OS data cut-off (DCO) of 3 June 
2016 and the all-treated set (n = 442) [16]. At that time, the 
median duration of follow-up in all-treated patients was 8.0 
(interquartile range [IQR] 3.4, 13.9) months. Patients con-
tinued to be followed for long-term survival; OS results from 
a subsequent DCO of 7 November 2017 (median follow-up 
of all-treated patients was 8.9 [IQR 3.4, 22.5] months) were 
used as a validation set to illustrate how the extrapolations 
based on the original OS data performed.

Two different ways to smooth the hazards were used. 
The first approach, run using the ‘muhaz’ program in R, 
uses kernel-based methods to estimate the hazard function 
from right-censored data. Three types of bandwidth func-
tion, three types of boundary correction, and four kernel 
function shapes can be modelled [18]. The second approach, 
run using the ‘B-spline hazard’ program in R, accounts for 
left truncation, right censoring and possible covariates [19]. 
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B-splines can estimate the hazard shape within a generalised 
linear mixed-model framework [19, 20]. The approach yields 
smooth estimates of the hazard/survival functions that have 
a structure intermediate between strongly parametric and 
non-parametric models [20].

The two smoothing techniques were run using their 
default settings; the data were also evaluated using different 
numbers of knots. In addition, monthly raw hazards were 
computed. The muhaz method was judged by the authors to 
display more flexibility than the B spline hazard technique 
(details in Appendix) and, as such, the decision was taken 
for the muhaz method (with default settings) to be used, 
together with the empirical hazards, for the remainder of 
this paper to provide an illustration of the hazards observed 
during the trial. Empirical monthly hazards were estimated 
by interpolating the Kaplan–Meier curve at the end of each 
month, and were computed using the ‘survfit’ package in 
R. Note that at the time of extrapolation, data from the new 
DCO were not available and thus data on longer-term sur-
vival and hazards were not used. In the Results section, we 
present data from the new DCO for illustrational and model 
validation purposes.

2.2  Modelling Approaches

2.2.1  Standard Parametric Models

First, a set of standard parametric models [6] were fitted 
to the OS data in the ATLANTIC trial. Standard models 
considered were the proportional hazards-based exponen-
tial, Weibull and Gompertz, and the accelerated failure time-
based log-normal, log-logistic and generalised gamma. The 
standard models have been routinely used in UK National 
Institute for Health and Care Excellence appraisals and other 
HTA submissions [6].

2.2.2  Flexible Parametric Models

Spline-based models [11] are flexible parametric models that 
are defined in stages by polynomial distributions intersected 
by ‘knots’. At each knot, the modelled hazards are smoothed 
where the distributions change. In simple cases with zero 
knots, these models are the same as Weibull, log-logistic or 
log-normal distributions. The spline approach involves not 
only choosing the number and positions of knots but also 
the transformation of the survival percentages to the lin-
ear prediction scale. We used the transformation of the sur-
vival percentages that related to the log-normal distribution 
because these produced more favourable Akaike information 
criterion (AIC) and Bayesian information criterion (BIC) 
results. Results for other transformations can be obtained 
from the authors upon request.

The following spline models were used to model the OS 
data: (1) one-knot spline model with knot at 3 months; (2) 
one-knot spline model with knot at 1 year; (3) two-knot 
spline model with knots at 3 months and 1 year; and (4) 
five-knot spline model with knots at 0.25, 0.5, 0.75, 1.0 and 
1.25 years.

2.2.3  Cure Models

CMs were first presented more than 50 years ago [21] and 
have recently been utilised to model survival of novel cancer 
therapies, such as IO treatments [14, 22]. IO-based studies 
across different tumour types, including melanoma, have 
indicated that survival curves eventually plateau, with a 
significant proportion of patients experiencing a durable 
long-term survival benefit [21]. The key feature of a CM is 
the estimation of the percentage of patients who are deemed 
‘cured’, in addition to the estimation of a parametric sur-
vival function for patients who are ‘not cured’ [14]. The 
risk of death in the ‘cured’ population is often assumed to 
be similar to the background population (depending on how 
‘cure’ is defined), while the risk of death for the non-cured 
population is a mix of background mortality and excess dis-
ease mortality. There are two major types of CMs: ‘mixture’ 
(MCM) and ‘non-mixture’ (nMCM). In an MCM, survival is 
modelled as a mixture of two groups of patients: those who 
are cured and those who are not (and who therefore remain 
at risk for the event). In contrast, in an nMCM, it is assumed 
that all patients belong to the same group, but that event risk 
decreases to 0 over time, meaning a non-zero proportion of 
patients will remain alive/will not experience the event in 
the long-term, even when followed to infinity.

The survival function of the MCM we assessed can be 
written as shown in Eq. 1:

In the MCM, we used UK and US age- and sex-adjusted 
mortality data (2012‒2014) as background mortality. In 
order to capture the potential structural difference between 
the monotone and more flexible distributions, we chose 
Weibull distribution and log-normal distribution, respec-
tively, as survival functions for the ATLANTIC OS data. 
The MCM is fitted by flexsurvcure based on relative sur-
vival, i.e. a background mortality rate is taken into account 
for all-cause mortality. As for the standard extrapolation 
models, the likelihood is then optimised, resulting in both a 
cure rate and parameter estimates for shape and scale. Fur-
ther details about how the MCM was fitted are provided in 
the electronic supplementary Appendix.

(1)
Population survival = survival of general population

×

(

pcured +
(

1 − pcured

)

× survivaluncured
)
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The survival function of the nMCM we assessed can be 
written as shown in Eq. 2:

where S is a standard extrapolation distribution that 
decreases to 0 over time, resulting in a cure percentage of 
exp(ln(pcured)) = pcured. In addition, for nMCM, we modelled 
relative survival to enable this multiplication with the gen-
eral population survival, and thus with having a hazard that 
is at least at the level of the general population mortality 
rate. Further details about how survival was modelled in 
the nMCM are provided in the electronic supplementary 
Appendix.

2.2.4  Parametric Mixture Models

PMMs are also used to capture a heterogeneous population; 
they are used in the case of two or more distinct groups, 
where there is no assumption of a ‘cure’. The model is used 
to estimate the survival function for patients in each of the 
distinct groups. A mixture model with two distinct groups 
can be presented as shown in Eq. 3:

where p represents the group with lower mortality (i.e. the 
first mixture) and 1 − p represents the group with higher 
mortality (the second mixture). Two scenarios were evalu-
ated: one in which a mixture of two log-normal distributions 
were used, and one in which a mixture of two Weibull distri-
butions were used, to fit the ATLANTIC OS data, applying 
Eq. 3 using Bayesian statistics in RJAGS. We assumed that 
the second group was largest to let the program converge. 
In addition, we ran the model once assuming that the sec-
ond group had the longest survival and once assuming that 
the second group had the shortest survival. Results showed 
that the assumption of shortest survival did not make sense 
and can be obtained upon request. Further methodological 
details about how the PMM was fitted are provided in the 
electronic supplementary Appendix.

2.2.5  Response‑Based Landmark Models

Another approach investigated was a landmark model. 
This approach models survival for ‘responders’ and ‘non-
responders’ separately. The response groups are identified 
at a predefined response evaluation landmark and accord-
ing to clinical definitions of response. Subsequent survival 
is modelled from the landmark point to avoid the bias that 

(2)
Population survival = survival of general population

× exp
[

ln
(

pcured

)

(1 − S)
]

(3)
Population survival = p1 × survival1 +

(

1 − p1

)

× survival2

responders, by definition, have to survive to the point at 
which response is assessed.

In the ATLANTIC study, response was first assessed 
at week 8; therefore, the landmark in the model was also 
defined to 2  months. Response was categorised as (1) 
responder (i.e. patients who remained progression-free 
at 2  months); and (2) non-responder (i.e. patients who 
progressed).

2.2.6  Mean Overall Survival (OS) Estimates

Mean OS was derived from the area under the curve for each 
survival model. Restricted means were estimated up to the 
period of the original trial follow-up, and to the period of the 
new DCO, such that these could be compared with the area 
under the observed Kaplan–Meier curves for each DCO. In 
addition, extended mean OS estimates were calculated for 
each survival model based on the respective extrapolations 
beyond the trial follow-up, up to 50 years.

All statistical modelling was implemented using the soft-
ware package R; analyses for the mixture models were also 
run in RJAGS.

3  Results

3.1  The ATLANTIC Study

Median OS at the original DCO (3 June 2016) was 
9.8 months (95% confidence interval [CI] 8.7–11.3), with 
a 60% maturity (267 events/442 patients started) (Fig. 1). 
Median OS at the later DCO of 7 November 2017 remained 
almost unchanged (9.9 months, 95% CI 8.6–11.9), with 74% 
maturity (326 events/442 patients started).

The empirical and smoothed annual mortality hazards 
(muhaz) observed in the data are shown in Fig.  2. The 
default B spline was analogous for muhaz for the mid-period 
(electronic supplementary Fig. 1).

3.2  All Models

Figure 3 presents the curve fits against the Kaplan–Meier, 
with Fig.  3a showing the curves with the best AIC of 
each group (standard and flexible parametric, CM, PMM 
and response-based landmark) and Fig. 3b displaying, for 
each group, the curve for which the survival probability at 
3.5 years was closest to the ‘unknown’ new DCO values. A 
detailed analysis of each model is presented below.

3.3  Standard Parametric Models

The curve fits for standard parametric models are presented 
in electronic supplementary Fig. 2a (against Kaplan–Meier) 
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and Fig. 2b (in terms of hazards). The more complex mod-
elling approaches were compared against the standard log-
normal model, which is the best statistical fit among sim-
ple parametric distributions according to AIC/BIC. Visual 
inspection suggested that all standard parametric models 
provided a reasonable fit to the survival data of the origi-
nal DCO. However, survival results using the updated DCO 
showed that all distributions dropped below the observed 

Kaplan–Meier curve, with only log-normal and generalised 
gamma curves marginally overlapping the lower bound of 
the 95% CI.

3.4  Flexible Parametric Models

The fitted curves of the spline-based models shown in 
electronic supplementary Fig. 2c, d showed an interesting 

Fig. 1  Kaplan–Meier curve of overall survival in the ATLANTIC study: a the DCO used for extrapolations (3 June 2016); b the new DCO used 
for validation (7 November 2017); c both DCOs superimposed. DCO data cut-off

Fig. 2  Hazard plots of the 
ATLANTIC overall survival 
data (muhaz)



1134 M. J. N. M. Ouwens et al.

pattern with respect to knot positions. Specifically, models 
with different numbers of knots predicted similar mortality 
hazards during the first year. By contrast, the predicted haz-
ards began to differ pronouncedly after 1 year, from which 
point the Kaplan–Meier became much more uncertain due 
to low numbers at risk. Different spline models predicted 

appreciable differences in the survival percentages after the 
trial period.

3.5  Cure Models

The results for the CM are shown in electronic supplemen-
tary Fig. 2e–l. The hazard plots show that CM projected 

Fig. 3  Curve fits for a best 
Akaike information criterion 
models against the Kaplan–
Meier, and b models closest 
to the new DCO end percent-
age. DCO data cut-off, KM 
Kaplan–Meier, MCM mixture 
cure model, nMCM non-mixture 
cure model
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comparable OS during the trial period compared with standard 
methods, but they projected improved survival beyond the trial 
period. Based on background mortality according to the UK 
life table [23], the log-normal distribution projected statisti-
cal cure rates (95% CI) of 0% (0–100) for the MCM and 1% 
(0–24) for the nMCM. In contrast, the Weibull distribution 
projected much larger statistical cure rates (95% CI) of 23% 
(14–33) for the MCM and 19% (8–33) for the nMCM. Use of 
background mortality based on the US life table [24] rather 
than the UK life table had minimal impact on the results.

3.6  Parametric Mixture Models

Electronic supplementary Figs. 2m‒p provide results from the 
PMM based on Weibull (electronic supplementary Fig. 2m, 
n) and log-normal distributions (electronic supplementary 
Figs. 2o and p). The PMM Weibull distribution produced a 
much longer tail in the survival curve than the PMM log-normal  
distribution. For the Weibull distribution, the probability of a 
patient being in the group with better survival (the first mix-
ture) was 21% (95% CI 0.09–0.29). For the log-normal dis-
tribution, the probability was 5% (95% CI 0.00–0.17). Both 
PMMs suggest the presence of a patient subgroup that achieves 
a long survival benefit, comparable with the MCM.

3.7  Response‑Based Landmark Models

At 2 months, 13% of the ATLANTIC study participants had 
died and five patients were censored. Of those patients alive 
at 2 months, 54% were responders (defined as progression-
free per Response Evaluation Criteria In Solid Tumors 
[RECIST] 1.1) and 46% were non-responders. There was 
a clear differentiation between the two response groups in 
terms of OS after the landmark point (electronic supplemen-
tary Figs. 2q and r).

The extrapolated survival curve for the overall population 
and the corresponding hazard plot are shown in electronic 
supplementary Figs. 2s and t, respectively. Inspection of 
both the survival function and the hazard function suggested 
that the exponential and Weibull landmark models provided 
a close fit to the observed data; however, the model with 
log-normal distribution was more in line with the new DCO.

3.8  Mean OS Estimates for Each Survival Model

Table  1 summarises the mean OS calculated for each 
survival model. All models provided close in-sample 
fit to the Kaplan–Meier data, but the out-of-sample fit 
(Kaplan–Meier +) across the models varied.

4  Discussion

Extrapolation of OS is necessary to estimate lifetime sur-
vival based on oncology clinical trials, and is often used 
to inform cost-effectiveness analyses. Standard parametric 
survival models are commonly used to estimate long-term 
survival in oncology HTAs; however, these standard models 
may not adequately represent the complex pattern of hazard 
functions, an inadequacy that may further be confounded 
when evaluating IO treatments owing to their unique char-
acteristics, including delayed treatment effects and potential 
for long-term survival [7].

We investigated a comprehensive range of models, as 
alternatives to the standard parametric survival models, 
to simulate and extrapolate long-term survival outcomes 
based on the phase II ATLANTIC trial, which evaluated the 
efficacy of durvalumab in patients with previously treated 
NSCLC [16]. The availability of updated OS data from this 
trial presented a unique opportunity to evaluate the perfor-
mance of extrapolations based on a less mature dataset.

All approaches examined provided a reasonable fit to 
the observed OS data. However, notable differences were 
observed when extrapolating beyond the trial period. There-
fore, each model led to a different mean OS, which is a key 
driver in cost-effectiveness models. To identify the most 
appropriate survival models, the ability to predict long-term 
survival should be cross-examined with relevant internal and 
external benchmarks, and be validated against long-term 
clinical follow-up data (e.g. the later DCO from the ATLAN-
TIC trial) or, if none are available, with real-world data.

We felt that the mixture model (MCM as a special case, if 
‘statistical cure’ can be supported) and the landmark model 
may better account for the mechanism of action (MoA) of IO 
therapies compared with standard parametric fitting because 
they can represent complex hazard functions, which may 
be observed when treatment effects are delayed and there 
is long-term survival. These findings are in agreement with 
those from two recent studies examining the accuracy of 
standard models for extrapolating long-term OS in IO ther-
apy settings [14, 25]. Both studies found that CMs (or mod-
els that included some form of external information, such 
as registry data) provided much more accurate estimates of 
long-term OS and associated health economic measures than 
standard parametric models [14, 25]. In a separate study 
by Gibson et al., estimates generated by traditional para-
metric methods were shown to also fit IO progression-free 
survival K–M curves poorly, whereas those generated from 
a restricted cubic splines model fitted the curves well [26].

In our analysis, different mixture and CMs projected 
outcomes differently. For the CM, Weibull and log-normal 
distributions predicted statistical cure rates of 23% and 0%, 
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respectively, in the MCM, and 19% and 1%, respectively, in 
the nMCM. In comparison, for the PMM, the percentages 
of patients with low mortality were 21% and 5%, respec-
tively. This may suggest some consistency between the CM 
and PMM approaches but, even with similar fractions in 
the ‘cure’ and ‘low mortality’ groups, these models resulted 
in substantially different lifetime mean survival estimates 
(Table 1). We conducted a post hoc nMCM for the second 
DCO using log-normal and Weibull distributions, and the 
statistical cure rate was 17% for the Weibull model and 4% 
for the log-normal model. Similarly, for PMM, the mix-
ture for low mortality was 17% and 6% for Weibull and 

log-normal, respectively. These results suggest that the cure 
fractions and mixture fractions for these models were stable 
over time, but the difference in cure and mixture fractions 
produced by the different parametric distributions is a cause 
for concern and led to substantially different long-term mean 
survival estimates. This is to be expected because, for exam-
ple, a log-normal model is likely to predict a reducing hazard 
in the long term, even for the non-cured group, and thus if 
a cure fraction can be justified, it is likely to be particularly 
important to consider what the survival distribution in non-
cured patients is likely to be.

Table 1  Mean OS estimated from each survival model

AIC Akaike information criterion, AUC  area under the curve, BIC Bayesian information criterion, CI confidence interval, DCO data cut-off, 
K–M Kaplan–Meier, K-M +K-M out-of-sample fit, MCM mixture cure model, NA not available, nMCM non-mixture cure model, PMM paramet-
ric mixture model, wAIC Watanabe–Akaike information criterion
a wAIC rather than AIC; without background mortality
b Landmark AIC/BIC are lower than the other AIC/BIC, because they only assess goodness of fit from a landmark time point onwards

Model Section AIC BIC AUC 
(K-M 2.25; years)

AUC (K-M new 3.5; years) AUC 
K-M + (years)

AUC 
(lifetime; 
years)

K-M, 2.25 years [95% CI] 1.05 [0.96–1.14]
K-M new DCO, 3.5 years [95% CI] 1.08 [1.00–1.16] 1.33 [1.21–1.45]
Minimum across all fitted models 1.03 1.14 0.05 1.19
Maximum across all fitted models 1.11 1.37 9.9 11.22
Weibull 3.3 3793 3801 1.03 1.14 0.05 1.19
Exponential 3791 3795 1.03 1.15 0.07 1.22
Gompertz 3792 3800 1.04 1.20 0.38 1.59
Generalised gamma 3779 3792 1.05 1.25 0.58 1.83
Log-normal 3777 3786 1.05 1.26 0.60 1.86
Log-logistic 3783 3791 1.04 1.24 0.87 2.11
Spline 3 months and 1 year 3.4 3780 3796 1.04 1.21 0.31 1.52
Spline 1 year 3779 3792 1.05 1.25 0.52 1.77
Spline 3 months 3779 3792 1.05 1.26 0.59 1.85
Spline 5 knots 3-month intervals 3783 3812 1.06 1.31 2.00 3.31
MCM log-normal UK 3.5 3772 3785 1.04 1.25 0.51 1.76
MCM log-normal USA 3771 3783 1.04 1.25 0.50 1.75
MCM Weibull UK 3780 3792 1.05 1.34 4.47 5.81
MCM Weibull USA 3779 3791 1.05 1.33 4.28 5.61
nMCM log-normal UK 3773 3786 1.04 1.26 0.84 2.10
nMCM log-normal USA 3772 3784 1.04 1.25 0.84 2.09
nMCM Weibull UK 3779 3791 1.05 1.31 3.71 5.02
nMCM Weibull USA 3777 3790 1.05 1.31 3.60 4.91
PMM  Weibulla 3.6 3787 NA 1.04 1.32 9.90 11.22
PMM log-normala 3779 NA 1.04 1.28 2.68 3.96
Landmark  Gompertzb 3.7 2910 2922 1.05 1.23 0.22 1.45
Landmark generalised  gammab 2912 2928 1.05 1.23 0.23 1.46
Landmark  exponentialb 2908 2916 1.05 1.23 0.25 1.48
Landmark  Weibullb 2910 2922 1.05 1.24 0.24 1.48
Landmark log-logisticb 2920 2932 1.07 1.32 1.40 2.72
Landmark log-normalb 2952 2964 1.09 1.37 1.74 3.11
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It appeared that the estimators for the rate of statistical 
cure and the shape parameter for log-normal distribution 
were competing for variations in the observed data. As dis-
cussed, the standard log-normal distribution may have been 
able to account for much of the changes seen in the hazard 
functions; however, the estimator for statistical cure rate may 
then become redundant. This may also suggest that models 
that can represent complex hazard functions to some extent, 
such as the log-normal distribution with its ability to rep-
resent a turning point in the hazard function, may make the 
‘cure rate’ difficult to interpret. Therefore, for models with 
mixture populations, simple distributions, such as Weibull, 
may be a better choice for the model intuition. At minimum, 
caution regarding interpretation of the cure rate is needed 
because it may have different meanings for different survival 
function distributions. In addition, assigning a distribution 
that has a long tail to non-cured patients may be unrealistic. 
Furthermore, it may be reasonable to assume that patients 
with cancer who are termed ‘cured’ may still be at higher 
risk of death compared with the general population. Thus, 
instead of using a background population in the CM, it 
may be preferable to use an inflated background population 
hazard.

The nMCM, PMM and landmark models are designed 
to address heterogeneous mortality hazards and therefore 
may be more capable of modelling the potential MoA of 
IO therapies than spline models or standard parametric 
approaches, which are more mechanistic. However, to better 
identify which model provided the best fit and most accurate 
extrapolation in this setting, more data are required than are 
currently available in our investigation using ATLANTIC 
trial data. In addition, it should be noted that even for the 
models that produced accurate and similar estimates of AUC 
for the new DCO, their estimates for lifetime mean survival 
differed greatly.

IO is an emerging therapy area, and the MoA and long-
term survival patterns for many agents across different 
tumour types remain to be fully elucidated, which adds to 
the challenges of modelling their long-term survival ben-
efits. Improvements in understanding the basic science and 
MoA of novel IO therapies, coupled with the collection of 
long-term clinical outcome data, will provide additional 
information needed to evaluate the appropriate approach 
for OS extrapolation.

The hazards observed to date in the first DCO from the 
ATLANTIC trial may not be inconsistent with standard par-
ametric models—they seem to be monotonically decreasing 
(the increase near the end of the latest data-cut is likely to be 
highly uncertain). Hence, from the first DCO, we cannot be 
sure that the investigational drug has resulted in the kind of 
complex hazard function that we might expect to see with 
IO treatments.

The second DCO is useful and allows some degree of 
validation for long-term survival beyond the latest DCO, 
but caution is required because the data are very limited in 
order to decide what is reasonable beyond that time point. 
It seems that several of the models fitted to the original 
DCO have underestimated survival at the slightly longer 
time point seen in the new DCO. However, this does not 
represent conclusive evidence for deciding which is more 
appropriate beyond that time point out of the flattened sur-
vival curves associated with the mixture models, or the 
more steadily declining survival curves associated with 
landmark models. There remains a need to revisit this 
topic with more mature OS data. As a next step, it may 
also be interesting to perform a simulation study to test 
which model is the best predictor of long-term OS under 
a variety of different circumstances.

A limitation of this study is that other biologically plau-
sible combinations of the survival assumptions were not 
investigated. For example, in the MCM, the cure fraction 
may be allowed to have a different mortality schedule than 
the general population. For PMM, background mortality 
can be included into the estimators, such that the mix-
ture of lower mortality can be more realistic for long-term 
extrapolations. These other combinations may have had an 
impact on survival extrapolation outcomes.

5  Conclusions

Despite similar and reasonable fits to the observed 
Kaplan–Meier curve from the evaluated IO trial, the long-
term OS extrapolation from the various survival models dif-
fered significantly. This will have a significant impact on 
cost-effectiveness models and health economic evaluation. 
The ATLANTIC study showed a slight flattening of the sur-
vival curve from the previous to the latest DCO. Standard 
parametric models fitted to the initial DCO poorly predicted 
actual survival observed in the later DCO. MCM, PMM 
and response-based landmark models provided estimates of 
longer-term survival that were closer to those observed in 
the later DCO, but themselves resulted in vastly differing 
estimates of lifetime mean survival.

Even though these models demonstrated theoretical and 
empirical advantages over standard approaches, it remains 
a challenge to pinpoint a consistent and scientifically sup-
ported approach to extrapolate survival data for IO thera-
pies. Further research using more mature OS data for IO 
treatments is still needed.
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