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Abstract 12 

Coccidioidomycosis is an understudied infectious disease acquired by inhaling fungal 13 

spores of Coccidioides species.  While historically connected to the southwestern United States, 14 

the endemic region for this disease is not well defined.  This study’s objective was to estimate 15 

the impact of climate, soil, elevation and land cover on the Coccidioides species’ ecological 16 

niche. This research used maximum entropy ecological niche modeling based on disease case 17 

data from 2015 to 2016.  Results found mean temperature of the driest quarter, and barren, shrub, 18 

and cultivated land covers influential in characterizing the niche.  In addition to hotspots in 19 

central California and Arizona, the Columbia Plateau ecoregion of Washington and Oregon 20 

showed more favorable conditions for fungus presence than surrounding areas. The identification 21 

of influential spatial drivers will assist in future modeling efforts, and the potential distribution 22 

map generated may aid public health officials in watching for potential hotspots, assessing 23 

vulnerability, and refining endemicity. 24 
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1. Introduction 26 

Coccidioidomycosis, commonly referred to as valley fever, is a fungal disease that affects 27 

humans and mammals in the western United States.  The fungal species that cause this disease, 28 

Coccidioides immitis and Coccidioides posadasii, live and grow in the soil, but environmental 29 

conditions and human disturbances can cause the fungal spores to become airborne.  These 30 



spores will either return to the soil or become inhaled.  If inhaled, the fungus can become 31 

parasitic and cause symptoms such as fever, cough, chest discomfort, and fatigue; in a small 32 

percentage of the population, endospores disseminate throughout the body and cause more 33 

serious illness (Saubolle, McKellar, & Sussland, 2007).  Valley fever is not contagious; 34 

inhalation of spores is the only method of infection, with a few rare exceptions (Pappagianis, 35 

1988).  The public health burden associated with this disease has been increasing as cases have 36 

been steadily rising over the past 20 years with approximately 14,000 cases reported in the U.S. 37 

in 2017 (Centers for Disease Control and Prevention, 2018).  Approximately 200 people a year 38 

die from this disease (Huang, Bristow, Shafir, & Sorvillo, 2012).   39 

The environmental factors influencing the geographic range and distribution of the 40 

Coccidioides spp. is not well understood because it is very difficult to find and isolate the fungus 41 

from the soil (Barker, Tabor, Shubitz, Perrill, & Orbach, 2012; Greene, Koenig, Fisher, & 42 

Taylor, 2000).  Until recently, the established and suspected endemic region for this disease in 43 

the U.S. was thought to be confined to states in the southwest (Pappagianis, 1988).  In the early 44 

2000s, the discovery of multiple Coccidioides spp. growth sites in Washington state, well outside 45 

what had previously been considered the suspected endemic region, put into question the actual 46 

and potential geographic range and distribution of the pathogen (Litvintseva et al., 2015; 47 

Marsden-Haug et al., 2013).  It is uncertain whether the spores found growing in Washington had 48 

been present for an extended period, or whether they had been recently introduced (Litvintseva et 49 

al., 2015), but researchers believe that a new niche for Coccidioides spp. has established or is 50 

establishing in eastern Washington (Marsden-Haug et al., 2013).   This expansion of the 51 

suspected endemic area leads to questions regarding what controls the distribution of this disease 52 

(Benedict, Thomspon, Deresinski, & Chiller, 2015).  Species distributions are often limited by 53 

climate conditions and physical environment features (Raghavan et al., 2016).  Based on 54 

previous research and our understanding of the Coccidioides species’ lifecycle, we hypothesize 55 

that climate, soil, elevation, and land cover influence this spatial distribution.   56 

 57 



 58 

Figure 1. CDC map showing approximate areas where Coccidioides spp. are known or suspected 59 

to live in the U.S. and Mexico.  This map is based on studies performed in the late 1940s and 60 

1950s and also on locations of more recent outbreaks and cases (source: 61 

https://www.cdc.gov/fungal/diseases/coccidioidomycosis/causes.html). 62 

 63 

A relatively unexplored approach for assessing the ecological and geographic distribution 64 

of Coccidioides spp. is ecological niche modeling (ENM). Ecological niche models use a 65 

mathematical representation of known species distribution points, as represented by 66 

environmental variables, to estimate the probability of occurrence at any site (Peterson, 2006). 67 

Ecological niche modeling of Coccidioides spp. has been limited, presumably, due to the 68 

relatively small number of positive soil samples. Ideally, the spatial distribution of the disease 69 

could be assessed at fine-scales based on positive soil isolations, but the organism is difficult to 70 

detect and has only been recovered from natural settings in a limited number of studies in small 71 

geographic regions (i.e. Barker et al., 2012; Elconin, Egeberg, & Egeberg, 1964; Greene et al., 72 



2000; Swatek, Omieczynski, & Plunkett, 1967).  Baptista-Rosas et al. (2007) developed an 73 

ecological niche model for Coccidioides spp. using a Genetic Algorithm for Rule Set Production 74 

(GARP) approach based on reports of 18 point-sites of known positive isolations dating from 75 

1960-2002 to generate a predictive model that identified hotpots in Mexico, California, Arizona, 76 

and Texas. They concluded that the most probable fundamental ecological niche is the arid North 77 

American deserts, providing a methodological basis for further characterization of realized 78 

niches.   79 

Building off this previous research, the present study used a maximum entropy (MaxEnt) 80 

ecological niche modeling approach to estimate the environmental impact of climate, soil, 81 

elevation, and land cover affecting the ecological niche of Coccidioides spp. and the spatial 82 

dynamics of valley fever in the United States. We addressed the limited number of soil samples 83 

that have tested positive for Coccidioides spp. by using recent human case data (2015-2016) and 84 

expanded the region of analysis to include seven states in the western U.S.  A statistical 85 

explanation of MaxEnt can be found in Elith et al. (2011), but in summary, the algorithm works 86 

with presence-only data by comparing the environmental data found at species presence 87 

locations to data from across the entire study area. It estimates the ratio of  f1/f where f1 is the 88 

probability distribution describing the environmental characteristics at species occurrence sites 89 

and f is the probability distribution describing characteristics of the whole environment, 90 

including presence and absence sites (Guillera-Arriota, Lahoz-Monfort, & Elith, 2014). To 91 

estimate the probability distribution for species occurrence sites, MaxEnt applies the maximum 92 

entropy principle, seeking a distribution as close as possible to a uniform distribution, while 93 

deviating only as minimally as possible in order to explain the observations (Guillera-Arriota et 94 

al., 2014; Jaynes, 1957).   While there are multiple options available for niche modeling, the 95 

MaxEnt algorithm was chosen because of its ability to handle presence-only data, explore 96 

complex/interacting relationships, and generate predictions that compare favorably with other 97 

models (Elith et al., 2006); as far as we are aware, this is the first time MaxEnt has been used to 98 

assess the ecological niche of Coccidioides spp. 99 

2. Materials and Methods 100 

2.1 Study Area 101 



The study area for this research includes established endemic and suspected endemic 102 

states for valley fever to include California, Nevada, Arizona, Utah, New Mexico, and 103 

Washington along with the neighboring state of Oregon.  Oregon is not considered suspected 104 

endemic by the CDC, but it is included as it lies geographically in between two states with 105 

known growth sites; therefore, this research assumes that the pathogen is potentially present in 106 

Oregon given the pathogen’s airborne nature and the state’s location between two endemic or 107 

suspected endemic states.  Texas is the only endemic state that does not require valley fever to be 108 

reported and therefore was excluded from this study.    109 

2.2 Presence Data 110 

Annual valley fever case totals from 2015 to 2016 were obtained for all states in the study 111 

area from the respective state health departments. Valley fever reporting was mandatory for all 112 

states in the study area during this time frame.  Data was available at the county-scale for 113 

California, Arizona, New Mexico, Oregon, and Washington and at the health-district scale for 114 

Nevada and Utah.  Yearly disease incidence rates per 100,000 population were calculated using 115 

linearly interpolated annual population estimates based on the 2010 census count and the 5-year 116 

American Community Survey 2015 population estimate (U.S. Census Bureau, 2010, 2015).  117 

Annual incidence rates were averaged over the study period to obtain average annual incidence 118 

per year for each county (see Figure 2).   119 

County/health-district valley fever case reports were used in place of known Coccidioides 120 

spp. presence points.  The use of this proxy was necessary for two reasons: 1) currently there is 121 

no consolidated, georeferenced database of the positive soil samples that have been retrieved and 122 

2) required valley fever reporting spans the endemic region while the limited soil samples do not.  123 

While case data are not a direct measure of pathogen presence in the soil of a county, we felt it 124 

was reasonable to assume that most cases reported were from those who were exposed to the 125 

disease in the same county where they live and receive medical care (Benedict et al., 2018), but 126 

we acknowledge that this contributes to model uncertainty.  Washington is the only state that 127 

records whether cases were believed to be locally acquired or travel related; because we are 128 

interested using case data as a proxy for fungal presence, only the locally acquired cases were 129 

included.   130 

 131 



 132 

 133 



Figure 2. Average valley fever incidence based on data from 2015-2016, with one set of 134 

randomly-generated representative presence points.   135 

 136 

2.3 Environmental Data 137 

The environmental data used in the niche model represents ecological dimensions that are 138 

hypothesized to be relevant to the distribution of Coccidioides spp. (see Table 1).  The climate 139 

data include 19 bioclimatic variables and downward solar radiation from the WorldClim Version 140 

2 dataset at 30 arc-second resolution (Fick & Hijmans, 2017).  Soil data are from the Regridded 141 

Harmonized World Soil Database v1.2 and include 0.05-degree resolution rasters for pH, percent 142 

clay, sand, silt, and topsoil carbon content (Wieder, Boehnert, Bonan, & Langseth, 2014).  While 143 

the coarse resolution of this dataset is not ideal, this data source has the relevant attributes in a 144 

gridded format that does not require significant preprocessing, allowing for easy replication if 145 

more precise occurrence data become available.  Elevation data, including elevation, slope, 146 

aspect, and Compound Topographic Index (also referred to as the Wetness Index) are from the 147 

USGS HYDRO1k data set derived from the USGS' 30 arc-second digital elevation model (U.S. 148 

Geological Survey, 2015).  Land cover data are from the 2011 National Land Cover Database at 149 

a spatial resolution of 30-meters (Homer et al., 2015).  The land cover categories were 150 

aggregated into seven broad habitat classes: water/wetlands, developed, barren, forest, shrubland, 151 

herbaceous, and cultivated. County/health district land cover percentages for each class were 152 

calculated in ArcMap using zonal statistics and rasters with these values were then created.  A 153 

raster of percent total land cover change from 2001 to 2011 for each county/health district was 154 

also created.  While the original land cover data was available at a much higher resolution than 155 

the other environmental variables, it was converted to continuous data, aggregated at the 156 

county/health-district scale to match the health data, so that the land cover types could be directly 157 

compared with the other continuous variables.  All environmental data were projected to USA 158 

Contiguous Albers Equal Area Conic (NAD 1983) and resampled using nearest-neighbor to a 30 159 

arc-second resolution.    160 



TABLE 1.  Environmental Data 161 

Variable Resolution Units 

Climatic Variables1 
  

 
Annual Mean Temperature (BIO1)* 30 arc-second ⁰C*100 

 
Mean Diurnal Range (BIO2) 30 arc-second ⁰C*100 

 
Isothermality (BIO3)*  30 arc-second NA 

 
Temperature Seasonality (BIO4) 30 arc-second ⁰C 

 
Max Temp of Warmest Month (BIO5) 30 arc-second ⁰C*100 

 
Min Temp of Coldest Month (BIO6) 30 arc-second ⁰C*100 

 
Temp Annual Range (BIO7)* 30 arc-second ⁰C*100 

 
Mean Temp of Wettest Quarter (BIO8)* 30 arc-second ⁰C*100 

 
Mean Temp of Driest Quarter (BIO9)* 30 arc-second ⁰C*100 

 
Mean Temp of Warmest Quarter (BIO10) 30 arc-second ⁰C*100 

 
Mean Temp of Coldest Quarter (BIO11) 30 arc-second ⁰C*100 

 
Annual Precipitation (BIO12) 30 arc-second Mm 

 
Precip of Wettest Month (BIO13) 30 arc-second Mm 

 
Precip of Driest Month (BIO14)* 30 arc-second Mm 

 
Precip Seasonality (BIO15)*  30 arc-second Mm 

 
Precip of Wettest Quarter (BIO16)* 30 arc-second Mm 

 
Precip of Driest Quarter (BIO17) 30 arc-second Mm 

 
Precip of Warmest Quarter (BIO18)* 30 arc-second Mm 

 
Precip of Coldest Quarter (BIO19) 30 arc-second Mm 

 
Downward Radiation 30 arc-second kJ m-2 day-1 

Soil Variables2 
  

 
Topsoil clay fraction*  0.05 degree percent weight 

 
Topsoil silt fraction* 0.05 degree percent weight 

 
Topsoil sand fraction* 0.05 degree percent weight 

 
Topsoil carbon content* 0.05 degree kg C m-2 

 
Topsoil pH (in H2O)* 0.05 degree -log(H+) 

Elevation Variables3 
  

 
DEM (elevation)* 1-kilometer Meters 

 
Slope* 1-kilometer Degree 

 
Aspect* 1-kilometer degree (0-360⁰) 

 
Compound Topographic Index* 1-kilometer NA 

Land Cover Variables4 
  

 
Proportion Shrub/Scrub* 30-meter percent area 



 
Proportion Barren* 30-meter percent area 

 
Proportion Herbaceous* 30-meter percent area 

 
Proportion Forest* 30-meter percent area 

 
Proportion Water & Wetland* 30-meter percent area 

 
Proportion Developed* 30-meter percent area 

 
Proportion Cultivated* 30-meter percent area 

  Proportion Changed from 2001 – 2011* 30-meter percent area 

1 http://worldclim.org/version2 
  

2 https://daac.ornl.gov/SOILS/   

3 https://lta.cr.usgs.gov/HYDRO1K 
  

4 https://www.mrlc.gov/nlcd11data.php 
   

* Included in final model   
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2.4 Data Processing 163 

Previous ecological niche model studies have handled county-level disease presence data 164 

by either assigning the geographic coordinates of county centroids or population density centers 165 

to each occurrence (Peterson, Pereira, & Neves, 2004; Zeimes et al., 2015), or by plotting 166 

random points within each county polygon to represent each occurrence (Nakazawa et al., 2007, 167 

2010; Peterson, Lash, Carroll, & Johnson, 2006).  This study used the latter method as it is better 168 

suited to represent the variability found in the large counties where the disease is endemic. 169 

Specifically, we used 25 random points generated for each case per 100,000 population to 170 

develop 25 sets of covariates, to be used in 25 replicate niche models. This case per 100,000 171 

value was based on the previously calculated average incidence per year, rounded up to the 172 

nearest whole number to capture all counties that had cases during the study period.  This 173 

approach represents counties with high incidence more precisely and counties with low incidence 174 

with more spatial variation in representative points. The random occurrence points were 175 

generated in R using the ‘spsample’ command from the SP package and verified in ArcGIS 176 

version 10.5 (Bivand, Pebesma, & Gomez-Rubio, 2013; Environmental Systems Research 177 

Institute, 2017; Pebesma & Bivand, 2005; RStudio Team, 2016).  The MaxEnt default of 10,000 178 

background points were randomly selected from the study area.  Predictor variables considered 179 

for this analysis included the 37 environmental raster layers listed in Table 1.  High correlations 180 

among predictors can lead to misleading results in the MaxEnt variable contribution reports 181 

(Merow, Smith, & Silander, 2013; Phillips, Anderson, & Schapire, 2006), therefore variables 182 



were assessed for collinearity and reduced based on a Pearson correlation coefficient r > 0.80 (α 183 

= 0.05).  Of the highly correlated variables (all climatic), those retained were selected based on 184 

findings from past research or ease in model interpretation.  This resulted in the inclusion of 26 185 

predictor variables (denoted by * in Table 1).   186 

2.5 Ecological Niche Modeling  187 

The MaxEnt modeling in this study was performed in R using the DISMO package 188 

(Hijmans, Phillips, Leathwick, & Elith, 2017). The model was run through 25 iterations, once for 189 

each of the 25 sets of occurrence points; the background points used to represent the overall 190 

study area were the same for each model iteration. The MaxEnt default features were limited to 191 

linear, quadratic, and product to remove highly nonlinear variable response curves and improve 192 

our ability to interpret the species’ response to the predictor of interest (Merow et al., 2013).  We 193 

also increased the regularization coefficients by 10% to force the algorithm to focus on the most 194 

important features and reduce overfitting by relaxing the empirical constraints on the model 195 

(Merow et al., 2013).    Each model was evaluated using a 10-fold cross validation (0.01 196 

convergence limit and 1000 maximum iterations).  Overall model quality was assessed through 197 

analysis of the mean area under the receiver operating characteristic curve (or AUC).  AUC is a 198 

measure of how well the model separates presence and background locations; a value of 0.5 199 

indicates that the model performs no better than a random model and 1 indicates perfect 200 

accuracy.  AUC is commonly used in ecological niche model comparisons (Elith et al., 2006; 201 

Frans et al., 2018; Padalia, Srivastava, & Kushwaha, 2014; Phillips et al., 2006; Warren & 202 

Seifert, 2011), but has been critiqued with concerns that it lacks an indication of model fit and 203 

has biased values with larger background extents generally having higher AUC values (Jiménez-204 

Valverde, Acevedo, Barbosa, Lobo, & Real, 2013; Lobo, Jiménez-Valverde, & Real, 2008).    205 

Predictor variables were assessed by averaging the 25 reports generated by MaxEnt including 1) 206 

variable percent contributions and permutation importance, 2) jackknife tests of model gains for 207 

three scenarios (without variable, with only one variable, and with all variables), and 3) variable 208 

response curves.  Finally, the raw output data from the model predictions was combined by 209 

averaging each pixel to produce an estimate of potential distribution.   The raw output represents 210 

the probability, given the species is present, that is it found at the respective site; it should be 211 

interpreted as a relative suitability, not an occurrence probability (Guillera-Arriota et al., 2014; 212 

Phillips et al., 2006). 213 



3. Results 214 

3.1 Variable Assessment 215 

Three MaxEnt reports were used to estimate the effect of each variable on the spatial 216 

distribution of Coccidioides spp.  The results reported here focus on the top five variables in each 217 

assessment.  The first assessment report showed which variables contributed the most to the 218 

model.  This report had two categories: variable contribution to the final model and permutation 219 

importance.  Permutation importance indicates variables that contributed the most regardless of 220 

the order in which they added to the model.  Variables common to both categories included 221 

downward radiation, mean temperature of driest quarter, and proportion shrub land cover (see 222 

Table 2).   The second variable assessment report included results of jackknife tests on the 223 

variables.  When the model was run with only one selected variable at a time, climate variables 224 

were the most influential, meaning these variables contain the most information by themselves 225 

(see Table 3).  The model was also run with all variables except the selected variable. Model 226 

performance decreases if the selected variable contains information not found in other variables.  227 

Model performance decreased for proportion barren, downward radiation, proportion shrub, and 228 

proportion cultivated (see Table 4).  The final variable assessment report consisted of variable 229 

response curves that show how the predicted probability of presence changes as the 230 

environmental variable changes.  Two sets of response curves were assessed- one with other 231 

variables held constant, and one using only the selected variable (not shown).  All precipitation 232 

variables except seasonality had generally negative relationships, and all temperature variables 233 

had positive relationships, with the exception of temperature range which had no relationship 234 

with probability of presence.  Land cover relationships showed a negative curve between 235 

probability of presence and proportion barren, and a positive curve for proportion cultivated and 236 

proportion shrub.  237 

Table 2.  Top variables contributing to model development. 238 

Rank Variable Contribution % Permutation Importance % 

1 
Mean Temperature of Driest 

Quarter  
22.8 Downward Radiation 41.3 

2 Annual Mean Temp 18.5 
Mean Temperature of Driest 

Quarter 
19.2 

3 Downward Radiation 14.7 Proportion Cultivated 14.4 

4 Precipitation Seasonality 9.5 Proportion Barren 12.7 



5 Proportion Shrub 7.8 Proportion Shrub 4.3 

 239 

Table 3. Top variables from model jackknife tests using only the selected variable. 240 

Rank Training Gain Testing Gain AUC Value 

1 
Annual Mean 

Temp 
0.27 

Annual Mean 

Temp 
0.31 

Annual Mean 

Temp 
0.73 

2 
Mean Temperature 

of Driest Quarter 
0.27 

Precipitation of 

Driest Month  
0.31 

Precipitation of the 

Driest Month 
0.72 

3 
Precipitation of 

Driest Month 
0.22 

Mean Temperature 

of Driest Quarter 
0.30 

Mean Temperature 

of Driest Quarter 
0.71 

4 Down. Radiation 0.18 Down. Radiation 0.21 Isothermality 0.69 

5 
Precipitation 

Seasonality 
0.13 

Precipitation 

Seasonality 
0.15 

Proportion 

Developed 
0.68 

 241 

Table 4. Top variables from model jackknife tests without the selected variable. 242 

Rank Training 

Gain 

Lost Testing 

Gain 

Lost 

1 Down. Radiation 0.05 Proportion Barren 0.06 

2 Proportion Barren 0.04 Down. Radiation 0.04 

3 Proportion Shrub 0.04 Proportion Shrub 0.04 

4 
Mean Temperature of 

Driest Quarter 
0.02 

Proportion 

Cultivated 
0.03 

5 Proportion Cultivated 0.02 Herbaceous 0.02 

 243 

3.2 Potential Distribution 244 

The raw output from the MaxEnt prediction is equivalent to the relative occurrence rate, 245 

it shows relative habitat suitability for each pixel.  The map produced from averaging the raw 246 

output captures the areas around the counties with the highest incidence rates, particularly in 247 

south central Arizona and central California, as having the highest relative occurrence rates (see 248 

Figure 3).  Southcentral Washington and parts of northern Oregon stand out from the rest of the 249 

Pacific Northwest as having slightly higher rates than surrounding areas.  Low rates of relative 250 

occurrence can be seen in the Mojave Desert of southeastern California, the northern coastlines, 251 

and throughout most of Nevada, Utah, Oregon, and western Washington.  While the output from 252 

the prediction is continuous, some county borders are visible due to the summation and influence 253 

of land cover variables at the county/health district spatial scale.   254 



 255 

Figure 3. Map of potential distribution based on average raw output from model predictions.  256 

Values indicate the probability, given the species is present, that is it found at that location; the 257 

individual pixel values sum to unity over the entire landscape.  258 

 259 

3.3 Model Evaluation 260 



Model evaluation results show that the average testing AUC value of 0.819 was only 261 

slightly below the average training value of 0.821; these are considerably higher than the null 262 

model of 0.5.  These results indicate that the environmental variables used in this study were able 263 

to partially explain the spatial distribution of valley fever.  Additionally, there was consistency 264 

between the 25 sets of models as indicated by low standard deviations values for both testing and 265 

training AUCs.   266 

 267 

4. Discussion 268 

This research aimed to improve our understanding of factors affecting Coccidioides 269 

species’ ecological niche and the spatial distribution of valley fever through ecological niche 270 

modeling.  This modeling framework allowed us to conduct an informed assessment of 271 

environmental factors influencing Coccidioides spp. occurrence and to produce a potential 272 

distribution map based on environmental inputs. Significant findings include the identification of 273 

specific land cover types and climatic variables, including downward radiation, mean 274 

temperature of driest quarter, and proportion shrub land cover as influential factors.  A 275 

significant finding from the potential distribution map is that southeastern Washington and 276 

northcentral Oregon, generally aligning with the Columbia Plateau ecoregion, have higher rates 277 

of relative occurrence than surrounding areas indicating environmental conditions more suitable 278 

for Coccidioides spp.  This is the first time Oregon and Washington have been included in such 279 

an assessment.  Based on the results of this research, we can characterize the probable realized 280 

niche for Coccidioides spp., and therefore the probable U.S. endemic region for valley fever, as 281 

areas in the western U.S. that are semi-arid with a hot-dry season supporting shrub vegetation 282 

and/or cultivated land cover. 283 

The variable assessment results showed that of the four broad environmental categories 284 

hypothesized to affect Coccidioides species’ ecological niche, climate and land cover had the 285 

greatest effects, while soil and elevation variables were less influential.  Specifically, 286 

temperature-related variables accounted for over 50% of the variable contribution to model 287 

development and permutation importance.  Researchers have hypothesized that Coccidioides 288 

spp. grow best in areas where a hot and dry season sterilizes the top layer of soil, making it 289 

inhospitable to many microorganisms (Egeberg & Ely, 1956; Egeberg, 1962; Maddy, 1965). It is 290 



believed Coccidioides spp. survive hot and dry seasons by moving deeper into the soil, then 291 

return to the relatively competitor-free surface when rains return (Sorensen, 1967).  The presence 292 

of the mean temperature of the driest quarter, precipitation of the driest month, and precipitation 293 

seasonality variables as top contributors in many of the assessments, with a positive response 294 

curve for temperature and a negative response curve for precipitation, support this hypothesis.  295 

This also aligns with a “grow and blow” hypothesis that theorizes alternating cool/wet and 296 

hot/dry seasons support pathogen growth and disturbance/dispersal, respectively (Comrie & 297 

Glueck, 2007).  Solar radiation was also a very prominent variable in many of the assessments.  298 

Researchers have observed that when Coccidioides spp. is in the form of an arthroconidia, 299 

spherule, or endospore, it has a biological defense, an ability to deposit melanin within its cell 300 

walls, that protects it from extreme temperatures and UV radiation (Nosanchuk, Yu, Hung, 301 

Casadevall, & Cole, 2007; Taborda, da Silva, Nonsanchuk, & Travassos, 2008).  This likely 302 

gives the fungus an additional survival advantage that other competitors may not have during the 303 

hot and dry season; competitors die off without protection from radiation and then Coccidioides 304 

spp. are able to grow in a relatively competitor-free environment. 305 

Land cover variables were also prominent in some of the variable assessment reports; 306 

they accounted for approximately 7% of model development and 30% permutation importance. 307 

In a comprehensive review of attributes from nine sites that have tested positive for Coccidioides 308 

spp. presence in the soil, Fisher et al. (2007) found that there was no definitive vegetation types 309 

or densities common among sites.  But landcover classes, though many are defined by 310 

vegetation, represent broader ecologies with interactions among vegetation, soil, climate, and 311 

human activity, all of which may affect Coccidioides species’ lifecycle.  The variable response 312 

curves showed positive relationships between probability of presence and proportions shrub and 313 

cultivated land cover.  The relationship with cultivated land cover aligns with recent research 314 

(Colson et al., 2017; Gorris, Cat, Zender, Treseder, & Randerson, 2017), but is at odds with past 315 

findings that concluded Coccidioides spp. does not grow well in cultivated soils possibly due to 316 

microbial competitors or fungicides (Maddy, 1958; Pappagianis, 1988; Swatek, 1970).  It might 317 

be that fallow agricultural fields in these regions are supporting pathogen growth. Counties with 318 

a significant proportion of barren land cover, meaning little to no green vegetation, had reduced 319 

probability of presence.  It is possible that this land cover may not contain the types of nutrients 320 

that Coccidioides spp. need for survival and growth and/or that this land cover is associated with 321 



climates that are too hot and dry for the fungus. Of note, the greatest model gains were not from 322 

individual variables, but the result of interactions, mainly between various climatic variables and 323 

between climate and land cover types; such interactions warrant further study.  Variables not 324 

significant to model development or not found to contain significant information by themselves 325 

include most of the soil and elevation variables; the resolution of the soil variables may have 326 

been too coarse, or they may just not be as influential on the distribution of Coccidioides spp. as 327 

climate and land cover at the scale of this analysis.  328 

The potential distribution map generated from the MaxEnt model provides an indication 329 

of Coccidioides species’ realized niche and allows generation of new hypothesis regarding other 330 

factors that might influence the disease distribution.  Although evaluation metrics show the 331 

model was able to satisfactorily differentiate between presence and background locations, this 332 

map should not be interpreted as the definitive range of Coccidioides spp., but rather as a guide 333 

for further evaluations and field studies.  A visual assessment of the map shows that it captured 334 

the most endemic regions of central California and southcentral Arizona as having the highest 335 

relative rates of occurrence.  Based on the patterns shown, we can characterize the probable 336 

realized niche for Coccidioides spp. as North American shrublands, including those that have 337 

been altered for cultivation, with semi-arid climates that include a very hot, dry season. Overall, 338 

this characterization is fairly similar to the findings from 50 years ago made based on 339 

observations (Maddy & Coccozza, 1964), but provides more specific information on probable 340 

land cover associations. It should be noted that because land cover percentages were calculated 341 

at the county/health district scale, results in the probable distribution map highlight counties with 342 

similar land cover proportions rather than the actual geographic locations of associated land 343 

covers.  344 

Of interest to this study were the rates of relative occurrence in Oregon and Washington, 345 

which have received little attention in valley fever studies.  The region in Oregon and 346 

Washington that shows higher relative occurrence rates generally aligns with the Columbia 347 

Plateau ecoregion, characterized by a semi-arid climate that supports native shrub-steppe and 348 

other drought-tolerant plant communities with over half of the native shrub-steppe currently 349 

converted to agriculture (https://waconnected.org/columbia-plateau-ecoregion/).   Not 350 

surprisingly, these characteristics are similar to what we find in the highly endemic areas of 351 



central California and southcentral Arizona, making this region a great candidate for increased 352 

valley fever surveillance and awareness campaigns. The probable distribution map can also be 353 

used to make informed hypotheses regarding other factors that may be influential that were not 354 

included in this study.  For example, based on patterns observed, future studies might consider 355 

including variables such as predominant winds and proximity to stream networks. 356 

The findings of this study are subject to several limitations.  In using case data, we 357 

assume that reported cases are geographically connected to pathogen presence, but it is likely 358 

that some of the cases are travel-related and not acquired in the county in which they were 359 

reported.  As such distinctions are not maintained in most states, this adds uncertainty to our 360 

model. Counties represented in the model with presence points that may have had only travel 361 

related cases might show areas within the county as having erroneously high relative habitat 362 

suitability.  Conversely, there may be counties that have suitable habitat not indicated on the map 363 

if exposure occurred in that county, but the report was made elsewhere.  For context, a recent 364 

study by Benedict et al. (2018), reported on enhanced surveillance of coccidioidomycosis in 365 

which they conducted in-depth interviews with patients; 64 patients were from Nevada, New 366 

Mexico, or Utah, and 26 of them (37.5%) reported traveling to known endemic areas in the 4 367 

months before symptom onset.  Based on this study, the implications are possible 368 

overestimations of potential suitable areas, and some inaccuracies in variable importance 369 

rankings, but by using presence points based on incidence rates, we believe the model captured 370 

the most endemic areas with the highest incidence rates very well with variable importance 371 

results highly dependent on these locations.     372 

Another limitation to this study is the scale of analysis.  Ideally, research would be 373 

conducted at the scale at which the organism interacts with limiting environmental resources 374 

(Cushman & Huettmann, 2010).  Because we are working with case data collected at the 375 

county/health district level, we are restricted to working only at courser resolutions, though this 376 

study attempted to address this scale issue by using random points within the counties to 377 

represent pathogen presence at a finer scale.  The implications of using a coarser scale are that 378 

precise features of distribution can be lost and these resolutions also tend to overestimate 379 

potential suitable areas when compared to predictions at finer-scales (Wiens, Stralberg, 380 

Jongsomjit, Howell, & Snyder, 2009).  Additionally, there is a slight discrepancy between 381 

temporal scale of disease data and the climatic data used in this research; the climate variables 382 



were averaged from 1970 to 2000 and the disease data were averaged from 2015-2016.  While 383 

climate is typically averaged over 30-year periods and averages tend to change slowly, the 384 

magnitudes of climate-disease connections found in this study may not reflect current 385 

associations and adaptations, but general (positive or negative) relationships are not expected to 386 

be affected. 387 

It was our intent to be cautious and conservative in interpreting the results of this 388 

research, as a significant assumption is being made in using valley fever case data to assess 389 

Coccidioides species’ niche.  Additionally, with ecological niche modeling, as with all modeling, 390 

results are dependent on assumptions made in model selection and parametrization; different 391 

inputs and assumptions will produce different results.  Our aim was to draw conclusions 392 

regarding the spatial and ecological distribution of valley fever and the identification of factors 393 

influencing the distribution that are generalizable, and not the result of the modeling process.   394 

Results could be refined in the future if there are more precise locations of exposure recorded, 395 

widespread skin testing, or improved environmental detection of the fungus as technologies 396 

continue to advance (Benedict et al., 2015). 397 

5. Conclusion 398 

This study confirmed the importance of environmental drivers such as temperature and 399 

land cover on the spatial distribution of this disease. The MaxEnt algorithm used the provided 400 

environmental variables to capture the spatial patterns observed in valley fever case reporting, 401 

and it identified the understudied Columbia Plateau region as a possible habitat for Coccidioides 402 

spp.  This information can be applied by stakeholders ranging from other coccidioidomycosis 403 

researchers to public health officials in assessing vulnerability, refining endemicity, and in 404 

watching for potential hotspots.  Furthermore, the uncovered relationships between the spatial 405 

distribution of Coccidioides spp. and the environmental variables used in this study will be 406 

informative to the development of predictive models in assessing how disease distribution may 407 

change with varying climate, land cover, and population.  408 

  409 



References 410 

Barker, B. M., Tabor, J. A., Shubitz, L. F., Perrill, R., & Orbach, M. J. (2012). Detection and 411 

phylogenetic analysis of Coccidioides posadasii in Arizona soil samples. Fungal Ecology, 5, 412 

163–176. https://doi.org/10.1016/j.funeco.2011.07.010 413 

Benedict, K., Ireland, M., Weinberg, M. P., Gruninger, R. J., Weigand, J., Chen, L., … Jackson, 414 

B. R. (2018). Enhanced Surveillance for Coccidioidomycosis, 14 US States, 2016. 415 

Emerging Infectious Diseases, 24(8). 416 

Benedict, K., Thomspon, G. R. I., Deresinski, S., & Chiller, T. (2015). Mycotic Infections 417 

Acquired outside Areas of Known. Emerging Infectious Diseases, 21(11), 1935–1941. 418 

https://doi.org/10.3201/eid2111.141950 419 

Bivand, R. S., Pebesma, E. J., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R, 420 

Second edition. (Springer, Ed.). New York. Retrieved from http://www.asdar-book.org/ 421 

Centers for Disease Control and Prevention. (2018). Valley Fever (Coccidioidomycosis) 422 

Statistics. Retrieved January 4, 2018, from 423 

https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html 424 

Colson, A. J., Vredenburgh, L., Guevara, R. E., Rangel, N. P., Kloock, C. T., & Lauer, A. 425 

(2017). Large-Scale Land Development, Fugitive Dust, and Increased Coccidioidomycosis 426 

Incidence in the Antelope Valley of California, 1999-2014. Mycopathologia, 182, 1–20. 427 

https://doi.org/10.1007/s11046-016-0105-5 428 

Comrie, A. C., & Glueck, M. F. (2007). Assessment of Climate-Coccidioidomycosis Model: 429 

Model Sensitivity for Assessing Climatologic Effects on the Risk of Acquiring 430 

Coccidioidomycosis. Annals of the New York Academy of Sciences, 1111, 83–95. 431 

https://doi.org/10.1196/annals.1406.024 432 

Cushman, S. A., & Huettmann, F. (2010). Spatial complexity, informatics, and wildlife 433 

conservation. In Spatial Complexity, Informatics, and Wildlife Conservation (pp. 1–458). 434 

https://doi.org/10.1007/978-4-431-87771-4 435 

Egeberg, R. O. (1962). Factors Influencing the Distribution of Coccidioides Immitis in Soil. In 436 

Recent Progress in Microbiology, 6th Meeting (pp. 652–655). 437 



Egeberg, R. O., & Ely, A. F. (1956). Coccidioides Immitis in the SOil of hte Southern San 438 

Joaquin Valley. The American Journal of the Medical Sciences, 231(2), 151–154. 439 

Elconin, A. F., Egeberg, R. O., & Egeberg, M. C. (1964). Significance of soil salinity on the 440 

ecology of Coccidioides immitis. Journal of Bacteriology, 87(3), 500–503. 441 

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Guisan, A., Hijmans, R. J., … 442 

Zimmermann, N. E. (2006). Novel Methods Improve Prediction of Species’ Distributions 443 

from Occurrence Data. Ecography, 29(2), 129–151. 444 

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical 445 

explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. 446 

https://doi.org/10.1111/j.1472-4642.2010.00725.x 447 

Environmental Systems Research Institute. (2017). ArcMap Release 10.5. Redlands, CA. 448 

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces 449 

for global land areas. International Journal of Climatology, 37(12), 4302–4315. 450 

https://doi.org/10.1002/joc.5086 451 

Fisher, F. S., Bultman, M. W., Johnson, S. M., Pappagianis, D., & Zaborsky, E. (2007). 452 

Coccidioides niches and habitat parameters in the southwestern United States: A matter of 453 

scale. Annals of the New York Academy of Sciences, 1111, 47–72. 454 

https://doi.org/10.1196/annals.1406.031 455 

Frans, V. F., Augé, A. A., Edelhoff, H., Erasmi, S., Balkenhol, N., & Engler, J. O. (2018). 456 

Quantifying apart what belongs together: A multi-state species distribution modelling 457 

framework for species using distinct habitats. Methods in Ecology and Evolution, 9(1), 98–458 

108. https://doi.org/10.1111/2041-210X.12847 459 

Gorris, M. E., Cat, L. A., Zender, C. S., Treseder, K. K., & Randerson, J. T. (2017). 460 

Coccidioidomycosis dynamics in relation to climate in the southwestern United States. 461 

GeoHealth, 1–19. https://doi.org/10.1002/2017GH000095 462 

Greene, D., Koenig, G., Fisher, M. C., & Taylor, J. W. (2000). Soil isolation and molecular 463 

identification of Coccidioides immitis. Mycologia, 92(3), 406–410. 464 



Guillera-Arriota, G., Lahoz-Monfort, J. J., & Elith, J. (2014). Maxent is not a presence – absence 465 

method : a comment on Thibaud et al . Methods in Ecology and Evolution, 5, 1192–1197. 466 

https://doi.org/10.1111/2041-210X.12252 467 

Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2017). dismo: Species Distribution 468 

Modeling. R package version 1.1-4. Retrieved from https://cran.r-469 

project.org/package=dismo 470 

Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G., … Megown, K. (2015). 471 

Completion of the 2011 National Land Cover Database for the conterminous United States-472 

Representing a decade of land cover change information. Photogrammetric Engineering 473 

and Remote Sensing, 81(5), 345–354. 474 

Huang, J. Y., Bristow, B., Shafir, S., & Sorvillo, F. (2012). Coccidioidomycosis-associated 475 

Deaths, United States, 1990–2008. Emerging Infectious Diseases, 18(11), 1723–1728. 476 

https://doi.org/10.3201/eid1811.120752 477 

Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. Physical Review, 108, 171–478 

190. 479 

Jiménez-Valverde, A., Acevedo, P., Barbosa, A. M., Lobo, J. M., & Real, R. (2013). 480 

Discrimination capacity in species distribution models depends on the representativeness of 481 

the environmental domain. Global Ecology and Biogeography, 22(4), 508–516. 482 

https://doi.org/10.1111/geb.12007 483 

Litvintseva, A. P., Marsden-Haug, N., Hurst, S., Hill, H., Gade, L., Driebe, E. M., … Chiller, T. 484 

(2015). Valley Fever: Finding New Places for an Old Disease: Coccidioides immitis Found 485 

in Washington State Soil Associated With Recent Human Infection. Clinical Infectious 486 

Diseases, 60(1), e1-3. https://doi.org/10.1093/cid/ciu681 487 

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: A misleading measure of the 488 

performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 489 

145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x 490 

Maddy, K. T. (1958). The geographic distribution of Coccidioides Immitis and possible ecologic 491 

implications. Arizona Medicine: Journal of Arizona State Medical Association, 15(3), 178–492 



188. https://doi.org/10.1017/S000748530002229X 493 

Maddy, K. T. (1965). Observations on Coccidioides Immitis Found Growing Naturally in Soil. 494 

Arizona Medicine: Journal of Arizona State Medical Association, 22, 281–288. 495 

https://doi.org/10.1017/S000748530002229X 496 

Maddy, K. T., & Coccozza, J. (1964). The Probable Geographic Distribution of Coccidioides 497 

Immitis in Mexico. Boletin de La Oficina Sanitaria Panamericana. Pan American Sanitary 498 

Bureau, 57, 44–54. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14175564 499 

Marsden-Haug, N., Goldoft, M., Ralston, C., Limaye, A. P., Chua, J., Hill, H., … Chiller, T. 500 

(2013). Coccidioidomycosis acquired in Washington State. Clinical Infectious Diseases, 501 

56(6), 847–850. https://doi.org/10.1093/cid/cis1028 502 

Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling 503 

species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 504 

1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x 505 

Nakazawa, Y., Williams, R. A. J., Peterson, A. T., Mead, P. S., Kugeler, K. J., & Petersen, J. M. 506 

(2010). Ecological niche modeling of Francisella tularensis subspecies and clades in the 507 

United States. American Journal of Tropical Medicine and Hygiene, 82(5), 912–918. 508 

https://doi.org/10.4269/ajtmh.2010.09-0354 509 

Nakazawa, Y., Williams, R., Peterson, A. T., Mead, P., Staples, E., & Gage, K. L. (2007). 510 

Climate Change Effects on Plague and Tularemia in the United States. Vector-Borne and 511 

Zoonotic Diseases, 7(4), 529–540. 512 

Nosanchuk, J., Yu, J., Hung, C., Casadevall, A., & Cole, G. (2007). Coccidioides posadasii 513 

produces melanin in vitro and during infection. Fungal Genet Biol, 44(6), 517–20. 514 

Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2014). Modeling potential invasion range of 515 

alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and 516 

GARP. Ecological Informatics, 22, 36–43. https://doi.org/10.1016/j.ecoinf.2014.04.002 517 

Pappagianis, D. (1988). Epidemiology of Coccidioidomycosis. Current Topics in Medical 518 

Mycology, 2, 199–238. https://doi.org/10.1017/S000748530002229X 519 



Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5(2). 520 

Peterson,  a. (2006). Ecologic Niche Modeling and Spatial Patterns of Disease Transmission. 521 

Emerging Infectious Diseases, 12(12), 1822–1826. https://doi.org/10.3201/eid1212.060373 522 

Peterson, A. T., Lash, R. R., Carroll, D. S., & Johnson, K. M. (2006). Geographic potential for 523 

outbreaks of Marburg hemorrhagic fever. American Journal of Tropical Medicine and 524 

Hygiene, 75(1), 9–15. https://doi.org/10.4269/ajtmh.2006.75.1.0750009 525 

Peterson, T. A., Pereira, R., & Neves, V. (2004). Using epidemiological survey data to infer 526 

geographic distributions of leishmaniasis vector species. Revista Da Sociedade Brasileira 527 

de Medicina Tropical, 37(1), 10–14. https://doi.org/10.1590/s0037-86822004000100003 528 

Phillips, S. B., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of 529 

species geographic distributions. Ecological Modelling, 190, 231–259. 530 

https://doi.org/10.1016/j.ecolmodel.2005.03.026 531 

Raghavan, R. K., Goodin, D. G., Hanzlicek, G. A., Zolnerowich, G., Dryden, M. W., Anderson, 532 

G. A., & Ganta, R. R. (2016). Maximum Entropy-Based Ecological Niche Model and Bio-533 

Climatic Determinants of Lone Star Tick ( Amblyomma americanum ) Niche. Vector-Borne 534 

and Zoonotic Diseases, 16(3), 205–211. https://doi.org/10.1089/vbz.2015.1837 535 

RStudio Team. (2016). RStudio: Integrated Development for R. Version 1.1.423. Boston, MA: 536 

RStudio, Inc. Retrieved from http://www.rstudio.com/ 537 

Saubolle, M. A., McKellar, P. P., & Sussland, D. (2007). Epidemiologic, clinical, and diagnostic 538 

aspects of coccidioidomycosis. Journal of Clinical Microbiology, 45(1), 26–30. 539 

https://doi.org/10.1128/JCM.02230-06 540 

Sorensen, R. H. (1967). Survival Characteristics of Diphasic Coccidioides Immitis Exposed to 541 

the Rigors of a Simulated Natural Environment. In Proc. 2nd Coccidioidomycosis Symp. 542 

(pp. 313–317). Tucson, AZ: Univ. of Arizona Press. 543 

Swatek, F. E. (1970). Ecology of Coccidioides immitis. Mycopathologia et Mycologia Applicata, 544 

40(1–2), 3–12. 545 

Swatek, F. E., Omieczynski, D. T., & Plunkett, O. A. (1967). Coccidioides immitis in California. 546 



In Papers from the 2nd Symposium on Coccidioidomycosis. (pp. 255–265). Tucson, AZ: 547 

University of Arizona Press. 548 

Taborda, C., da Silva, M., Nonsanchuk, J., & Travassos, L. (2008). Melanin as a virulence factor 549 

of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. 550 

Mycopathologia, 165(4–5), 331. 551 

U.S. Census Bureau. (2010). Profile of General Population Characteristics: 2010, 2010 Census 552 

Summary File 1 Data. Retrieved June 5, 2017, from https://factfinder.census.gov/ 553 

U.S. Census Bureau. (2015). ACS Demographic and Housing Estimates, 2011-2015 American 554 

Community Survey 5-Year Estimates. Retrieved June 5, 2017, from 555 

https://factfinder.census.gov/ 556 

U.S. Geological Survey. (2015). HYDRO1K Dataset. Retrieved September 10, 2018, from 557 

https://lta.cr.usgs.gov/HYDRO1K 558 

Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of 559 

model complexity and the performance of model selection criteria. Ecological Applications, 560 

21(2), 335–342. 561 

Wieder, W. R., Boehnert, J., Bonan, G. B., & Langseth, M. (2014). Regridded Harmonized 562 

World Soil Database v1.2. ORNL DAAC, Oak Ridge, Tennessee, USA. Retrieved from 563 

https://doi.org/10.3334/ORNLDAAC/1247 564 

Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, 565 

models, and climate change: Assessing the assumptions and uncertainties. Proceedings of 566 

the National Academy of Sciences, 106(Supplement_2), 19729–19736. 567 

https://doi.org/10.1073/pnas.0901639106 568 

Zeimes, C. B., Quoilin, S., Henttonen, H., Lyytikäinen, O., Vapalahti, O., Reynes, J.-M., … 569 

Vanwambeke, S. O. (2015). Landscape and Regional Environmental Analysis of the Spatial 570 

Distribution of Hantavirus Human Cases in Europe. Frontiers in Public Health, 3(March). 571 

https://doi.org/10.3389/fpubh.2015.00054 572 

 573 



Acknowledgments: 574 

We thank the Arizona, California, Nevada, New Mexico, Oregon, Utah, and Washington 575 
Departments of Health for providing us with valley fever case data from their respective state 576 
health agencies. Valley fever data may be obtained from the affiliated state health agencies. 577 
KMA is supported by NIH R01GM109718. 578 

 579 

Declaration of Interest: The authors declare no competing financial interests.  580 



Appendix A – List of Tables and Figures 581 

 582 

FIGURE 1. CDC map showing approximate areas where Coccidioides spp. are known or 583 

suspected to live in the U.S. and Mexico.  This map is based on studies performed in the late 584 

1940s and 1950s and also on locations of more recent outbreaks and cases. 585 

FIGURE 2. Average valley fever incidence based on data from 2015-2016, with one set of 586 

randomly generated representative presence points.   587 

FIGURE 3. Map of potential distribution based on average raw output from model predictions.  588 

Values indicate the probability, given the species is present, that is it found at that location; the 589 

individual pixel values sum to unity over the entire landscape.  590 
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TABLE 1.  Environmental Data. 592 

TABLE 2.  Top variables contributing to model development. 593 

TABLE 3. Top variables from model jackknife tests using only the selected variable. 594 

TABLE 4. Top variables from model jackknife tests without the selected variable. 595 
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