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Abstract

Interest in larval source management (LSM) as an adjunct intervention to control and elimi-

nate malaria transmission has recently increased mainly because long-lasting insecticidal

nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic

mosquitoes. In Amazonian Peru, the identification of the most productive, positive water

bodies would increase the impact of targeted mosquito control on aquatic life stages. The

present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssor-

hynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery

(~0.02m/pixel) and their multispectral profile in Amazonian Peru. Our results show that high-

resolution multispectral imagery can discriminate a profile of water bodies where Ny. darlingi

is most likely to breed (overall accuracy 86.73%- 96.98%) with a moderate differentiation of

spectral bands. This work provides proof-of-concept of the use of high-resolution images to

detect malaria vector breeding sites in Amazonian Peru and such innovative methodology

could be crucial for LSM malaria integrated interventions.

Author summary

The most efficient malaria vector in the Latin American region is Nyssorhynchus darlingi
(formerly Anopheles darlingi). In Amazonian Peru, where malaria is endemic, Ny. darlingi

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007105 January 17, 2019 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Carrasco-Escobar G, Manrique E, Ruiz-

Cabrejos J, Saavedra M, Alava F, Bickersmith S, et

al. (2019) High-accuracy detection of malaria

vector larval habitats using drone-based

multispectral imagery. PLoS Negl Trop Dis 13(1):

e0007105. https://doi.org/10.1371/journal.

pntd.0007105

Editor: Carlo Costantini, Institut de Recherche pour
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feeds both indoors and outdoors (endophagy, exophagy), depending on the local environ-

ment, and rests outdoors (exophily). LLINs and IRS, the most common tools employed

for vector control, target endophagic and endophilic mosquitoes. Thus, they are only par-

tially effective against Ny. darlingi. Control of the aquatic stages of vector mosquitoes,

larval source management (LSM), targets the most productive breeding sites nearest to

human habitation. In four riverine communities, we used drones with high-resolution

imagery as a key initial step to analyze water bodies within the estimated flight range of

Ny. darlingi, ~ 1 km. We found distinctive spectral profiles for water bodies that were pos-

itive versus negative for Ny. darlingi. The methodology and analysis reported here provide

the basis for testing whether LSM can be combined successfully with LLINs and IRS to

contribute to the elimination of transmission in malaria hotspots in the Amazon.

Introduction

The most widespread strategies to combat malaria rely on the distribution of long-lasting

insecticide-treated nets (LLINs) [1] and the application of indoor residual spray (IRS) [2] that

target endophagic and endophilic mosquito vectors. The decline in their efficiency is associ-

ated mainly with: a) insecticide contact avoidance by early-exiting behavior of mosquitoes

feeding indoors [3]; b) increased outdoor feeding and transmission; c) zoophilic behavior; and

d) insecticide resistance [4]. Regional and local mosquito populations in Latin America fre-

quently display both exophagic and exophilic feeding preferences, reducing the usefulness of

these two widely-accepted strategies [5].

The urgent need to redesign vector control tools for mosquito populations resistant to

current interventions has led to the targeting of key environmental resources, increasing the

relevance of larval source management (LSM) [5–7]. Gravid female Anophelinae have the

potential to discriminate among water bodies and seek suitable breeding sites for oviposition,

using visual and olfactory cues [8]. Therefore, knowledge of the characterization and identifi-

cation of the most productive, positive water bodies would help to increase the impact of tar-

geted larval mosquito control. The current measures associated with LSM are oriented toward

the use of larvicides and biological control. LSM trials have been conducted in Africa in part

because the habitats of African anophelines are well characterized; such trials have shown that

larvicides can reduce malaria transmission from 70–90% [7]. In the neotropics, the efficacy of

larval control using Bacillus sphaericus against Nyssorhynchus darlingi (formerly Anopheles
darlingi [9]) was evaluated in gold-mining pools [10] and in fish ponds [11] in the Brazilian

Amazon. However, few studies have been performed in natural breeding sites [12, 13]. Two

examples of studies highlighting successful larval control in natural breeding sites are one that

employed B. sphaericus against Nyssorhynchus aquasalis in Venezuela in brackish mangroves

[14] and another that implemented larvivorous nematodes in Colombia [15]. There are several

impediments to identifying Ny. darlingi breeding sites in the Amazon basin. For example,

potential breeding sites are periodically flooded, making field surveys difficult [16]; sometimes

natural breeding sites are nearly impossible to detect visually by ground-truthing due to exten-

sive, dense vegetation.

Nyssorhynchus darlingi is the primary malaria vector across the Amazon basin, accounting

for up to 85% of the Anophelinae fauna feeding on humans [17–19]. This species is behavior-

ally very plastic, mainly biting and resting outdoors (exophily) with fewer reports of endophily

(indoor resting; reviewed in [20]), and simultaneous endophagy and exophagy (reviewed in

[21, 22]). In Amazonian Peru, there are regional records of both endo- and exophagy [17, 23],
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including behavioural shifts presumed to be in response to the implementation of LLINs [24].

In this region, mosquito abundance is linked to river levels [17, 25], which rise substantially

during the rainy season, providing female mosquitoes with innumerable water bodies suitable

for oviposition. However, in some specific situations, floods have been reported as one driver

of Ny. darlingi population elimination [26].

Nyssorhynchus darlingi colonizes diverse water bodies, contributing to dispersal and diver-

sification across its broad range, from natural areas [12, 13, 21, 22, 27, 28] to artificial (human-

made) such as fish ponds, agricultural settlements, highways, mining sites and urban areas

[29–31]. Sun exposure has been denoted as one of the determinant variables affecting oviposi-

tion site suitability, together with presence of water plants and secondary vegetation, green

algae and reduced water current [12, 22, 28, 32].

Malaria transmission in the Peruvian Amazon is highly heterogeneous. Loreto Department

(northeastern Peru) reports the vast majority (>95% of national cases; e.g. 53,163 of 55,210 in

2017) of the malaria cases in the country, with an estimated proportion of 80% Plasmodium
vivax and 20% P. falciparum [33, 34]. However, there are areas punctuated by transmission

pockets that account for most cases in the Department [34, 35]. Transmission occurs mainly

during the rainy season, January—June, linked to river levels and mosquito abundance [23, 25,

36]. Parker and collaborators [37] demonstrated that high human biting rates (HBR), entomo-

logical inoculation rate (EIR), and infectivity of Ny. darlingi are a signature of remote riverine

malaria hot spots and hyperendemicity in certain areas of the Peruvian Amazon, revising pre-

vious assumptions that transmission is hypoendemic throughout the peri-Iquitos region [17,

29, 38].

Classical survey techniques of larval habitats, in general, achieve small spatial coverage,

limiting research on Anophelinae breeding sites, i.e., extended water bodies over large areas

are not practical to survey from the ground due to the complex landscape and dynamic

nature of such water bodies. Several studies have demonstrated the capability of satellite

imagery to detect large Ny. darlingi breeding sites in several countries [39–41]. However, the

spatial resolution of public (~30 meters/pixel) or private (~1 meter/pixel) satellite imagery is

inadequate due to the high vegetation coverage and/or the quality of images related to cli-

matic conditions in the Amazon Region, particularly during the extensive rainy season.

Although there are applications for Unmanned Aerial Vehicles (UAVs a.k.a. drones) across

many fields, such as monitoring crops [42] and forest [43], few researchers have taken advan-

tage of this technology to investigate anopheline breeding sites linked to transmission pock-

ets. Two recent studies have used UAVs to map land use and Anopheles gambiae breeding

sites [44, 45] and to link malaria epidemiology with landscape ecology in Thailand [46].

Nevertheless, no parallel studies have been conducted in the Amazon Basin, which is opera-

tionally challenging with a considerable amount of potential Anophelinae larval habitat,

especially during the rainy months.

The current study explores the use of drones for mapping water bodies in four rural villages

in the Peruvian Amazon. Our main objective was to provide proof-of-concept of the suitability

of high-resolution imagery (RGB band) to map Ny. darlingi aquatic habitats. Multi-spectral

imaging data (including the normalized difference vegetation index- NDVI) was used to

achieve sufficient resolution to identify water bodies potentially colonized by Ny. darlingi. The

public health-oriented deployment of this approach to identify and target water bodies for use

in LSM campaigns is discussed. The data here allow us to postulate that, in combination with

existing vector interventions such as LLINs and IRS, drones could be an attractive additional

tool for malaria elimination in the Amazon and other places where mosquito behavior and lar-

val breeding sites remain difficult to locate and identify.

Drone-based detection of malaria vector larval habitats
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Methods

Ethics approval

Study protocols were approved by the Ethics Review Board of the Regional Health Directorate

of Loreto (477–2016), Universidad Peruana Cayetano Heredia in Lima (184-09-16) and WHO

Ethics Review Committee (0002669). These requirements were established by TDR/WHO

despite the absence of human subject involvement in the present work. All the methods were

carried out in accordance with the approved guidelines.

Study areas

The study was conducted in the Mazan district (Maynas Province, Loreto Department, Peru)

that has been identified as a very high-risk district for malaria transmission [47]. To represent

as broadly as possible the landscape of this area, four communities were selected in two ecolog-

ically different river microbasins in the Mazan district [48]; two communities in the blackwater

Mazan River district: Visto Bueno (3.449˚ S, 73.317˚ W; population = 60) and Libertad (3.496˚

S, 73.234˚ W; population = 345); and two in the whitewater Napo River: Salvador (3.445˚ S,

73.154˚ W; pop = 431) and Urco Miraño (3.361˚ S, 73.064˚ W; pop = 240). Map in Fig 1 was

produced with QGIS 2.16 (QGIS Development Team, 2016. QGIS Geographic Information

System. Open Source Geospatial Foundation Project) and based on public geographical data

from OpenStreetMaps (www.openstreetmap.org). Detailed characteristics of these communi-

ties have been described elsewhere [47].

Mazan is a district in Loreto with sustained annual malaria transmission. The Regional

Health Directorate of Loreto (RHDL) reported 1061 cases in 2016 caused mainly by P. vivax
(68.5%) and P. falciparum (31.5%), equivalent to an Annual Parasite Index (API) of 78.9 cases

per 1000 inhabitants. The RHDL passive case report is based exclusively on light microscopy

and some studies demonstrate a large sub-microscopic malaria reservoir [16, 38]. In this area,

a seasonal pattern of increase during the rainy season was observed in both malaria cases and

vector abundance (predominantly Ny. darlingi) [25, 37].

Study design

Drone surveys were carried out in the four communities between April 17 and 23, 2017. Map-

ping based on RGB and multispectral imagery was conducted simultaneously. In each com-

munity, water bodies were inspected at three time points—in September and November 2016

(dry season) and March 2017 (rainy season)—for the presence of Ny. darlingi immature stages;

then, data from water bodies were available six months prior to the drone surveys.

Data collection

Larval collections. To identify and characterize Ny. darlingi breeding sites, 31 water bod-

ies–both artificial (i.e., fishponds) and natural (i.e., stream/creek, palm swamp)–located within

1km of each village reachable by ground inspection, were examined in the 4 communities of

the Peruvian Amazon: 5 water bodies in Visto Bueno, 8 in Libertad, 9 in Salvador, and 9 in

Urco Miraño (Fig 1). Larval sampling was performed using standard dippers (350 mL) with

ten dips taken every 10 meters along the edge of the water body, with a maximum of 20 sam-

pling locations per water body, to determine presence or absence of Anophelinae larvae. The

same water bodies were sampled at each survey. All larval samples were preserved in 100%

ethanol.

Drone-based detection of malaria vector larval habitats
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Drone surveys

Drone surveys were carried out using a DJI Phantom 4 Pro (DJI, Shenzhen, China) quadcopter

fitted with a DJI 4K camera (8.8 mm/24 mm; f/2.8; 1’’ CMOS; 20 MP) for conventional RGB

imagery collection and a 3DR Solo (3D Robotics, California, US) quadcopter fitted with a Par-

rot Sequoia sensor (Parrot, France) which is composed of single-band cameras (Green, Red,

Red Edge and Near Infrared—nir) of 1.2 MP for multispectral imagery collection. The flight

plan was programmed with Pix4D Capture app in an iPad Mini 4 (Apple, California, US). The

connection between the controller and DJI Phantom 4 Pro and 3DR Solo was set up using DJI

GO 4 app and 3DR Solo app, respectively.

For RGB mapping, in each community the DJI Phantom 4 Pro drone was flown to an alti-

tude of approximately 100 m, which gave a ground sampling distance (GSD) or spatial resolu-

tion of 0.1 meter/pixel. Grids of 500m x 500m were drawn in Pix4D. Households and a buffer

Fig 1. Study area in Mazan district, Loreto Region, Peruvian Amazon. Localization of Visto Bueno (VB, red dots), Libertad (LI, green dots),

Salvador (SL, yellow dots) and Urco Miraño (UM, blue dots) communities in the Mazan district. Maps were produced using QGIS based on

public geographic data obtained from OpenStreetMap (www.openstreetmap.org).

https://doi.org/10.1371/journal.pntd.0007105.g001
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of at least 250m were covered using several grids in each community: 4 in Visto Bueno, 10 in

Libertad, 9 in Salvador, and 8 in Urco Miraño. In each grid, 100 waypoints were automatically

calculated to ensure an overlap of at least 70% between neighboring images, necessary to gen-

erate an orthomosaic [49]. The flight plan was preloaded onto the DJI Phantom 4 Pro drone

and the flight path was followed automatically. A flying time of ~30 minutes without a change

of battery was required to complete the survey in each grid.

Multispectral mapping was conducted over 16 randomly sampled water bodies (51.6% of

water bodies inspected for Ny. darlingi larvae during the study), located as follows: 5 in Visto

Bueno, 2 in Libertad, 4 in Salvador, and 5 in Urco Miraño. In each water body, the 3DR Solo

drone was flown to an altitude of approximately 50m, which assured a GSD of 0.02 meter/

pixel. A grid of 200m x 200m was drawn in Pix4D and the Sequoia multispectral camera was

set up to take an image each second during the 20-minutes flight time of the 3DR Solo drone.

Laboratory procedures

Larvae identification. All larvae were identified by species-specific ITS2 PCR-RFLP [50];

for the few samples that did not amplify, the mtDNA COI gene barcode region was sequenced

[51] and compared with sequences available in GenBank or BOLD SYSTEMS v2.5 (http://

www.barcodinglife.org) and the best match with identity of 95% or above was recorded. Only

samples identified as Ny. darlingi were included in this study.

Data processing

Orthomosaic construction. The photogrammetric processing (surface measurements

based on photographs) was conducted in AgiSoft Photoscan Pro (https://www.agisoft.com).

The resulting UAV imagery was imported into Photoscan and processed to construct an

orthomosaic (georeferenced mosaic of overlapped images which includes correction for topo-

graphic distortions) for each community. The position of the drone at the time of image cap-

ture for each photo was recorded automatically by the on-board GPS; thus, an orthomosaic

can be georeferenced without the need of Ground Control Points (GCP).

The standard procedure used was: (1) photo alignment (accuracy: highest; generic preselec-

tion active, reference preselection active; Key point limit: 80,000; adaptive camera model fitting

active); (2) dense cloud building (quality: high; depth filtering: aggressive); (3) digital elevation

model (DEM) building (geographic projection using WGS 84 (EPSG:4326); resolution of 0.1

m and 0.02 m per pixel for the RGB and multispectral images respectively; interpolation:

extrapolated; all point classes to generate digital surface model); (4) orthomosaic building

(input surface: DEM; blending mode: mosaic; resolution of 0.1 m and 0.02 m per pixel for the

RGB and multispectral images respectively).

For each community, three orthomosaics were constructed: (1) a 3-band RGB image

(Red, Green, and Blue) from the DJI 4K camera; (2) a 4-band multispectral image (Red,

Green, Edge Red and Near Infrared) from the Parrot Sequoia camera; (3) an 8-band composite

image (Table 1), merging the 3-band RGB and 4-band multispectral, plus a band of a normal-

ized difference vegetation index (NDVI) calculated based on the bands from the Sequoia cam-

era using the following formula:

NDVI ¼
ðNIR � RedÞ
ðNIRþ RedÞ

Due to the fact that multispectral imagery covers less area than RGB imagery, the 8-band

composite was created using the areas where the orthomosaics intersected.
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Image classification

The image classification was conducted in Google Earth Engine (GEE) [52]. Briefly, GEE is a

cloud-based platform for planetary-scale geospatial analysis that brings Google’s massive

computational capabilities to bear on a variety of high-impact societal issues including defores-

tation, drought, disaster, disease, food security, water management, climate monitoring and

environmental protection. It is unique in the field as an integrated platform designed to

empower not only traditional remote sensing scientists, but also a much wider audience that

lacks the technical capacity needed to utilize traditional supercomputers or large-scale com-

modity cloud computing resources [5].

All classification analyses were conducted in the online Integrated Development Environ-

ment (IDE) at https://code.earthengine.google.com (repositories for data and code available in

Supplementary information). All 8-band multispectral orthomosaics were uploaded to GEE

assets and a supervised classification was performed using a Random Forest (RF algorithm in

GEE) [53]. RF is a collection of decision trees, also called CART (Classification and Regression

trees) that has been widely used for mapping land cover in general. This method aims to asso-

ciate specific targets with specific values of a particular variable; the result is a decision tree in

which each part identifies a combination of values associated with a particular prediction [6].

The RF algorithm in GEE was set to 500 trees for each classification and was conducted using

all bands in the 8-band orthomosaics as input. Default GEE parameters were used for the RF

classification as follows: cross-validation factor for pruning = 10; maximal depth level of initial

tree = 10; minimal leaf population = 1; minimal split population = 1; minimal split cost = 1e-

10; whether to impose stopping criteria while growing the tree = false; quantization resolution

for numerical feature = 100; quantization margin = 0.1.

RF classification use pre-labeled data as input. A dataset of polygons was constructed for

each community in the study area, of which 480 were on-ground polygons and 240 were on-

water polygons. Each class was composed of 30 samples per community, in total 120 samples

per class. The total number of polygons per approach are presented in S1 Table Classes (or

attributes) of on-ground polygons were labeled by in situ and ground inspection, whereas the

on-water polygons classes were labeled using the results of the larvae sampling at the study

area. For the classification, a water body was considered consistently positive if Ny. darlingi lar-

vae were registered in 50% or more of the total visits and negative if Ny. darlingi larvae were

recorded in less than 50% of the visits. In other words, if the water body was positive at least

in 2 out of 3 or 1 out of 2 visits, the water body was considered consistently positive for Ny.

darlingi.
Three approaches were used for the spatially explicit land cover classification: (1) a classifier

with particular focus on identifying water bodies placing the orthomosaics into five groups:

Table 1. RGB and multispectral bands used as features in the classification.

Spectral band label Wavelength range Resolution

RGB Bands Blue blue 492 to 455 nm 0.1 m

Green green 577 to 492 nm

Red red 780 to 622 nm

Multispectral Bands Green green_m 550 nm 0.02 m

Red red_m 660 nm

Red Edge edge_red 735 nm

Near Infrared nir 790 nm

Other NDVI ndvi -1 to 1 0.02 m

https://doi.org/10.1371/journal.pntd.0007105.t001
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low vegetation, high vegetation, bare soil, urban and water bodies; (2) a classifier with a partic-

ular focus on differentiating water bodies with presence or absence of Ny. darlingi larvae, clas-

sifying the orthomosaics into six groups: low vegetation, high vegetation, bare soil, urban,

water bodies positive for Ny. darlingi and water bodies negative for Ny. darlingi; and (3) a clas-

sifier with a particular focus on differentiating water bodies as positive or negative for Ny. dar-
lingi classifying only the water bodies detected in approach 1 into two groups: water bodies

positive and negative for Ny. darlingi. S1 Fig presents the workflow diagram of the three

approaches.

Training and validation

A k-fold cross validation was carried out to evaluate the performance of the RF classifier [54],

thus, polygons served as training and validation samples. Briefly, all samples were randomly

divided into k subsets (groups), for this study k was set to 5 (S2 Fig). The classifier was trained

using four (k-1) groups and then tested with the remaining one. This procedure was repeated

k times until all groups were used as a testing group. For each set of 4 training groups, the accu-

racy was calculated in the testing group. The mean accuracy of the k sets was considered as the

overall accuracy (OA). In order to assess the probability distribution of the overall accuracy,

the k-fold cross validation was repeated 999 times, where on each iteration a new random sam-

ple of polygons was assigned to each k-subset. Two additional performance measures were

conducted, producer’s accuracy (PA), also called sensitivity, and consumer’s accuracy (CA),

alternatively called positive predictive value (PPV).

In addition, to account for the spatial autocorrelation and lack of independence of polygons

randomly selected at both training and test sets [55] a non-random groups assignment was

conducted using the communities as natural groups (k = 4).

Statistical analysis

In order to measure the statistical separability between positive (aquatic habitats consistently

harboring Ny. darlingi>50% of the time)—and negative (aquatic habitats consistently harbor-

ing Ny. darlingi< 50% of the time)—water body classes in approaches 2 and 3, an interclass

separability analysis was conducted using the Jeffries Matusita (JM) distance. Briefly, JM is a

measure of the average difference between two-class (positive and negative water body) density

functions by pair-wise comparison and ranges between 0 and 2 [56]. A JM distance of 0 imply

no separation and 2 for full separation between land cover classes.

In addition, a Monte-Carlo coefficient/p-value/sample-size (CPS) sensitivity analysis was

conducted. A complete description of the Monte-Carlo CPS is provided in the Supplementary

Methods. All the implementations above were accomplished using R v.3.4.3 (R Development

Core Ream, R Foundation for Statistical Computing, Australia).

Results

Mosquito breeding sites

From all water bodies inspected, 18 (58%) were considered negative and 13 (42%) consistently

positive for the presence of Ny. darlingi immature stages. Of these, 16 (51.6%) were inside the

mapped area of the 8-bands multispectral orthomosaics, and 8 were consistently positive for

the presence of Ny. darlingi larvae. From the 16 water bodies sampled and multispectrally

mapped, 4 (25%) provided information for only 2 of 3 collections because they were dry dur-

ing 1 of the 3 visits, all of them in Visto Bueno. Importantly, none of the water bodies were

dry during the drone survey. The proportion of water bodies positive for Ny. darlingi by
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community and survey is presented in S3 Fig for all water bodies inspected and for the 16

water bodies selected for multispectral mapping.

Orthomosaics

Several images were used to build the orthomosaic in each community. There were 386 RGB

images in Visto Bueno, 1020 in Libertad, 805 in Salvador, and 958 in Urco Miraño; and there

were 3804 Multispectral images in Visto Bueno, 7080 in Libertad, 6980 in Salvador, and 6940

in Urco Miraño (note that Parrot Sequoia captures 4 individual spectral band images per

shot). An orthomosaic for each community is presented in Fig 2, and the 3D models in S4 Fig.

The high spatial resolution of the resulting orthomosaics allowed for a clear identification of

water bodies via simple visual inspection. However, is important to notice the limitations of

the Structure-From-Motion algorithm (SfM) in Photoscan to match points in complex canopy

environments where there is too much texture, poor illumination, and/or insufficient unique

features, resulting in some gaps observed in S4 Fig [57].

Mean values and the standard errors for each band at each community are presented in

Table 2; the RGB bands values are presented in 8-bit and the multispectral bands are in 16-bit.

A heterogeneous spectral profile was observed between communities (Fig 3), presumably due

to different environment and land cover composition. An example of a landscape using RGB,

Multispectral and NDVI for each community is presented in Fig 4.

Random forest classification and validation

Three approaches were used for the spatially explicit land cover classification in Google Earth

Engine (GEE). The classified images for each community using the first approach are pre-

sented in Fig 5a. This approach showed high accuracy for differentiating among 4 land cover

classes (bare soil, low- and high- vegetation, and urban) and water bodies. After 999 iterations,

the overall accuracy of approach 1 was 86.73% (SE = 0.031). Classification approach 2 includes

the differentiation of water bodies based on the presence of Ny. darlingi in the previous 6

months, in addition to the 4 land cover classes used in approach 1, with an overall accuracy of

87.58% (SE = 0.029) (Fig 5b). In approach 3, the 8-band composite image was masked using

the water class obtained in approach 1. This approach shows the highest overall accuracy, with

an average of 96.98% (SE = 0.025) (Fig 5c). The three approaches consistently depict highly

heterogeneous land cover composition among the communities in the study (Fig 6). As these

communities are located in the same district, this may reflect a high diversity of locations at

the microgeographical scale where Ny. darlingi can breed.

Regarding the classification with non-random subsets, using communities as natural

groups, this resulted in a diminished overall accuracy for approach 1 and 2 (63.92% and

65.70%, respectively). However, approach 3 still showed a high overall accuracy (92.26%). The

overall accuracy of random and non-random assignment cross-validations is presented in

Table 3; producer and consumer accuracies of each class are presented in S2 Table for random

assignment and S3 Table for non-random assignment.

Statistical analysis of spectral profile of water bodies

In approach 2, the resulting number of pixels classified as positive water bodies was 31’717,931

and 44’391,373 pixels for negative water bodies. A higher number of pixels was included in

the analysis of approach 3, 35’211,614 for positive and 46’894,706 for negative water bodies.

The mean, standard deviation and comparison of each band are shown in Table 4 for both

approaches.
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Overall, JM distances of each band between positive and negative water body classes

are very low. The highest values of JM were shown in green_m and red_m bands in both

approaches (Table 5). Consistently, Monte-Carlo CPS sensitivity analysis show that bands

green_m, red_m, but also NDVI, show a noteworthy effect size for approach 2. Green_m and

red_m show increased values in positive water bodies whereas higher values of NDVI were

observed in negative water bodies. Interestingly, all bands except edge_red and nir were statis-

tically meaningful in approach 3. The bands that showed increased values in positive water

bodies are green_m and red_m. Conversely, blue, green, red, and NDVI bands showed higher

values in negative water bodies (S5 and S6 Figs).

Fig 2. Orthomosaics of the communities of (a) Visto Bueno, (b) Libertad, (c) Salvador, (d) Urco Miraño. Orthomosaics were constructed in

AgiSoft Photoscan Pro (https://www.agisoft.com)and mapped in QGIS. The basemaps were produced in QGIS based on public geographic data

from OpenStreetMap (www.openstreetmap.org).

https://doi.org/10.1371/journal.pntd.0007105.g002
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Discussion

The present study is the first that explores the use of drone-based high-resolution mapping of

Ny. darlingi breeding sites in the Amazon region. Both RBG and multispectral imagery were

successfully acquired, allowing the analysis of a greater number of water bodies than ground

field inspection, as well as the determination of local characteristics of Ny. darlingi habitats.

Overall, the most important result of this study is the accurate classification of water bodies

that enables discrimination between those that are consistently colonized by Ny. darlingi
immature stages and those that are not. We believe that this strategy represents a new tool for

tailored interventions for control and surveillance of malaria transmission in rural communi-

ties of the Peruvian Amazon and elsewhere.

Successful mapping of Nyssorhynchus darlingi aquatic habitats

Difficulty in identifying and detecting Ny. darlingi breeding sites arises from vast and often dif-

ficult to access places where this species can successfully breed. The portability of UAVs allows

investigators to navigate moderately hostile and complex environments, such as the Amazon

Basin. This study assessed the feasibility of using UAVs to generate maps with a higher

Table 2. Mean and standard error of RGB and multispectral bands in each community.

Bands RGB bands (8-bit) Multispectral bands (16-bit) Other

Communities blue green red green_m red_m edge_red nir NDVI

Visto Bueno Mean 99.08 150.4 128.2 17564.94 23671.37 9674.06 29354.12 0.1075

Std. Error 0.0033 0.0033 0.0037 0.6117 0.7461 0.9048 0.8512 0

Libertad Mean 100.66 128.93 113.15 17553.14 20541.31 21898.25 21294.79 0.0228

Std. Error 0.0047 0.0052 0.0054 0.7859 0.8988 1.2812 1.2892 0

Salvador Mean 88.36 113.41 102.49 13473.59 15800.67 19734.98 18432.08 0.0561

Std. Error 0.0034 0.0027 0.0033 0.4981 0.4427 0.6576 0.6242 0

Urco Miraño Mean 80.38 136.76 113.9 16818.42 22341.06 32233.27 30987.28 0.1576

Std. Error 0.0027 0.0025 0.0028 0.4602 0.5068 0.6573 0.6224 0

https://doi.org/10.1371/journal.pntd.0007105.t002

Fig 3. Mean values of bands in each community for a) RGB imagery (8-bit; blue, green, red) and b) Multispectral imagery (16-bit;

green_m: Green, red_m: Red, edge_red: Edge Red, nir: Near Infrared).

https://doi.org/10.1371/journal.pntd.0007105.g003
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resolution compared to those available through satellites, mainly when the imagery required is

specific to a local scale within a community or limited area of interest at a microgeographical

scale. Previous studies also propose the use of UAV for mapping environmental risk factors

for zoonotic malaria in Malaysia and Philippines [44], and vector habitats in Zanzibar [45].

The current study proved that in addition to RGB imagery, multispectral imagery collection is

also feasible in rural areas, and the addition of this information boosted the distinction of envi-

ronmental characteristics of water bodies that harbor Ny. darlingi larvae [58–60]. Capturing

data multiple times in longitudinal entomological surveys potentially would provide the tools

to study Anophelinae breeding site dynamics [45]. For instance, the adaptation to more per-

manent anthropogenic larval habitats has been hypothesized to be the cause of a resident

Fig 4. Orthomosaic scenes of the communities of Visto Bueno, Libertad, Salvador, and Urco Miraño using a) RGB imagery, b)

Multispectral imagery, and c) Normalized Difference Vegetation Index (NDVI). Orthomosaics based on drone imagery were constructed in

AgiSoft Photoscan Pro (https://www.agisoft.com)and mapped in QGIS.

https://doi.org/10.1371/journal.pntd.0007105.g004

Fig 5. Output of the RF classification and accuracy distribution using 999 iterations of the k-fold validation for the communities of Visto

Bueno, Libertad, Salvador, and Urco Miraño using: A) Approach 1, b) Approach 2, c) Approach 3. The basemap were orthomosaics based

on drone imagery constructed in AgiSoft Photoscan Pro (https://www.agisoft.com)and mapped in QGIS.

https://doi.org/10.1371/journal.pntd.0007105.g005
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population of Ny. darlingi in Porto Velho (Brazil), leading to a perennial presence of this spe-

cies and probably promoting and maintaining continual Plasmodium transmission [61].

Accurate classification of Nyssorhynchus darlingi breeding sites

The data reported here classified Ny. darlingi -positive and -negative water bodies. A high con-

cordance of location and extent of water bodies was observed in the three approaches applied.

Fig 6. Proportion of land cover in each community classified by a) approach 1, b) approach 2, c) approach 3 of the

Random Forest classification with random groups assignment.

https://doi.org/10.1371/journal.pntd.0007105.g006
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An average accuracy between 87% and 97% with a relatively narrow distribution demonstrates

a valid strategy to identify and prioritize water bodies for outdoor interventions such as LSM

[62], microbial larvicides [63], or attractive toxic sugar baits (ATSBs) [64]. As the implementa-

tion of this classifier harnessed Google’s cloud-computing platform, a short length of time is

required to complete the classification, overcoming computing resource limitations [65, 66].

Environmental modifications

Modifications of ecosystems and natural resources frequently contribute to the emergence and

spread of infectious disease agents. Specifically, land use changes including deforestation, irri-

gation, wetland modification and road construction, among others, have been identified as

major drivers of infectious disease outbreaks and also can interfere in their transmission

dynamics [67]. Malaria has been associated with these anthropogenic alterations in Asia [68],

Africa [69] and Latin America [70] and of special concern is the creation of new breeding sites

that may be increasing the proliferation of mosquitoes [71]. For example, Ny. darlingi uses a

range of natural and artificial sites for breeding and is able to exploit highly diverse habitats

[22, 26, 72] including deforested areas with substantial surrounding vertical vegetation [29, 41,

73]. Recently, fish farming has been promoted as a way to increase economic opportunity in

rural localities in Brazil and Peru, and throughout Latin America. Unfortunately, these fish-

ponds also provide ideal breeding sites for Ny. darlingi (holding 4-fold more Anophelinae lar-

vae than natural water bodies), demonstrating a rapid adaptability to some new environmental

niches, associated with concomitant increases in malaria case numbers, e.g., in Mancio Lima,

Acre state, Brazil and along the Iquitos/Nauta highway, Loreto, Peru [41, 74].

Table 3. Overall Accuracy of random and non-random assignment cross-validation for approach 1, approach 2 and approach 3.

Approach 1 Approach 2 Approach 3

Random assignment (k = 5)

Overall Accuracy 86.73% 87.58% 96.98%

Standard Error 0.031% 0.029% 0.025%

No-random assignment (k = 4)

Visto Bueno 54.66% 56.32% 85.19%

Libertad 68.78% 69.82% 90.16%

Salvador 63.39% 67.71% 93.67%

Urco Miraño 68.85% 68.95% 100.00%

Overall Accuracy 63.92% 65.70% 92.26%

https://doi.org/10.1371/journal.pntd.0007105.t003

Table 4. Spectral profile differences between water bodies positive and negative for Ny. darlingi in classification approach 2 and 3.

Bands Approach 2 Approach 3

Positive

(n = 31’717,931)

Negative

(n = 44’391,373)

p-val Positive

(n = 35’211,614)

Negative

(n = 46’894,706)

p-val

mean sd Mean sd mean sd mean sd

blue 100.647 44.38 107.094 38.162 <0.001 105.894 41.703 120.452 30.233 <0.001

green 119.193 36.188 125.391 34.017 <0.001 114.104 38.029 127.993 28.282 <0.001

red 114.875 40.246 116.538 39.571 <0.001 109.504 42.959 128.869 29.267 <0.001

green_m 19588.468 6902.937 15691.39 4646.648 <0.001 19752.087 7434.394 15975.805 4489.076 <0.001

red_m 19929.123 6676.902 15331.156 4969.932 <0.001 18739.104 6583.356 14515.692 3091.811 <0.001

edge_red 13652.695 8414.74 13117.885 8111.416 <0.001 11229.354 3325.798 11320.756 4325.616 <0.001

nir 12208.338 8404.298 11712.544 7788.674 <0.001 9551.923 1910.505 9431.09 2220.418 <0.001

ndvi -0.262 0.241 -0.171 0.187 <0.001 -0.291 0.205 -0.21 0.151 <0.001

https://doi.org/10.1371/journal.pntd.0007105.t004
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The use of imagery acquired from drones may be helpful for the detection of landscape

modifications in a rapidly changing environment that can affect mosquito population distribu-

tion. A recent study described distinct Ny. darlingi populations related to urban or rural settle-

ments in Acre, Brazil with different grades of anthropogenic landscape modification [75].

Here, deforestation was the most plausible cause for loss of genetic diversity in the mosquito

populations. Modifications in landscape affects physicochemical characteristics and/or eco-

logical communities of Anophelinae breeding sites and this also may affect malaria transmis-

sion dynamics. For instance, Plasmodium transmission potential, including survival and

extrinsic incubation period, has been demonstrated to be affected by larval food quantity in

Anopheles stephensi [76]. Furthermore, Anopheles coluzzii has different permissiveness to Plas-
modium depending on the nature of the diet associated with microbiota composition [77].

Land cover differentiation between study sites

The findings in this study suggest strong differential microenvironmental composition of Ny.

darlingi breeding sites compared with other less favorable water bodies that could be assessed

with the combination of RGB and multispectral imagery. These differences were evaluated by

the inspection of certain bands of the spectral profile between communities and the resulting

land cover classification discussed above. As these patterns were observed in four communities

in two microbasins of the Amazon region, these findings may be generalizable in similar con-

texts elsewhere and denote heterogeneous environmental characteristics at a microgeographi-

cal scale [78]. As discussed previously, Ny. darlingi dominates all these diverse microhabitats

in the communities under study. Moreover, Parker et. al. [37] reported that An. darlingi com-

prised the majority of the mosquitoes collected in 21 sites along approximately 100 km of the

Mazan river microbasin.

Link with epidemiology

Knowledge of rapidly changing patterns of human settlements and vector distribution is

vital for predicting disease risks and effectively targeting disease control measures. Interest-

ingly, Libertad and Urco Miraño, the sites with the highest and the lowest proportion of area

of water bodies with Ny. darlingi larvae, were reported as communities with very high and

low malaria transmission, respectively [47]. In addition, the high heterogeneity in malaria

incidence [47] reported in the Mazan and Napo river microbasins may have arisen in part

from the highly heterogeneous environmental composition of each community and the pro-

ductivity of Anophelinae in these habitat types [79]. Considering that this study was not

designed to demonstrate any association between malaria risk and microhabitat composition

Table 5. Jeffries Matusita (JM) distance of each bands between positive- and negative- water body classes in

approach 2 and 3.

Approach 2 Approach 3

blue 0.0114 0.0781

green 0.0032 0.0769

red 0.0036 0.1504

green_m 0.3249 0.3824

red_m 0.3382 0.4849

edge_red 0.0639 0.0680

nir 0.1299 0.0188

ndvi 0.1063 0.1265

https://doi.org/10.1371/journal.pntd.0007105.t005
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of Ny. darlingi, further research is needed to obtain a time-series of high-resolution imagery

to detect fluctuations in the spectral profile of aquatic habitats, leading to the development of

accurate risk maps and to the identification of potential effects on subsequent local malaria

transmission.

Other applications

Drone-based mapping could have a wider range of applications. For instance, high resolution

digital elevation models (DEM) are useful tools to analyze watersheds and small streams [80,

81], favorable to Ny. darlingi breeding sites that are shaped by intermittent heavy rain [82] [83,

84]. Moreover, these DEMs support the identification of seasonally flooded areas, common in

the Amazon basin, that possibly increase human-mosquito contact and therefore are associ-

ated with a higher risk of malaria [82, 85–87]. Importantly, canopy coverage prevents DEM

reconstruction in forested areas due to SfM photogrammetric issues, in consequence DEM

must rely on other sensors such as Laser Imaging Detection and Ranging (LIDAR), that are

more expensive and logistically demanding. However, photogrammetric-based DEM could

still be useful for localized characterization of terrain in the forest fringes where Ny. darlingi
demonstrates a breeding site preference in rural Amazon, [29, 41, 73].

In 2011 the Amazon river (and tributaries in Iquitos, Peru) experienced an unusual flood-

ing event, a peak of the river level over 10 m, most likely associated with climatic events (El

Nino Southern Oscillation-ENSO), altering the temporality and characteristics of water bodies

and resulting in a replacement event of Ny. darlingi populations [88]. In Surinam, abnormal

flooding of rivers with subsequent inundation of larval habitats was reported as one of the fac-

tors that destroyed a local Ny. darlingi population (together with ITN distribution and other

interventions) [26].

Another key benefit of the UAVs for high-resolution mapping is the rapid assessment of

house positions. This approach offers the opportunity to pinpoint the GPS coordinates of sev-

eral human dwellings with a high accuracy in a single flight path, rather than the more labori-

ous ground inspection of each dwelling. Also, this technology can help epidemiologists to

understand spatial malaria transmission and human travel patterns [47].

The present study showed that in addition to traditional RGB mapping, multispectral

bands add critical information to differentiate water bodies (independently, whether or not

they harbor Ny. darlingi larvae), and other types of land cover in the Amazon Region. A lim-

ited set of low-cost cameras and drones were tested, therefore an evaluation of a wider range

of commercially available options is recommended. Despite initial capital cost, scaling up of

drone flights in multiple settings and times would require small investments. It is important to

note the limitation of the extent of covered area with drone flights due to energy consumption;

if large areas are required to be covered in a short time period, multiple drones would be nec-

essary, increasing the cost of this implementation. Importantly, due to the abundance, tangled

distribution, and unclear boundaries of the water bodies in the Amazon Region, the classifica-

tion approach showed in this study could be preferred over manually delineation demon-

strated in other settings [45]. The computing time of a single classification in GEE is less than

a minute, however training and test sets are only applicable to the Peruvian Amazon Region.

The addition of training and test sets of contrasting locations should be included to test trans-

ferability to a variety of scenarios.

Limitations

We recognize some potential shortcomings in this study. The equipment used was of the high-

est quality and lowest price on the market at the time of the field study; this strategy would be
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more cost-effective as the number of surveys increase. To overcome this, several projects in

other fields are proposing to utilize low-cost non-commercial UAVs that may help to spread

the strategy [89, 90]. Another caveat is the limited flight time of the drone. Thus, several flights

over the locality are required to obtain a single map, and may represent some deviation in

the time between scenes of the unique map, with a potential effect on the spectral signature,

although this is likely relatively minor. Also, the flight of a UAV requires a certain degree

of expertise, however, steps in flight path automation will overcome this difficulty [91, 92].

Despite our use of the recommended overlap percentage in this study, some gaps in final imag-

ery through forest canopy and some water bodies, as observed in S4 Fig, may have affected the

final classification.

Regrettably, land cover classification using Google Earth Engine depends on an internet

connection. With this in mind, transport of imagery in any physical storage unit to a point

with a stable internet connection is feasible; however, the number and cost of storage units

should be taken into account. Because this methodology is at an early stage, there is a lack of

methods for rapid data processing and developing strategies to speed up image processing

methods, but these are currently expanding. Multispectral camera calibration and climatic

conditions, such as heavy rain, may also jeopardize imagery collection. However, in this study

all flights were conducted during the same time range (over a few days) and under low cloud

coverage and wind conditions to reduce the effect on the spectral signature. Overall the most

important methodological caveat in this study is the definition of negative water bodies.

Although we sampled only 8 negative and 8 positive water bodies for the presence of Ny. dar-
lingi, the water body type included streams, fishponds and palm swamps and we sampled in

two distinctive river microbasins. As this is a proof-of-concept study, future work should con-

sider more frequent surveillance of these and additional water bodies from more communities

and additional flights over the survey localities at different times of the day and under various

atmospheric conditions.

Conclusions

In summary, the use of high-resolution imagery can provide a better understanding of

environment-related disease changes and can play a meaningful part in the development of

decision-support tools. Our findings back the use of a low-cost UAVs and a freely available

planetary cloud-based platform to achieve a highly accurate classification of the differential

spectral signature of water bodies that harbor Ny. darlingi larvae and those that do not, in the

Amazon region. This strategy might be generalizable to similar contexts elsewhere, resulting

in new ways to control and survey malaria in affected settings, in combination with existing

approaches.

Supporting information

S1 Methods. Monte-Carlo coefficient/p-value/sample-size (CPS) sensitivity analysis.

(DOCX)

S1 Table. Number of polygons in each classification approach.

(DOCX)

S2 Table. Producer and Consumer accuracies of random groups for approach 1, approach

2 and approach 3.

(DOCX)

Drone-based detection of malaria vector larval habitats

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007105 January 17, 2019 17 / 24

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s003
https://doi.org/10.1371/journal.pntd.0007105


S3 Table. Producer and Consumer accuracies of non-random groups for approach 1,

approach 2 and approach 3.

(DOCX)

S1 Fig. Workflow of the three classification approaches.

(TIF)

S2 Fig. K-fold diagram.

(TIF)

S3 Fig. Proportion of water bodies with presence of Ny. darlingi by community and survey.

a) All water bodies sampled and b) 16 water bodies selected for multispectral mapping.

(TIF)

S4 Fig. 3D models based on DEM of the communities of (a) Visto Bueno, (b) Libertad, (c)

Salvador, (d) Urco Miraño. 3D models were constructed and mapped in AgiSoft Photoscan

Pro (https://www.agisoft.com)based on drone imagery.

(TIF)

S5 Fig. Monte-Carlo CPS chart for classification approach 2. a) Standardized effect size and

b) p-value as a function of sample size.

(TIF)

S6 Fig. Monte-Carlo CPS chart for classification approach 3. a) Standardized effect size and

b) p-value as a function of sample size.

(TIF)

S1 Data. Data and code availability.

(DOCX)

Acknowledgments

We thank the workers who carried out the field collections for their dedication during the sur-

veys, and the local authorities of Salvador, Urco Miraño, Libertad and Visto Bueno for their

enthusiastic support. We also thank all the people involved in the TDR-Peru project in Lima

and Iquitos. We are grateful to Dirección Regional de Salud (DIRESA, Iquitos, Loreto) for col-

laboration and facilitating logistics in Loreto Department, and Applied Genomic Technologies

Core at the Wadsworth Center, New York State Department of Health, where we performed

the COI sequencing for species identification.

This publication has been possible thanks to the authorization and permits N. 0424-2012-

AG-DGFFS-DGEFFS from Direccion de Gestion Forestal y de Fauna Silvestre and Direccion

General Forestal y de Fauna Silvestre from the Peruvian National Ministry of Agriculture.

Author Contributions

Conceptualization: Gabriel Carrasco-Escobar, Jan E. Conn, Marta Moreno, Dionicia

Gamboa.

Data curation: Gabriel Carrasco-Escobar, Edgar Manrique, Jorge Ruiz-Cabrejos.

Formal analysis: Gabriel Carrasco-Escobar, Edgar Manrique, Jorge Ruiz-Cabrejos.

Funding acquisition: Joseph M. Vinetz, Jan E. Conn, Marta Moreno, Dionicia Gamboa.

Investigation: Gabriel Carrasco-Escobar, Marlon Saavedra, Freddy Alava, Marta Moreno,

Dionicia Gamboa.

Drone-based detection of malaria vector larval habitats

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007105 January 17, 2019 18 / 24

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s005
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s006
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s007
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s008
https://www.agisoft.com
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s009
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s010
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007105.s011
https://doi.org/10.1371/journal.pntd.0007105


Methodology: Gabriel Carrasco-Escobar, Catharine Prussing, Jan E. Conn, Marta Moreno.

Project administration: Sara Bickersmith, Marta Moreno.

Resources: Sara Bickersmith, Catharine Prussing, Joseph M. Vinetz, Jan E. Conn, Marta

Moreno.

Supervision: Gabriel Carrasco-Escobar, Marlon Saavedra, Freddy Alava, Marta Moreno.

Validation: Gabriel Carrasco-Escobar, Jorge Ruiz-Cabrejos, Sara Bickersmith, Catharine

Prussing, Jan E. Conn, Marta Moreno.

Visualization: Gabriel Carrasco-Escobar, Edgar Manrique, Jorge Ruiz-Cabrejos.

Writing – original draft: Gabriel Carrasco-Escobar, Marta Moreno.

Writing – review & editing: Gabriel Carrasco-Escobar, Sara Bickersmith, Catharine Prussing,

Joseph M. Vinetz, Jan E. Conn, Marta Moreno, Dionicia Gamboa.

References
1. Lengeler C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst

Rev. 2004;(2):CD000363. Epub 2004/04/24. https://doi.org/10.1002/14651858.CD000363.pub2 PMID:

15106149.

2. Pluess B, Tanser FC, Lengeler C, Sharp BL. Indoor residual spraying for preventing malaria. Cochrane

Database Syst Rev. 2010;(4):CD006657. Epub 2010/04/16. https://doi.org/10.1002/14651858.

CD006657.pub2 PMID: 20393950.

3. Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;

13:330. Epub 2014/08/26. https://doi.org/10.1186/1475-2875-13-330 PMID: 25149656.

4. Lyimo IN, Ferguson HM. Ecological and evolutionary determinants of host species choice in mosquito

vectors. Trends Parasitol. 2009; 25(4):189–96. Epub 2009/03/10. https://doi.org/10.1016/j.pt.2009.01.

005 PMID: 19269900.

5. Durnez L, C M. Residual transmission of malaria: an old issue for new approaches. In: Manguin S, edi-

tor. Anopheles mosquitoes- New insights into malaria vectors. Rijeka: Intech; 2013. p. 671–704.

6. Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, et al. Mosquito larval source man-

agement for controlling malaria. Cochrane Database Syst Rev. 2013;(8):CD008923. Epub 2013/08/30.

https://doi.org/10.1002/14651858.CD008923.pub2 PMID: 23986463.

7. WHO. Larval source management: a supplementary measure for malaria vector control: an operational

manual. Geneva: World Health Organization, 2013.

8. Bentley MD, Day JF. Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Ento-

mol. 1989; 34:401–21. Epub 1989/01/01. https://doi.org/10.1146/annurev.en.34.010189.002153 PMID:

2564759.

9. Foster PG, de Oliveira TMP, Bergo ES, Conn JE, Sant’Ana DC, Nagaki SS, et al. Phylogeny of Anophe-

linae using mitochondrial protein coding genes. R Soc Open Sci. 2017; 4(11):170758. Epub 2018/01/

02. https://doi.org/10.1098/rsos.170758 PMID: 29291068.

10. Galardo AK, Zimmerman R, Galardo CD. Larval control of Anopheles (Nyssorhinchus) darlingi using

granular formulation of Bacillus sphaericus in abandoned gold-miners excavation pools in the Brazilian

Amazon rainforest. Rev Soc Bras Med Trop. 2013; 46(2):172–7. Epub 2013/06/07. https://doi.org/10.

1590/0037-8682-1649-2013 PMID: 23740074.

11. Ferreira FAdS, Arcos AN, Sampaio RTdM, Rodrigues IB, Tadei WP. Effect of Bacillus sphaericus

Neide on Anopheles (Diptera: Culicidae) and associated insect fauna in fish ponds in the Amazon.

Revista Brasileira de Entomologia. 2015; 59:234–9.

12. Rufalco-Moutinho P, Schweigmann N, Bergamaschi DP, Mureb Sallum MA. Larval habitats of Anophe-

les species in a rural settlement on the malaria frontier of southwest Amazon, Brazil. Acta Trop. 2016;

164:243–58. Epub 2016/10/30. https://doi.org/10.1016/j.actatropica.2016.08.032 PMID: 27650959.

13. Conde M, Pareja PX, Orjuela LI, Ahumada ML, Duran S, Jara JA, et al. Larval habitat characteristics of

the main malaria vectors in the most endemic regions of Colombia: potential implications for larval con-

trol. Malar J. 2015; 14:476. Epub 2015/12/02. https://doi.org/10.1186/s12936-015-1002-y PMID:

26620401.

Drone-based detection of malaria vector larval habitats

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007105 January 17, 2019 19 / 24

https://doi.org/10.1002/14651858.CD000363.pub2
http://www.ncbi.nlm.nih.gov/pubmed/15106149
https://doi.org/10.1002/14651858.CD006657.pub2
https://doi.org/10.1002/14651858.CD006657.pub2
http://www.ncbi.nlm.nih.gov/pubmed/20393950
https://doi.org/10.1186/1475-2875-13-330
http://www.ncbi.nlm.nih.gov/pubmed/25149656
https://doi.org/10.1016/j.pt.2009.01.005
https://doi.org/10.1016/j.pt.2009.01.005
http://www.ncbi.nlm.nih.gov/pubmed/19269900
https://doi.org/10.1002/14651858.CD008923.pub2
http://www.ncbi.nlm.nih.gov/pubmed/23986463
https://doi.org/10.1146/annurev.en.34.010189.002153
http://www.ncbi.nlm.nih.gov/pubmed/2564759
https://doi.org/10.1098/rsos.170758
http://www.ncbi.nlm.nih.gov/pubmed/29291068
https://doi.org/10.1590/0037-8682-1649-2013
https://doi.org/10.1590/0037-8682-1649-2013
http://www.ncbi.nlm.nih.gov/pubmed/23740074
https://doi.org/10.1016/j.actatropica.2016.08.032
http://www.ncbi.nlm.nih.gov/pubmed/27650959
https://doi.org/10.1186/s12936-015-1002-y
http://www.ncbi.nlm.nih.gov/pubmed/26620401
https://doi.org/10.1371/journal.pntd.0007105
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