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Abstract 
 
Genomic studies in African populations provide unique opportunities to understand disease 
aetiology, human diversity and population history. In the largest study of its kind, comprising 
genome-wide data from 6,400 individuals, and whole-genome sequences from 1,978 individuals 
from rural Uganda, we find evidence of geographically-correlated fine-scale population substructure. 
Historically, the ancestry of modern Ugandans is best represented by a mixture of ancient East 
African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as 
an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait 
heritability between European and African populations, probably reflecting the differential impact of 
genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify 
novel loci associated with anthropometric, haematological, lipid and glycemic traits. We find that 
several functionally important signals are driven by Africa-specific variants, highlighting the value of 
studying diverse populations across the region. 
 
Introduction 
 
Africa is central to our understanding of human origins, genetic diversity and disease 
susceptibility.(Tishkoff et al., 2009) The marked genomic diversity and allelic differentiation among 
populations in Africa, in combination with the substantially lower linkage disequilibrium (correlation) 
among genetic variants, has the potential to provide new opportunities to understand disease 
aetiology relevant to African populations but also globally.(Tishkoff et al., 2009, Gurdasani D., 2014) 
Consequently, there is a clear scientific and public health need to develop large-scale efforts that 
examine disease susceptibility across diverse populations within the African continent. Such efforts will 
need to be fully integrated with research-capacity-building initiatives across the region.(Consortium, 
2014)  
 
Countries in Africa are undergoing epidemiological transitions—with a high burden of endemic 
infectious disease and growing prevalence of non-communicable diseases.(Organisation, 2015) 
Importantly, because of varying environments, population history, and adaptive evolution, the 
distribution of risk factors for a broad range of cardiometabolic and infectious diseases, and their 
individual contributions, may differ among populations globally.(Campbell and Tishkoff, 2010) 
Differences in allele frequencies among populations, due to either selection or genetic drift provide 
unique opportunities to identify novel disease susceptibility loci; highlighting the value of conducting 
such studies in African populations. However, while there has been a recent increase in genetic studies 
of cardiometabolic traits including African-Americans,(Peprah et al., 2015, Lanktree et al., 2015) there 
have been relatively few investigations of population diversity or the genetic determinants of 
cardiometabolic or infectious traits and diseases across the continent.  
 
To conduct genetic studies in diverse populations across Africa, appropriate study designs that account 
for population structure, admixture and genetic relatedness (overt and cryptic), as well as the 
development of genetic tools to capture variation in African genomes, are needed.(Gurdasani D., 2014) 
To leverage the relative benefits of different strategies, we undertook a combined approach of 
genotyping and low coverage whole-genome sequencing (WGS) in a population-based study of 6,400 
individuals from a geographically defined rural community in South-West Uganda (Figure 1a, STAR 
Methods, Figure 1, Figure S1 and Table S1). We present data from 4,778 individuals with genotypes for 
~2.2 million SNPs from the Uganda genome-wide association study (UGWAS) resource (STAR 
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Methods), and sequence data (STAR Methods, Table S1.1) on up to 1,978 individuals including 41.5M 
SNPs and 4.5M indels (UG2G) (Figure S1, Table S1.1, and STAR Methods). Collectively, these data 
represent the Uganda Genome Resource (UGR). To enhance trait-associated locus discovery, we also 
include collective data on up to 14,126 individuals from across the African continent for genome wide 
association analysis (STAR Methods).   
 
Using these resources, we conducted a series of analyses to: 1) understand the population structure, 
admixture and demographic history in a geographically-defined population from Uganda (STAR 
Methods); 2) describe the spectrum of disease-causing mutations in the UG2G cohort (STAR Methods); 
and 3) highlight the value of the UG2G sequence panel as an imputation resource (STAR Methods). 4) 
refine estimates of heritability of 34 complex traits, accounting for environmental correlation among 
individuals (STAR Methods); and 5) assess the spectrum of genetic variants associated with 
cardiometabolic and other complex traits in populations from sub-Saharan Africa (STAR Methods). 
Importantly, the UGR was designed to help develop local resources for public health and genomic 
research, including building research capacity, training and collaboration across the region. We 
envisage that data from these studies will provide a global resource for researchers, as well as facilitate 
genetic studies in African populations. 
 
Results 
 
A history of Ugandan ethnic diversity 
Uganda has a diverse and complex history of extensive historical migration from surrounding regions 
over several hundred years. Migration has included economic migration for labour, as well as migration 
due to conflict in surrounding regions. Uganda is home to several diverse ethno-linguistic groups.  The 
Ganda (‘Baganda’) are most common ethno-linguistic group in central Uganda (previously the Kingdom 
of Buganda). This central region has also seen extensive migration from the surrounding regions of 
Rwanda, Burundi (formerly Ruanda-Urundi) and Tanzania (formerly the district of Tanganyika) (Figure 1 
a-c)(Richards, 1954) identifying as the ‘Banyarwanda’,  ‘Barundi’ and ‘Batanzania’, respectively.(Richards, 
1954) More recent migration has occurred from Rwanda, due to displacement following conflict 
(identified as ‘Rwandese Ugandans’, distinct from the ‘Banyarwanda’). In addition to migration from 
surrounding regions, there have been large movements of people within Uganda relating to economic 
incentives during the colonial era. These include the Bakiga from Kigezi (Kiga), the Banyankole (Nkole) 
and Bafumbira from Kisoro from south-western Uganda, and the Batooro (Toro), Basoga (Soga) from 
regions adjacent to central Uganda (Figure 1c).(Richards, 1954)  There are a number of other ethnic 
groups that have migrated to Buganda from adjoining areas of South Sudan (the Madi and Acholi), the 
Democratic Republic of Congo on the north-western Ugandan border, as well as the from the West Nile 
region of Uganda (the Lugbara and Alur), and are referred to as “West Nile” migrants (Figure 
1c).(Richards, 1954) These groups often speak Nilotic languages. In our cohort, these ethno-linguistic 
groups are collectively classified as ‘Others’, as their fine-scale ethno-linguistic group information was 
not available for these individuals. In this study, ethnolinguistic groups are based on self-identification 
and should be considered as representing a broad construct that encompasses shared cultural heritage, 
ancestry, history, homeland, language or ideology.  
 
Population structure in a rural Ugandan community 
We characterised genetic diversity and fine-scale structure among nine ethno-linguistic population 
groups from a geographically-defined rural community from the Kalungu district in South-West Uganda 
(Figure 1a, STAR Methods). Principal components (PCs) 1 and 2 explained 0.3% and 0.1% of the genetic 
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variation observed, respectively, with the cline along PC1 (Figure S2a) being strongly correlated with 
with Eurasian admixture (r=-0.98, p<2x10-16) as inferred from ADMIXTURE, K=4 (Figure 2). This was 
corroborated in principal component analysis of Ugandan ethno-linguistic groups in the context of 
global populations (Figure S2b-c) and our fineSTRUCTURE(Lawson et al., 2012) analysis (Figure 1b). 
FineSTRUCTURE analysis of the co-ancestry matrix inferred from linked genetic variants showed 
evidence suggestive of population substructure (Figure 1b, Figure S2 and STAR Methods) with PCs 1 
and 2 explaining 11.9% and 3.5% of observed variation, respectively. Clines along fineSTRUCTURE PC1 
and PC2 were highly correlated with Eurasian (r=-0.90) and East African Nilo-Saharan ancestry (r=-0.98) 
as delineated by ADMIXTURE, K=4, respectively (Figure 1b, STAR Methods). Here, Nilo-Saharan 
ancestry is defined as the ancestral component in ADMIXTURE analysis that was most prominent 
among the Dinka (Figure 2). The PC2 cline representing Nilo-Saharan ancestry was seen predominantly 
among the ethnolinguistic group classified as ‘Others’ (Figure 1b), consistent with these representing 
ethno-linguistic groups that have migrated into Uganda from the North Western region along the Nile. 
This suggests that the largest proportion of variation among the cohort was possibly driven by Eurasian 
and East African Nilo-Saharan gene flow. 
 
Using Procrustes analyses, we find that substructure among ethno-linguisitic groups in this rural 
Ugandan community is correlated with the historical geographical origins of these migrant populations 
(Figure 1, Tables S2.1-2.3 and STAR Methods). This suggests that in spite of extensive migration and 
mixture, substructure does exist among individuals in regional Uganda, and this substructure shows 
statistically significant correlation with the historical distribution of population groups across the 
region. We find  no clear association with current geographical coordinates, consistent with extensive 
movement and mixing following migration within this region (Table S2.4). These findings are 
corroborated by fineSTRUCTURE tree inference from the co-ancestry matrix which also shows clade 
structure reflecting historical geographical regions from which these populations have migrated (Figure 
1d). Ethno-linguistic groups from the central region of Uganda (the Baganda, Basoga and Batooro), 
migrant populations from Rwanda, Burundi, Tanzania (Banyarwanda, Rwandese Ugandans, Barundi 
and Batanzania, respectively)  and those from South-western Uganda (Bakiga, Banyankole and 
Bafumbira) form separate clades (Figure 1c-d and STAR Methods). This clade structure may potentially 
also reflect the different amounts of Eurasian admixture observed among these populations, as we 
discuss subsequently.  
 
With unsupervised fineSTRUCTURE analysis, we identify 52 population clusters (Figure 1e and STAR 
Methods). These clusters appear represent a combination of factors, including ethno-linguistic group, 
historical geographical context (Figure 1d-e), as well as proportion of Eurasian and Nilo-Saharan 
ancestry, as estimated by ADMIXTURE, K=4 (Figure 2). No clear pattern was observed by current GPS 
coordinate (Figure 1e), consistent with Procrustes analysis (Table S2.4).  
 
Using QpAdm, we find evidence for at least three distinct streams of ancestry across the Ugandan 
populations relative to outgroups through qpWave analysis (rank 2, p=0.02) (Table S3.1 and STAR 
Methods). On examining change in rank on removing populations one at a time, we find that the 
distinct streams of ancestry correspond well with the clade structure inferred in fineSTRUCTURE, and 
historical geographic origins of these groups. Specifically, we find that the rank of the matrix drops by 
one on excluding Rwandese_Ugandan, Banyarwanda, Bakiga, Banyankole, suggesting that these 
include a distinct source of ancestry potentially not present in other populations (Table S3.1). Another 
stream of ancestry appears to be contributed by Barundi, and  Batanzania, consistent with the tree 
structure inferred by fineSTRUCTURE (Figure 1d). Baganda, Basoga and Mutooro appear to be 
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relatively homogeneous, with only a single source of ancestry inferred across these populations (Table 
S3.1). 
 
Inference of complex admixture in Uganda 
Consistent with the extensive history of migration into this region, unsupervised 
ADMIXTURE,(Alexander et al., 2009)  and GLOBETROTTER(Hellenthal et al., 2014) analyses suggest that 
Ugandans are best represented by a mosaic of East African (Bantu, Nilo-Saharan, Afro-Asiatic and rf-
HG) and Eurasian-like ancestral components among modern global human populations (Figures 1 and 
2, Figure S3 and STAR Methods).  These findings are in keeping with other recent studies among East 
African populations that have suggested modern East African populations have been subject to 
complex admixture events over the past 5000 years.(Scheinfeldt et al., 2019, Fan et al., 2019) The 
proportion of Eurasian admixture appears to be lower in Baganda, Basoga and Batooro, (Figure 1d), 
suggesting that waves of admixture may have occurred with regional specificity within Uganda.  
 
Delineation of Eurasian-like ancestry within Uganda 
Formal tests for admixture (f3 tests, MALDER and GLOBETROTTER analyses);(Patterson et al., 2012) 

6(Hellenthal et al., 2014) consistently support evidence for Eurasian-like gene flow in Uganda (Figure S3, Tables 
S3.2-S3.3, STAR Methods). Eurasian-like gene flow may be inferred by these tests if the source 
population has allele frequency spectra correlated with modern Eurasians. This does not in itself 
provide evidence for Eurasian back migration into East Africa. We evaluate the source of this ancestry 
further. The presence of Eurasian MT (K1a, R0a1a, N1a1a3, HV1b1a,  I, J1d1a1, and W8) (Table S3.4) 
and Y chromosome (R1b and H) haplogroups within Uganda provide support for back-migration, as 
these haplotypes are thought to have arisen from out-of-Africa (Figure S4, Table S3.4, and STAR 
Methods).(Richards et al., 2000, Soares et al., 2010, Mishmar et al., 2003) In order to distinguish 
Eurasian gene flow from ancient structure within East Africa, we also assessed the the double 
conditioned site-frequency spectrum (dcsfs) among Ugandans, with the sfs being conditioned on alleles 
being derived in a French sample, and ancestral in Yoruba (YRI) (STAR Methods, Table S3.5 and Figure 
S5). A non-linear L shaped sfs, enriched for rare derived alleles would be consistent with recent 
admixture, and not ancient substructure, as discussed previously.(Yang et al., 2012) Our results confirm 
an observed dcsfs enriched for rare derived alleles and consistent with Eurasian gene flow (Figure S5). 
On assessing the fit of simulated data under different parameters, and observed data, we find that 
gene flow from Eurasian populations into Ugandans is necessary to explain the observed frequency 
spectra (STAR Methods, Figure S5, and Tables S3.6). Overall a dual model of admixture (~7% 
admixture) and ancient structure outperformed other models, including a model of ancient structure 
alone (p<0.005) (Table S3.6). We note, however that it is possible that fine-scale geographical spatial 
structure among populations could also explain these findings.(Eriksson and Manica, 2014) 
 
Using the Conditional Random Field model (CRF), we assessed the presence of Neanderthal haplotypes 
among Ugandans (STAR Methods). As Neanderthal ancestry is restricted to populations outside Africa, 
any evidence of Neanderthal ancestry among Africans is likely to be due to Eurasian back migration. 
We show evidence of detectable Neanderthal ancestry in Uganda, providing support for Eurasian 
admixture resulting from back-to-Africa migration. (STAR Methods, Table S3.7). We first validate our 
approach by confirming enrichment of inferred Neanderthal sites within Eurasian segments, and with 
known maps of Neanderthal ancestry using simulated data (p<0.001) (Table S3.7). We find that 
segments of inferred Neanderthal ancestry among Ugandans show high (95%) overlap with inferred 
Eurasian haplotype segments in the same individuals (as inferred by ChromoPainter(Lawson et al., 
2012)). On assessing the overlap of segments of inferred Neanderthal ancestry among Ugandans with 
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the inferred map of Neanderthal ancestry among Europeans and Asians in the 1000 Genomes 
project,(Sankararaman et al., 2014) we find that 90% of segments identified as Neanderthal in origin 
(permutation p<0.001), overlapped with known maps of Neanderthal introgression (STAR 
Methods).(Sankararaman et al., 2014) Furthermore, in line with expectations, we also find evidence of 
significantly lower background selection in identified regions of Neanderthal ancestry relative to other 
regions (mean B scores 920 and 799, respectively, permutation p<0.003) (STAR Methods). Collectively, 
our analyses support the Eurasian back-migration into Uganda, consistent with previous work (Gallego 
Llorente et al., 2015) (Henn et al., 2012, Pickrell et al., 2014, Fan et al., 2019)  
 
Gene flow between Ugandans and regions rf-HG populations 
Analysis with MALDER also detects multiple complex admixture events, with the older events inferred 
as best represented by modern rf-HG-like and Eurasian-like ancestral components having occurred 
~2000-4500 years ago, and more recent Eurasian-like admixture ~7-11 generations ago, consistent 
with previous reports (Figure S3).(Gurdasani D., 2014) (Patin et al., 2017). Given the relatively low 
proportion of rf-HG admixture inferred within Ugandans by ADMIXTURE, GLOBETROTTER, and 
fineSTRUCTURE analysis, we evaluated this further. ALDER suggests low levels of rf-like admixture in 
Baganda (lower bound 4.4%), consistent with previous reports,(Patin et al., 2017) and our results from 
ADMIXTURE and GLOBETROTTER analysis (Figure 2 and Figure S3). Inference of rf-HG-like and Eurasian 
ancestry as primary sources of admixture by MALDER here is likely to reflect the known bias of the 
algorithm towards identifying source ancestral components that are more drifted, even if they 
contribute proportionately little to ancestry.(Pickrell, 2013)  
 
Asymmetrical gene flow has previously been noted between rf-HGs and East Africans, with 
predominantly Bantu admixture inferred within regional rf-HGs. We recapitulate these findings, (Patin 
et al., 2014, Patin et al., 2017) confirming substantial Bantu admixture in rf-HG (Mbuti) dating to ~760 
years ago in ALDER analysis (lower bound admixture 18%). Collectively, our findings suggests that 
assimilation of eastern rf-HG like ancestry into East African Bantu populatons may have occurred 
during early migrations as part of the Bantu expansion, as these populations expanded into this 
region.(Gurdasani D., 2014)  The route through which this ancestry entered these populations is 
unclear, and may have involved gene flow between Bantu and possibly other regional pastoralist or HG 
populations. We explore this further by examining  ancient East African populations as possible 
representative sources of ancestry among modern Ugandans. 
 
Ancient populations representative of admixture in modern Ugandans 
QpAdm analysis examining possible sources of admixture in modern Ugandans (STAR Methods) 
suggests that among global modern and ancient populations, modern Ugandan populations are best 
represented by ancestral components relating to ancient East African pastoralist populations 
(Tanzania_Pemba_700BP, and Tanzania_Luxmanda_3000BP) (STAR Methods, Tables S3.8-S3.9). These 
ancient pastoralists have been shown to be represented by multiple ancestral components, including 
ancient hunter-gatherer (Mota) and Eurasian (Levant-like) ancestry,(Skoglund et al., 2017) suggesting 
that these ancestral components may have entered modern Ugandans proximately through ancient 
East African pastoralists in the region. Our primary results identify a single source of ancestry 
represented by Tanzania_Pemba_700BP in Baganda and Basoga, consistent with previous qpWave 
analyses (Table S3.8). Other populations can be modelled either as a mixture of 
Tanzania_Pemba_700BP and Tanzania_Luxmanda_3000BP, or as a mixture of Tanzania_Pemba_700BP 
and modern or ancient Eurasians. Eurasian admixture in Ugandans varies from 5.8-10.9% (Table S3.12). 
Consistent with qpWave results suggesting multiple streams of admixture within Uganda (Table S3.1), 
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we find that Banyarwanda and Rwandese Ugandans cannot be modelled by any combination of two or 
three-source populations, reflecting complex ancestry in these ethno-linguistic groups.  
 
We also note that although Tanzania_Pemba_700BP has been shown to be represented well by Mende 
previously (Skoglund et al., 2017) (a finding we were able to recapitulate in our analyses), replacing 
Tanzania_Pemba_700BP with Mende as a source population for admixture into Uganda in our models 
results in a poor model fit (p<0.01 in all cases). Our findings suggest that West African populations may 
not reliably represent Bantu ancestry in East African Bantu populations. In order to assess this, we 
examine the f4 statistic f4(chimp, Ancient South African; YRI/Mende, Uganda) (Table S3.10); we find 
asymmetry of Ugandan and West African populations relative to ancient South African Khoe-San, 
inferred from statistically significantly positive f4 statistics. Recent evidence has suggested that West 
Africans may carry a differential contribution of ancestry from an ancient population basal to ancient 
South Africans, leading to different West African populations (e.g. YRI and Mende) being 
asymmetrically related to ancient South Africans.(Skoglund et al., 2017) In this context, the asymmetry 
observed between West and East Afrians relative to ancient Khoe-San may be due to lower or absent 
basal ancestry in East African bantu populations relative to West Africans (STAR Methods, Tables 
S3.10). Alternatively, this may also be explained by Hadza-like or Khoe-San related ancestry in modern 
Ugandans. Further evaluation and interpretation of these findings will require a wider sampling of 
ancient DNA samples from across Africa.  
 
Demographic history of East Africans 
To investigate ancient population size changes and split events, we examined a Ugandan trio 
sequenced at high depth (30x) using MSMC2(Schiffels and Durbin, 2014)  (STAR Methods, Tables S1.6-
1.7 and Figure S6). We find that the demographic history of Ugandans is broadly comparable to other 
Africans such as Yoruba and Luhya (LWK), with an estimated effective population size of ~20,000 over 
the past 10,000 years (Figure S6a-c). However, recent changes in population size of Ugandans seem 
more similar to LWK, as compared with YRI, and are consistent with patterns described by Schiffels et 
al. for LWK in the recent past (<10,000 years).(Schiffels and Durbin, 2014) Schiffels et al. observed a 
long 'hump' in ancestral population size extending back from 6,000 years ago to beyond 50,000 years 
ago; we see a similar pattern in Uganda, likely reflecting complex admixture in Uganda, with modern 
Ugandans being a mosaic of multiple structured popilations that were separated for several thousands 
of year, unril recent admixture due to the extensive migration into this region.  
 
On examining cross-coalescence between Uganda, YRI and LWK, we find that Ugandan populations 
split from Yoruba, Nigeria (YRI) ~11,500 ya, with subsequent gene flow between Uganda and LWK in 
recent times (Figure S6d-f and STAR Methods). The Uganda-YRI divergence is older than the Bantu 
expansion, (de Filippo et al., 2012) and may reflect varying patterns of Eurasian, basal and regional 
admixture in East and West African populations. It also should be noted that these divergence times 
are lower bounds, and are likely to be affected by gene flow between these populations following 
divergence, as previously documented. (Schiffels and Durbin, 2014) We note that while our cross-
coalescence rates (CCR) for Uganda-YRI  when using 1000 Genomes Project YRI haplotypes are more in 
line with trio based phasing, CCRs from Complete Genomics data is suggestive of more recent split 
times (Figure S6g). This suggests that statistical phasing of the 1000 Genomes Project high coverage 
samples may be more reliable with our merged reference panel compared with than the complete 
genomics haplotypes. This is also in line with previous reports that inaccuracies in statistical phasing 
can impact inferences of split times. (Song S, 2014) Our results support the sequencing of trios in 
diverse population sets to maximise phasing accuracy, or alternatively using strategies that can greatly 
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improve phasing accuracy, such as linked read sequencing,(Zheng et al., 2016) optical nano-technology, 
or SMRT sequencing, as implemented with the PacBio platform. 
 
 
Recent haplotype sharing between Ugandans and other global populations 
We explored more recent population history by examining rare variant sharing between the Baganda 
and other populations; we examined variants occurring only twice in the entire dataset (designated f2) 
(Figure S7 and STAR Methods). On assessing average f2 sharing on repeatedly subsampled random 
haplotypes (n=40) from each population, we see extensive sharing of f2 variants between Ugandan 
populations and other Niger-Congo language speaking populations in the 1000 Genomes Project from 
East and West Africa. We also see extensive sharing with European and Asian populations consistent 
with Eurasian gene flow into these populations (Figure S7a). Paradoxically, we see little sharing among 
Ugandan populations; however, it must be noted that this is likely to be a consequence of our 
ascertainment scheme, with f2 variants being rarer among the Ugandan populations, and therefore, 
less likely to be sampled in a random set of 40 haplotypes (Figure S7a, STAR Methods).  
 
Dating haplotypes surrounding f2 variants can provide important information about the interrelation 
among populations, including ancient and recent population divergence.(Mathieson and McVean, 
2014) Using this approach, we observe a total of 12,477,686 f2 variants in our dataset belonging to 
9,875,361 f2 haplotypes. Given our ascertainment of f2 variants in a sample size comprising largely 
Ugandans, we expect f2 variation within Ugandans to be more recent than within other populations; 
therefore, we decided only to focus on the relationship of f2 variation between Ugandan and other 
populations, as this is likely to be relatively unbiased. We find that f2 variants shared between 
European and Ugandan populations are more recent than those shared between European and West 
African populations (median f2 dates were ~19,500 ya for Baganda compared with ~51,000 ya for YRI) 
(Figure S7b). This finding is consistent with back migration(Henn et al., 2012) and Eurasian admixture in 
the Uganda populations;(Gurdasani D., 2014, Pickrell et al., 2014) however, this may also reflect bias 
due to ascertainment of f2 variants in a larger population of Ugandans, thereby resulting in f2 variation 
representing rarer, and therefore more recent variation. Examining Ugandan populations in the 
context of other African populations, we find that f2 sharing between Ugandan populations and 
Ethiopians tend to be older (median f2 dating was ~23,000 ya) than Ugandan-West African splits 
(Figure S7b-c), probably reflecting a combination of deeper population splits between Bantu- and Afro-
Asiatic-speaking groups, and relatively high Eurasian admixture in the Ethiopian populations. We also 
find evidence of very ancient divergence (with a median f2 dating of ~29,000 ya) between Baganda and 
Zulu (Figure S7b-c); this could reflect old f2 sharing with highly divergent Khoe-San haplotypes present 
among Zulu and other Southern African populations.(Gurdasani D., 2014) Our large African sequence 
resource allows the first such examination of shared rare variation among populations, and highlights 
the complex demographic histories of populations in this region.  
 
A whole genome resource for population and medical genetics 
With the largest whole genome sequence dataset from Africa to date (Figure 3 and STAR Methods), 
we present a unique resource representing the spectrum of human genetic diversity in East Africa, as 
well as a resource to facilitate medical genetics studies in the region.  
 
As expected, and consistent with the out-of-Africa model, Africans carry higher levels of variation 
relative to other continental populations, the overwhelming majority being rare (Figure 3, Table S4.1, 
and STAR Methods). In line with these observations, African populations provide greater opportunities 
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for variant discovery as a function of sample size (Figure S8a and STAR Methods). We find that despite 
higher sequencing coverage within UK10K, the rate of discovery of genetic variation with increases in 
sample sizes among the Ugandans is greater than with European individuals from UK10K, at least up to 
a sample size of 500, after which gains plateau (Figure S8a-b). Of 41.5M SNPs called in UG2G, we 
identify 9.5 M novel variants that are not present in the 1000 Genomes Project (1000G) Phase 3, 
African Genome Variation Project (AGVP) and UK10K reference panels (Figure 3a). We find that 28.7% 
of SNPs discovered in UG2G are not found in gnomAD, 
(https://gnomad.broadinstitute.org/) 
 highlighting the importance of assessing diverse populations on a larger scale. Multi-allelic variants 
represented 0.87% of called SNPs.  
 
The average number of variants/individual in UG2G was greater than variation per individual observed 
in the UK10K cohorts dataset (4,298,968 and 3,412,214 in UG2G and UK10K cohorts, respectively), 
consistent with African populations having greater genetic diversity (Table S4.1). Heterozygosity rates 
among Ugandans were comparable to other African populations, except Ethiopian populations which 
had lower levels of heterozygosity, consistent with high levels of Eurasian admixture in Ethiopian 
populations (Figure 3b). We also note a much greater proportion of rare variants among Ugandans, 
when comparing with an equal number of European individuals from the 1000 Genomes Project Phase 
3 (Figure 3c), which has comparable depth of coverage. The differences in site frequency spectrum 
observed are consistent with a historical population bottleneck in Europeans, and greater genetic 
diversity with enrichment of rare variation among African populations.  
 
We also explored the predicted functional consequences of variation in the UG2G population (Figure 3, 
Table S4.2-4.3, Figure S9 and STAR Methods). Consistent with overall diversity, UG2G participants 
carried more missense variants per individual compared with the UK10K population (12,198 and 
10,153 variants/individual respectively) (STAR Methods). As with previous studies, we find that in spite 
of the lower absolute number of missense mutations (149,251 in UG2G, and 69,761 in UK10K ALSPAC) 
in Europeans, these form a higher relative proportion of total variation (0.4% and 0.5% in UG2G and 
UK10K, respectively, p<2e-16) among Europeans. (STAR Methods). For disease-causing mutations 
(DMs), as annotated by the HGMD (Figure 3 and STAR Methods), we identified a median of 29 
DMs/individual in our cohort compared to 25 DMs/individual in UK10K, despite more extensive studies 
in European populations, and potentially biased ascertainment (Figure 3f).(Xue et al., 2012) By 
contrast, in UG2G, we observed a median of 3 homozygous DMs/individual compared with to 4 
homozygous DMs/individual in UK10K (STAR Methods) (p<2x10-16).  In contrast to the GoNL study, 
where more than half of the DM variants were common (>5% AF), the Ugandan population shows the 
opposite pattern, with DM variants predominantly being rare (MAF <0.5%) in our cohort (Figure 3d-e). 
A total of 650 out of the 998 DM variants had a frequency lower than 0.5%, whereas only 47 were 
common (>5% AF) in the UG2G. These findings are consistent with previous reports that suggest a shift 
towards the higher frequency spectrum for deleterious variants in out-of-Africa populations. However, 
these differences to some extent may also represent ascertainment of DMs primarily in Europeans.  
 
On examining the number of ClinVar mutations per individual (2015 Clinvar database) in UG2G 
compared with the UK10K ALSPAC, and 1000 Genomes Phase III African and European populations, we 
observed greater number of median alleles/individual in the African individuals (UG2G and 1000 
Genomes Project Phase III African populations) compared to Europeans (UK10K ALSPAC and 1000 
Genomes Project phase III) in spite of the higher coverage of the ALSPAC dataset compared to UG2G 
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(Table S4.2). Our results do not support substantial ascertainment bias in either the HGMD or ClinVar 
database, in contrast with previous reports of ascertainment. (Xue et al., 2012) (Consortium, 2015a) On 
comparing results using an older version of the ClinVar database (2014 version), we find clear evidence 
of ascertainment bias in the older database, with a greater number of clinically significant disease 
alleles/individual among Europeans compared with Africans, as have been reported before (Table 
S4.2).(Consortium, 2015a) Our findings suggest that generation of larger scale sequence data in more 
diverse panels have contributed to reduction in ascertainment bias among mutation databases over 
time.  
 
The distribution of the mutational spectrum in African and European populations is consistent with 
previous reports, (Do et al., 2015, Lohmueller et al., 2008) and the impact of differences in 
demographic history among these populations. (Do et al., 2015) The higher burden of homozygous 
deleterious variation in Europeans is consistent with previous literature(Lohmueller, 2014, Henn et al., 
2016) ; resulting from a loss of rare alleles following a population bottleneck thereby leading to greater 
co-occurrence of these mutations in recessive form. (Do et al., 2015)  The differences observed are 
unikely to represent differences in efficiency of selection in European and African populations since the 
split, but rather non-selective demographic forces of drift and mutation in an expanding population 
after a bottleneck, as has been suggested previously.(Do et al., 2015) The higher frequency of 
deleterious variation in European populations may also be related to ascertainment bias, with more 
common recessive variation in European populations more likely to be identified and 
catalogued.(Amorim et al., 2017)  
 
Allele frequency differences between populations along with clinical phenotype data may provide 
insights into the functional relevance of putative DMs. On assessing 38 DMs that were common in our 
cohort (MAF>5%) but rare or absent in the UK10K data (MAF<1%) (Table S4.3),(Consortium, 2015b) we 
identify established causal loci associated with haematological traits, such as the G6PD and sickle cell 
(HBB) variants, which are common in UG2G, but absent from the UK10K data, consistent with these 
loci being under positive or balancing selection and protective against malaria (Table S4.3).(Karlsson et 
al., 2014) However, we also demonstrate that several putative DMs associated that are common in 
UG2G but rare in UK10K, do not show strong evidence for association with relevant cardiometabolic or 
hematological traits (Figure S10). These include rs41264848 in the LPA region (p=0.40 for association 
with total cholesterol); rs36220239 in the ADAMTS13 region, (p=0.90 for association with platelet 
count);  and rs115080759 in the HNF1A gene associated with MODY3 showing no association with 
HbA1C (p=0.20 in entire cohort, and p=0.29 when only including individuals >40 yrs age) (Figure S9). 
Our results for rs115080759 are consistent with reports that suggest this variant is benign. This 
emphasises the need to carefully and comprehensively evaluate the impact of putative functional or 
disease-causing mutations across global populations, because they may not have any clinical or 
biological relevance, or be readily transferable across populations.(Saraf et al., 2014, Xue et al., 2012)    
The lack of strong associations between these DMs and phenotypes in our cohort indicate that they 
are unlikely to be causal for the associated traits or may have different or lower penetrance within 
African populations due to complex factors, including epistasis, or gene-environment interplay. 
 
Finally, we assess the impact of the addition of the UG2G panel to existing reference panels on 
imputation accuracy among populations from sub-Saharan Africa (Figure 4). We show that addition of 
the UG2G panel to existing sequence panels with African haplotypes, such as the 1000G Phase 3, and 
AGVP (combined n=3,895), markedly improved imputation accuracy (r2 increase by 0.08 (MAF<=0.01) 
and 0.04 (all MAF)) for rare and common variants in Ugandan populations (Figure 4 and STAR 
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methods). Additionally, we observe a substantial increase in imputation accuracy across the allele 
frequency spectrum generally in East African populations, including Nilo-Saharan linguistic groups such 
as the Kalenjin (Figure 4), probably reflecting haplotype sharing across the region. The number of 
variants “successfully” imputed (info³0.3) substantially increased using the UG2G panel in comparison 
with the 1000G Phase III and AGVP panels combined, with an additional 8M variants being successfully 
imputed in Baganda, and 1.5M additional variants successfully imputed among other East African 
populations (Figure 4). These analyses emphasise the importance of building regional sequence based 
resources to facilitating genetic studies in Africa, including alongside current initiatives such as the 
Haplotype Consortium(McCarthy et al., 2016).  
 
 
Heritability of cardiometabolic traits in a rural Ugandan community 
Narrow-sense heritability represents the fraction of phenotypic variation in a population that is due to 
additive genetic variation. As such, it represents an important metric determining the genetic basis of 
complex traits and diseases. There have been no comprehensive evaluations of heritability and the 
interrelation with environment among African populations. We, therefore, assessed heritability for 34 
complex cardiometabolic traits using a mixed model approach that also models environmental 
correlation(Heckerman et al., 2016) (Figure 5 and STAR Methods). 
 
Estimates of heritability corrected for environmental correlation varied from relatively modest (e.g. 
10% for GGT, a liver biomarker) to 55% for traits such as mean platelet volume (MPV) (Table S5.1).  
 (Figure 5,STAR Methods, Table S5.1) We find clear statistical differences in heritability estimates for 
several traits, compared to European populations (Figure 5 and Tables S5.2-5.4). For example, the 
narrow-sense heritability for height was 49% in Ugandans, compared with estimates of 70-80% in 
European populations (p<0.0001); by contrast, the heritability estimates for LDL were statistically 
significantly higher in the Ugandan population (54% vs 20-43% in European studies, p<0.002) (Figure 5, 
Tables S5.2-5.4 and STAR Methods). We speculate that these differences may be due to varying 
patterns of genetic loci influencing these traits in European and African populations, or perhaps more 
plausibly due to a larger proportion of environmental variation explaining phenotypic variance. For 
example, malnutrition or nutritional deficits in rural African populations may attenuate the effects of 
genetic variance on height, whereas dietary consumption and obesogenic environments in European 
populations may reduce the impact of genetic factors on the variation in LDL levels.(Nalwoga et al., 
2010) We note, however, that lower estimates of heritability (e.g. for height) in the Ugandan cohort 
may also arise from differences in LD (lower LD with causal variants), lack of adjustment for shared 
environment in previous studies, or gene-evironment interactions. While we do not find statistically 
significant gene-environment interactions for height, we find evidence for statistical gene-environment 
interaction for waist-hip ratio, red blood cell distribution width (RDW) and haematocrit (permutation 
p=<0.0001). These statistical interactions may represent interplay between genetic factors and dietary 
factors, iron stores and nutritional status (Table S5.1). Reliable assessment of the interrelation 
between genetic and environmental variation, including specific environmental indices, will require 
application of these methods in much larger-scale studies with relevant phenotypic information. 
Examining locus-specific heritability would complement direct assessments of population differences in 
heritability of population traits. 
 
GWAS of cardiometabolic traits in African populations 
To assess the spectrum of genetic variants associated with cardiometabolic traits in African 
populations, we performed a GWAS of 34 cardiometabolic traits in up to 14,126 individuals from across 
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the African continent, including populations from Ghana, Kenya, Nigeria, South Africa and Uganda 
(STAR Methods, Table 1, and Table S6.1-S6.12). To maximise opportunities for genomic discovery, we 
meta-analysed GWAS data from all study populations imputed with the UG2G-1000GP3-AGV combined 
panel, using the Han-Eskin random-effect meta-analytic approach implemented in METASOFT(Han and 
Eskin, 2011) to allow for potential heterogeneity in allelic effects (STAR Methods). We first re-assessed 
thresholds for genome-wide statistical significance in African populations using several 
approaches(Gao et al., 2008, Chen and Liu, 2011, Moskvina and Schmidt, 2008, Nyholt, 2004) and 
found that a statistical threshold of 5.0x10-9 is more relevant in populations with high genetic diversity 
and relatively lower levels of LD (Table S6.1 and STAR Methods). 
 
In our meta-analysis, we identified 43 distinct signals statistically significantly associated with at least 
one trait (Table S6.2). Following visual inspection of locusview plots, two association signals were 
excluded (Figure S10) as likely to be artefactual. More than half of all remaining signals (23/41) were 
attributable to genetic variants specific to African populations or extremely rare in other populations 
(Table S6.2 and STAR Methods). Among these, we identified ten distinct or secondary signals at 
previously identified loci (Table 1), of which nine were driven by genetic variants that were specific to 
Africa or extremely rare in other populations (Table 1 and Table S6.2). We also identified ten 
association signals within novel loci (Table 1). These novel signals included associations with 
anthropometric indices, lipid, heamatological and blood cell traits (Table 1, Figure 6, Figure S10i and 
Table S6.2). Among these novel signals, three were noted to have been previously identified as 
associated with biologically related traits (Table 1).  
 
Our novel association signals included a functionally relevant association between a 3.8Kb deletion (-
α3.7), known to cause alpha thalassemia, and total bilirubin levels  (p = 2x10-12) (STAR Methods, Table 
1 and Figure 6). The -α3.7 variant is thought to have risen to high frequencies in African populations in 
regions endemic for malaria by virtue of providing resistance to severe malaria.(Mockenhaupt et al., 
2004)  
 
We also identified a novel association with BMI on chromosome 1 (p=2.8x-10) in the intergenic region 
between PLD5 and SDCCAG8 (Table 1 and Table S6.2). The SDCCAG8  locus has been previously 
associated with extreme childhood obesity in Europeans.(Scherag et al., 2010) Recent unpublished 
summary data from GIANT and UK Biobank suggests that this locus may be associated with BMI (peak 
SNP rs11807000, p=5.7e-11).  Our peak SNP is not present in these data or in the GIANT summary data. 
However, the presence of a comparably statistically significant association at this locus in a relatively 
small study (with respect to the UK Biobank and GIANT meta-analysis which examined ~700K 
individuals) is interesting, and needs further exploration. We also identified a novel association signal 
for the SNP rs7798566 (RE2 p=3e-15) with BMI on chr 7 in the intergenic region within the TAS2R gene 
family (Table 1 and Table S6.2). The TAS2R family of genes are expressed within the GI tract, are 
involved in taste sensitivity bitter-tasting compounds,(Bachmanov and Beauchamp, 2007) and 
regulation of thyroid activity. Both these loci showed significant statistical heterogeneity of effect 
(Table 1 and Table 6.2), with the association being seen only within the AADM cohort. The 
heterogeneity of effect for the SDCCAG8 locus among African cohorts (Table 1 and Table 6.2), and 
European cohorts may point to differential effects in different environments or genetic backgrounds 
(epistasis), or differences in demographic make up of these studies. The significance of these novel 
discoveries will require further evaluation across diverse population groups. 
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Among haematological traits, we identified a novel association on chr 11 between the PDHX and CD44 
region with WBC count (Table 1 and Figure 6). CD44 encodes a cell-surface protein that regulates 
neutrophil adhesion, migration and apoptosis,(Wang et al., 2002, Khan et al., 2004) among other 
functions (Table S6.2 and Figure 6). We also identified a novel association between rs1347767, an 
Africa-specific (MAF=10%) variant,  downstream to R3HDM1 associated with neutrophil count (Table 
S6.2).  While this locus has not been previously associated with neutrophil count, this region lies near 
the LCT locus, known to be associated with WBC count in an exome association study of African-
Americans.(Auer et al., 2012) The association at this locus was noted to be dependent on ancestry at 
the LCT locus in this study, suggesting the association may be population specific.(Auer et al., 2012) We 
also observed an association of the SNP causing sickle cell anemia (rs334) with RDW within our analysis 
(Figure 6). Notably, this SNP has not been identified as associated with RDW in the UK Biobank analysis 
of ~171K individuals (p=0.006) highlighting the utility of examining diverse cohorts in identifying 
functionally important associations with disease. 
 
Fine mapping with MANTRA resulted in narrow credible intervals for most traits with 16 of 41 distinct 
loci being mapped to a single SNP in the credible interval (Table S6.3).(Musunuru et al., 2010) We also 
resolved the previously identified association with HbA1c at the ITFG3 locus to the α-3.7 thalassemia 
deletion, which explained 3% of variation in HbA1c levels (Figure S10). We note that associations of the 
α-3.7 thalassemia with both HbA1c and total bilirubin were driven primarily by the Ugandan cohort, and 
not observed within other cohorts, consistent with the higher allele frequency of the deletion observed 
in Ugandans and the endemicity of malaria within this region.  Our findings recapitulate the need to 
more fully understand functional variation, including for heamoglobinopathies, that may explain a 
substantial proportion of variation in HbA1c in African populations. These factors may have a direct 
impact on the utility of using HbA1C as a clinical tool for detection and diagnosis of diabetes in 
Africa.(Herman and Cohen, 2012)  
 
Given the complex and regionally-specific genetic diversity within Africa, we assessed patterns of 
heterogeneity and transferability of association signals across the four cohorts; to inform the design of 
medical genetics studies as well as understand the utility of European-centric polygenic scores for risk 
prediction in African populations. While most known associations with data available in >1 cohort were 
transferable (had nominally statistically significant p values in two or more cohorts) (Table S6.4), we 
identified several known and functionally important loci - the LIPC locus associated with HDL, the 
DARC locus encoding the Duffy antigen associated with monocyte count, and the the a-3.7 thalassemia 
variant at the HBA1/A2 locus associated with RBC count and HbA1c that only had statistical support 
from a single cohort. Limited transferability at some of these loci appears to reflect allele frequency 
differences among cohorts potentially related to positive selection relating to the endemicity of 
malaria in some geographical regions and not others (e.g. the DARC and HBA1/A2 loci).(Liu et al., 2013, 
Hedrick, 2012, Hamblin et al., 2002) However, lack of transferability for other loci (e.g. LIPC) where the 
candidate SNP is common across all cohorts may reflect several factors, including allelic heterogeneity 
(multiple distinct variants at loci) or gene-environment interactions, and will need further investigation 
in large-scale studies of diverse African populations. Additionally, there were four associations at 
known loci where the association signal was driven by a single cohort due to population-specificity of 
the variant examined, or rarity of the variant in other cohorts (MAF<0.5%) (Table S6.4). These included 
the GPT locus associated with ALT, with variants driving the association specific to Uganda (no 
association was observed at this locus in other cohorts), and TIMD4 locus associated with LDL and total 
cholesterol levels (Table S6.4).  
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Expectedly, transferability was observed to be lower among novel association signals. Among nine 
novel associations with data in >1 cohort identified, 5 were noted to have support only from a single 
cohort (Table S6.4); among these was the functionally relevant the sickle cell locus associated with 
RDW, and the SDCCAG8 previously associated with childhood obesity(Scherag et al., 2010), associated 
with BMI in our data.  While the reasons for specificity of some of the novel loci to a single cohort 
relate to allele frequency differences of variants among cohorts (e.g. for the sickle cell locus), reasons 
for specificity at other loci are less clear, and require further exploration.  
 
To systematically examine differences in effect sizes across cohorts we examined statistical 
heterogeneity of effect at associated loci among studies (STAR Methods). While most peak associated 
SNPs did not show evidence of statistically significant heterogeneity, we found strong evidence of 
statistical heterogeneity (Cochran Q p<5x10-9) in regions around several peak SNPs within known and 
biologically important regions associated with total cholesterol, LDL(e.g. the PCSK9 and the APOE 
regions), bilirubin (UGT1A3-9 genes), GGT (GGT1 locus), MCHC (HBA1/A2 locus), ALT levels (GPT) and 
neutrophil count (DARC locus). This heterogeneity was partly attributable to differences in LD structure 
around causal or peak variants across populations, or the presence of multiple distinct variants at 
loci—allelic heterogeneity (Figure S10 and STAR Methods). For example, joint and conditional analysis 
at the UG1TA3-9 locus associated with bilirubin in UGR showed evidence for three distinct SNPs 
associated with total bilirubin in joint and conditional analysis in the UGR (Figure S10 and Table S6.5), 
suggesting that statistical heterogeneity at a locus can provide important information about the 
genetic architecture of traits. Using the same approach, we also identified three distinct association 
signals at the GGT1 locus in UGR, (Figure S10 and Table S6.6), with differences in LD around these 
distinct signals potentially explaining the statistical heterogeneity observed within this locus between 
cohorts.  
 
In addition to allelic heterogeneity representing multiple distinct associations at a given locus, we also 
identified loci where distinct associations were identified as driving the association signal with a given 
trait among different populations. One example of this is the GPT locus associated with ALT levels 
(Table 1), where distinct population-specific variants drive the association in Africans and 
Europeans.(Abul-Husn et al., 2018)  We also identified a distinct association with ALP levels at the 
known ALPL locus. Peak associated SNPs at this locus have been previously noted to be different across 
large studies of European, (Chambers et al., 2011) Chinese(Yuan et al., 2008) and Japanese(Kamatani et 
al., 2010) cohorts (Table S6.7); these peak SNPs were not in LD with the peak SNP in Uganda, 
suggesting that multiple signals may be driving these associations at the locus in different populations 
(Table S6.8). An alternate explanation is that all these SNPs may be differentially tagging an as yet 
unidentified causal variant.  
 
Collectively, our findings highlight the utility of genetic resources from diverse populations in novel 
discovery, especially for population-specific and low frequency association signals. In this context, 
differences in frequencies of functional alleles, allelic heterogeneity and differences in LD structure 
provide unique opportunities for discovery and resolution of causal loci, and a better understanding of 
the genetic architecture of disease.  
 
Discussion 
 
Here we present, the largest whole-genome sequence dataset from an East African population to date, 
as well as a large genome-wide genotyped and pehnotyped dataset from the same population. We 
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provide rich genomic resources for studies of human population history and GWAS, and a mechanism 
to evaluate the clinical relevance of genetic diversity both in African populations and globally.  
 
We present evidence for fine-scale structure and admixture in this Ugandan population, reflecting 
complex ancient and recent population migrations and expansions in East Africa. Our findings highlight 
the need for larger-scale deep sequencing, including a systematic assessment of hunter-gatherer 
populations across Africa, to more fully understand the genetic history and diversity of Africa. 
Sequencing of DNA from ancient skeletal material across Africa will greatly facilitate such 
efforts(Pickrell and Reich, 2014)—allowing stronger inferences into the source of genetic diversity and 
population history in Africa and globally. 
 
Accounting for environmental correlation, we describe statistical differences in heritability for traits 
between African and European populations; these may be suggestive of differences in the interplay 
between genetic and environmental effects on heritable traits, as well as the impact of differences in 
genetic architecture as a result of selection, drift and historical demographic events. Our findings re-
iterate the dynamic and context-specific nature of heritability, potentially varying among populations, 
demographic factors and environmental exposures.(Haworth and Davis, 2014)  
 
Lastly, in a combined meta-analyses of pan-African cohorts from five different countries across African 
totaling  14,126 individuals, we present results from trait-association discovery efforts. Our 
identification of several novel susceptibility loci across a range of complex traits argues for scaling 
efforts in the region. The continental and population-specificity of a large proportion of these 
association signals suggests that inclusion of diverse populations across Africa in GWAS may have the 
greatest potential for discovery and refinement of novel loci. Collectively, these findings provide the 
first empirical evidence to support theoretical models that suggest that power for discovery increases 
in meta-analyses of ethnically diverse populations, specifically driven by increased detection of low 
frequency and population-specific novel associations.(Pulit et al., 2010)   
 
Given high genetic diversity, and regionally specific patterns of admixture, we highlight the need to 
design GWAS studies to leverage these differences in allele frequency spectrum, and LD patterns 
across the African cohorts, including the creation of more diverse African whole genomic resources. 
The differences in LD structure observed around peak association signals across African populations 
will facilitate the refinement of association signals, and help identify causal variants. With caveats for 
rare variant discovery in some scenarios, our analyses emphasize the value of utilizing diverse 
populations across the region—to maximise opportunities for genomic discovery,(Cook and Morris, 
2016) and replication particularly in the context of rare and population-specific associations. 
Furthermore, understanding differences in heritability, and identifying the full spectrum of genetic 
variation associated with complex traits and diseases across Africa, will require much larger-scale 
prospective studies that should include rich genomic and phenotypic data for complex traits and 
diseases, as well as information on environmental factors. In these contexts, our results provide a 
framework for undertaking more extensive GWAS in populations from Africa. Our findings also 
emphasise the need to develop methods to understand and compare heritability across populations. 
Recently, methods have been developed to assess heritabilities from summary statistics from GWAS, 
accounting for LD structure(Finucane et al., 2015); however, these methods will need to be extended 
to studies of diverse admixed populations with significant tracts of admixture LD, and within 
populations with high levels of relatedness. 
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Since genetic diversity is greatest in African populations, including a substantial proportion of genetic 
variation that is continentally and regionally distinct, it will be critical to understand the functional and 
biological relevance of this diversity. Understanding the biological basis for population-specific 
association signals, as well as the impact and tranferability of putatively functional and disease causing 
mutations at the individual and population level, will require representative genomic resources. We 
emphasise the need for the parallel development of transcriptomic and cellular biological resources at 
the population level to better reflect global human diversity.(Chang et al., 2015) 
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CONTACT FOR RESOURCE SHARING  
Further information and requests for resources and information should be directed to and will be 

fulfilled by the Lead Contact, Dr. Manjinder Sandhu (mss31@cam.ac.uk). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

THE UGANDA GENOME RESOURCE (UGR) 
 
We genotyped 5,000 and sequenced 2,000 samples from 9 ethno-linguistic groups from the General 

Population Cohort (GPC), Uganda (Table S1.1);(Asiki et al., 2013) these constitute the Uganda Genome 

Resource (UGR). The GPC is a population-based open cohort study established in 1989 by the Medical 

Research Council (MRC), UK in collaboration with the Uganda Virus Research Institute (UVRI) to examine 

trends in prevalence and incidence of HIV infection and their determinants. Samples were collected from 

individuals during a survey from the study area located in south-western Uganda in the Kyamulibwa sub-

county of the Kalungu district, approximately 120 km from Entebbe town. The study area is divided into 

villages defined by administrative boundaries varying in size from 300 to 1,500 residents, and includes 

several families living within households. Data on health and lifestyle are collected using a standard 

individual questionnaire, blood samples obtained and biophysical measurements taken, when 

necessary, as described previously.(Asiki et al., 2013) 

We chose exactly 5,000 individuals with relatively complete phenotypic data (described in Methods 

Details) for genotyping (UGWAS) and 2,000 individuals who underwent low coverage whole-genome 

sequencing (UG2G). These included several pedigrees, and individuals with cryptic relatedness, as well 

as individuals clustered by household and village. Due to extensive migration into and around the region, 

several ethno-linguistic groups were sampled (Table S1.1). The final quality controlled Uganda Genome 

Resource included genotype data on 4,778 and sequence data on 1,978 individuals (Table S1.1). We note 

that there are 343 individuals who have been genotyped and sequenced; for these individuals, we only 

included the sequence data, and not the genotype data. We also excluded 6 genotyped samples that 
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were found to be potentially contaminated on fineSTRUCTURE analysis. The final dataset, therefore, 

included 6,407 individuals (4,429 with genotype, and 1,978 with sequence data).  

For genome-wide association analyses, we meta-analysed association statistics from the Uganda 

Genome Resource, with three additional cohorts: the Durban Diabetes Study (DDS) (n=1,165), the 

Diabetes Case control study (n=1,542), and the AADM study (n=5,231). Details regarding studies are 

below. 

THE DURBAN DIABETES STUDY (DDS) 
 
The Durban Diabetes Study (DDS) is a population-based cross-sectional study of individuals aged >18 

years, who were not pregnant, and residing in urban black African communities in Durban (eThekwini 

municipality) in KwaZulu-Natal (South Africa), conducted between November 2013 and December 2014 

(n=1,204).(Hird et al., 2016) The survey (n=1,165) combines health, lifestyle and socioeconomic 

questionnaire data with standardised biophysical measurements, biomarkers for non-communicable 

and infectious diseases, and genetic data. A detailed description of the survey design and procedures 

has been previously published.(Hird et al., 2016) The DDS was approved by the Biomedical Research 

Ethics Committee at the University of KwaZulu-Natal (reference: BF030/12) and the UK National 

Research Ethics Service (reference: 14/WM/1061).  

THE DURBAN CASE CONTROL STUDY (DCC) 
 
The Diabetes Case Control study is a study of individuals with diabetes recruited from a tertiary hospital 

in Durban (n=1,542). The Diabetes Case Control (DCC) study was planned as a case control study of type 

2 diabetes to examine the epidemiology and genomics of type 2 diabetes and related cardiometabolic 

traits in a South African population. Collection started in 2009 and finished in 2013, however at the end 

of the study only cases (n=1,600) had been recruited. The study includes participants of Zulu descent, 

resident in KwaZulu-Natal, aged > 40 years and with a diagnosis of T2D (WHO criteria). The DCC was 

approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal (reference: 

BF078/08) and the UK National Research Ethics Service (reference: 11/H0305/6). 

THE AFRICA AMERICA DIABETES MELLITUS STUDY (AADM) 
 
AADM is an ongoing genetic epidemiology study of type 2 diabetes and related traits in Africans which 

has been described in detail elsewhere(Rotimi et al., 2001, Adeyemo et al., 2015, Rotimi et al., 
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2004)(Rotimi et al., 2001, Adeyemo et al., 2015, Rotimi et al., 2004)(Rotimi et al., 2001, Adeyemo et al., 

2015, Rotimi et al., 2004)(3-5)(100-102)(99-101)(91-93)(95-97)(94-96)(79-81)(80-82). A total number of 

5,231 individuals from the Africa America Diabetes Mellitus (AADM) study were included. In brief, ethical 

approval was obtained from the Institutional Review Boards (IRB) of all participating institutions. Written 

informed consent was obtained from all participants. Demographic information was collected using 

standardized questionnaires across the AADM study centers in Nigeria (Ibadan, Lagos, and Enugu), 

Ghana (Accra and Kumasi), and Kenya (Eldoret). Anthropometric, medical history, and clinical 

examination parameters were obtained by trained study staff during a clinic visit.  

 

METHODS DETAILS 
 

LABORATORY MEASUREMENTS AND PHENOTYPE DATA 
 
A summary of phenotypic trait information available for the Ugandan resource can be found in Table 

S1.2, and trait information across all studies can be found in Table S1.3. 

UGANDA GENOME RESOURCE 

Detailed information on demographic characteristics, village, household clustering, GPS coordinates, 

anthropometry was collected. The study comprised three stages: collection of questionnaire data, 

biophysical measurements, and collection and analysis of venous blood samples.  

Prior to data collection, staff were trained using standard operating procedure documents to standardise 

data collection. The survey questionnaire retained aspects of the previous GPC questionnaire on sexual 

behaviour, marital status, pregnancy, childbirth, education, and occupation. In addition, a non-

communicable disease component, based on the WHO STEPs questionnaire, was included.(World Health 

Organization) The non-communicable disease component of the questionnaire included sections on 

tobacco use, alcohol consumption, diet, physical activity, and history of non-communicable disease.  

The questionnaires were available to interviewers in English and the local language (Luganda). The 

Luganda versions of the questionnaires were back-translated by a team of bilingual staff and piloted to 

ensure that original meanings of questions and answers were maintained. The e-questionnaires were 

validated against paper versions of the questionnaires for 300 participants. 
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BIOPHYSICAL MEASUREMENTS 

Once the questionnaire was completed, height, weight, hip and waist circumferences, and blood 

pressure were measured.  Pregnant women in their second or third trimester were excluded from 

anthropometric measurements.  

Height  

Height was measured, with the head placed in the Frankfort plane, to the nearest 0.1 cm using the 

Leicester stadiometer. Head pieces and shoes were removed for height measurements. Calibration of 

the stadiometer was checked weekly. 

Weight 

Weight was measured to the nearest 1 kg using the Seca 761 class III mechanical flat scales. Shoes and 

excess clothing were removed before weight measurements. Calibration of the scales was checked 

weekly.  

Hip and waist circumferences 

Waist and hip circumferences were measured to the nearest 0.1 cm over one layer of loose clothing 

using the non-stretch Seca 201 Ergonomic Circumference Measuring Tape. Waist circumference was 

measured at the mid-point between the lower costal margin and the level of the anterior superior iliac 

crests. Hip circumference was measured at the greater trochanter of the femur. Waist and hip 

circumferences were measured twice. In the case where the first and second measurements disagreed 

by 3 cm or more, a third measurement was taken. A participant’s hip and waist circumference values 

were calculated as the mean values of measurements taken.  

 

Blood pressure  

Blood pressure was measured using the fully automated Omron M6-I. The Omron M6-I has been 

validated for medical use, including for those who are obese, children, or elderly.(Topouchian et al., 

2006, Altunkan et al., 2007, Altunkan et al., 2008) Participants had been resting for at least 15 minutes 

prior to the measurement and were asked to refrain from eating and drinking for 30 minutes prior to 

the measurement. Prior to the blood pressure measurements, the arm circumference was determined 

and the appropriate Omron cut-size used. Blood pressure was measured in the sitting position three 

times with resting intervals of 3-5 minutes. Blood pressure for a participant was calculated as the mean 

of the second and third reading. 
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BLOOD SAMPLES  

Once biophysical measurements had been performed, venous blood samples were obtained. An 8.5 ml 

serum sample was collected in a vacutainer serum separation tube for serological and biochemical 

analysis. A 6 ml whole blood sample was collected in an EDTA tube for blood counts, HbA1c 

measurement and genetic analysis.  

The 8.5 ml serum and 6 ml whole blood samples were kept at 4 0C – 8 0C, and protected from sunlight to 

prevent degradation of bilirubin. The 2 ml whole blood samples for full blood count were kept at ambient 

temperature. Vacutainer serum separation tubes were centrifuged for 10 minutes at 1,000-13,000 RCF 

(g) in a swing bucket centrifuge in the field station laboratory. Samples were centrifuged no earlier than 

45 minutes and no later than 2 hours after blood sample collection. 

Haematological analysis of full blood count took place in the Kyamulibwa field station laboratories, and 

other samples were transported to MRC/UVRI Central Laboratories in Entebbe, Uganda, every day for 

immediate biochemical analysis.  

Biochemistry  

Biochemistry data on lipid levels and liver function were captured digitally using the Cobas Integra 400 

Plus Chemistry analyser (Roche Diagnostics), an advanced integrated system for research and diagnostic 

clinical chemistry testing.  The instrument carries out all test orders automatically and employs four 

different technologies, namely, absorption photometry, fluorescence polarization immunoassay, 

immune-turbidimetry, and potentiometry. 

Lipids were measured non-fasting. The lipids of interest were cholesterol, high-density lipoprotein (HDL)-

cholesterol, low-density lipoprotein (LDL)-cholesterol and triglycerides. The liver function tests comprise 

of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), 

gamma glutamyltransferase (GGT), total bilirubin, and albumin. HDL-cholesterol and LDL-cholesterol 

were measured using the homogeneous enzymatic colorimetric assays, as described by Sugiuchi et 

al.(Sugiuchi et al., 1995, Sugiuchi et al., 1998) ALT and AST were measured by kinetic assay with 

photometric detection method according to the International Federation of Clinical Chemistry (IFCC), 

but without pyridoxal-5’-phosphate.(Bergmeyer et al., 1986b, ECCLS, 1989a, Bergmeyer et al., 1986a, 

ECCLS, 1989b) Assays for bilirubin, albumin, and ALP were colorimetric assays with photometric 

detection.  Assays for GGT, cholesterol, and triglycerides were enzymatic colorimetric assays with 

photometric detection.   

The precision of assays was also tested by the manufacturer using both study samples and controls.  
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HbA1c  

HbA1c data were captured digitally using the Roche Cobas Integra 400 Plus Chemistry analyser (Roche 

Diagnostics). Total haemoglobin and HbA1c concentrations were determined after haemolysis of the 

anticoagulated whole blood specimen. Total haemoglobin was measured colorimetrically. HbA1c was 

determined by turbidimetric inhibition immunoassay-quant Haemoglobin Alc Gen2 for haemolysed 

whole blood. The Cobas result output was expressed as IFCC percent. HbA1c and was calculated from 

the IFCC protocol HbA1c/haemoglobin ratio as HbA1c (%) = (HbA1c/haemoglobin) x 100. These results 

were converted to the DCCT/NGSP percentage units using the following equation: HbA1c % DCCT/NGSP= 

0.915 x (HbA1c % IFCC) + 2.15.  

This Roche second generation HbA1c assay has been validated for accuracy in the presence of 

haemoglobinopathies HbS, HbC, and also HbE or HbD.(Abadie and Koelsch, 2008, Fleming, 2007, Little 

et al., 2008) The Cobas Integra 400 Plus assay has also been validated against the high-performance 

liquid chromatography method.(Barrot et al., 2012) 

Full blood count 

Full blood count and other haematological traits were measured using the Coulter ACT5 Diff CP 

haematology analyser. The following information was output: white cell count, red cell count, 

haemoglobin (Hb), packed cell volume (PCV), mean corpuscular volume (MCV), mean cell haemoglobin 

(MCH), mean cell haemoglobin concentration (MCHC), mean platelet volume (MPV) and platelet count.  

 

DURBAN DIABETES STUDY AND DURBAN CASE CONTROL STUDY 

Automated enzymatic assays were used on fasting serum to determine TC, high-density lipoprotein 

cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglyceride, aspartate, amino transferase, 

alanine amino transferase, alkaline phosphatase, gamma glutamyl-transferase, bilirubin and albumin 

levels (ABBOTT ARCHITECT 2: CI 8200, Abbott Laboratories, Chicago, IL, USA.).  

HbA1c was measured using ion-exchange high-performance liquid chromatography (HPLC) (BIORAD 

VARIANT II TURBO 2.0, Bio-Rad Laboratories, Inc., Hercules, CA, USA), using an instrument certified by 

the National Glycohaemoglobin Standardization Program (NGSP) and International Federation of Clinical 

Chemistry and Laboratory Medicine (IFCC). The BIORAD VARIANT II TURBO 2.0 method is not significantly 

affected by HbS, HbC, HbE and HbD-trait haemoglobin variants. 
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For DDS only, a full blood count was completed for all participants using a SYSMEX XT-2000i, including 

determination of haemoglobin level, mean corpuscular volume (MCV) and mean corpuscular 

haemoglobin (MCH).  

AFRICA AMERICA DIABETES MELLITUS STUDY 

Weight was measured in light clothes on an electronic scale to the nearest 0.1 kg and height was 

measured with a stadiometer to the nearest 0.1 cm. Body mass index (BMI) was computed as weight 

(kg) divided by the square of height in meters (m2). Blood pressure was measured while seated using an 

oscillometric device (Omron Healthcare, Inc., Bannockburn, Illinois). Three readings were taken at 10-

minute intervals. Reported readings were the averages of the second and third readings.  Blood samples 

were drawn after an overnight fast of at least 8 hours. 

 

DNA EXTRACTION, GENOTYPING AND SEQUENCING 
 
Whole blood for DNA extraction was collected in EDTA vacutainer tubes, transferred to cryogenic tubes 

and stored at -800C for up to one year. To minimize human error, tubes were barcoded and most of the 

processing was done using automation. DNA was extracted from 5 to 6 ml of whole blood using 

NUCLEON® chemistry (Gen-Probe Life Sciences Ltd., now Hologic). A control blood sample was included 

per operator per day. DNA was resuspended in Standard TE Buffer (10mM EDTA, 1mM EDTA) in a volume 

of 200-1,000µL depending on the size of the DNA pellet. DNA samples underwent quality control checks 

including PicoGreen® quantitation (Life Technologies, Thermo Fisher Scientific Inc.), agarose gel 

electrophoresis and iPLEX genotyping (Sequenom Inc.) of a panel of 30 SNPs including 4 gender markers. 

We genotyped 5,000 samples from the Ugandan Survey on the Illumina HumanOmni 2.5M BeadChip 

array at the Wellcome Trust Sanger Institute (WTSI). These were chosen as a subset of the survey 

population with the most complete phenotype data on the traits measured.  Sequenom QC and gender 

checks were carried out prior to genotyping. A further 2000 samples were sequenced on the Illumina 

HiSeq 2000 with 75bp paired end reads, at low coverage, with an average coverage of 4x for each sample.  

The DDS (n=1,165) and DCC (n=1,542) DNA samples were genotyped on the consortium-driven Illumina 

HumanOmni Multi-Ethnic GWAS/Exome Array (MEGA pre-commercial v1) using the Infinium Assay. The 

MEGA array (1.7M SNPs) leverages content discovered in Sequencing Consortia and databases such as 
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the 1000 Genomes Project, the CAAPA Consortium, PAGE, OMIM/Clinvar and NEXTBio. Genotypes were 

called using the Illumina GenCall algorithm. 

Samples from the AADM study were genotyped on high density GWAS arrays: 1,808 samples were 

genotyped using the Affymetrix® Axiom® Genome-Wide PanAFR Array Set and 3,423 samples were 

genotyped using the Illumina MEGA array. 

 

QUALITY CONTROL OF GENOTYPE DATA 
 

UGANDA GENOME RESOURCE 

A total of 2,314,174 autosomal and 55,208 X-chromosome markers were genotyped on the 

HumanOmni2.5-8 chip. Of these, 39,368 autosomal markers were excluded because they did not pass 

the quality thresholds for the SNP called proportion (<97%, 25,037 SNPs) and Hardy Weinberg 

Equilibrium (HWE) (p<10-8, 14,331 SNPs).  HWE testing was only carried out on the founders for 

autosomes (defined by an IBD threshold <0.10 as estimated by PLINK), and female unrelated individuals 

for the X chromosome.(Purcell et al., 2007) Owing to the sampling strategy, there were high levels of 

cryptic relatedness within the cohort, which have been described previously.(Asiki et al., 2013, O'Connell 

et al., 2014) The average IBD sharing between individuals was 0.0015 with 0.07% of pairs and 5,307 

individuals with an IBD>0.125 with at least one other individual.  

A total of 91 samples were dropped during sample QC as they did not pass the quality thresholds for 

proportion of samples called (>97%) or heterozygosity (outliers: mean±3SD), or the gender inferred from 

the X-chromosome data did not match the supplied gender. Three additional samples were dropped 

because of high relatedness (i.e. IBD>0.90).  Principal component analysis was carried out on unrelated 

individuals projecting onto related individuals, for SNPs LD pruned at an r2 threshold of 0.2, with a MAF 

threshold of >5%. No samples were identified as population/ancestry outliers based on this. 

Downstream analyses were carried out on the remaining 2,230,258 autosomal markers and 4,778 

samples which passed quality checks. Phasing and imputation, and further filtering of these data for 

GWAS are described in the section ‘Quantification and Statistical Analysis’.  

 

DURBAN DIABETES STUDY (DDS) AND DIABETES CASE-CONTROL STUDY (DCC) 
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Quality control for DDS and DCC genotype data was carried out collectively, with sample QC including 

filtering for called proportion (<97%), heterozygosity (>4SD from mean), sex check fails (F statistic<0.8 

for men, and >0.2 for women). Sample QC was followed by SNP QC, including filtering for called 

proportion (<97%), Hardy Weinberg disequilibrium (p<1e-06), relatedness (IBD>0.90). SNPs with 

stasticially significant difference in missingness (p<1e06), between the DCC and DDS datasets were also 

removed from analysis. In total, 1478+1119 samples and 1,395,345 SNPs were retained in the two 

studies. 

THE AFRICA AMERICA DIABETES STUDY (AADM) 

For the AADM data, filtering for the Affymetrix and Illumina data were carried out separately. Quality 

control included appropriate sample- and SNP-level exclusion filtering (individual call rate ≤ 95%, SNP 

call rates ≤ 95%, Hardy – Weinberg < 10-6, and minor allele frequency (MAF) < 0.01).  

 

CURATION OF SEQUENCE DATA 
 
Following genotyping in 5,000 individuals, we carried out whole-genome sequencing in the General 

Population Cohort for 2,000 individuals with phenotype data available to provide a resource to better 

understand genetic diversity in the region, and for better imputation into the remaining individuals, to 

maximise power for discovery in GWAS. Of these, 343 were overlapping with individuals who had already 

been genotyped. These samples were sequenced and genotyped for comparison, and assessment of 

systematic differences between genotype and sequence data.   

READ MAPPING AND BAM PROCESSING 

Following generation of raw reads on the sequencing machine, the reads were converted to BAM format 

using Illumina2BAM. Illumina2BAM was again used to de-multiplex the lanes that had been sequenced 

so that the tags were isolated from the body of the read, decoded, and could be used to separate out 

each lane into lanelets containing individual samples from the multiplex library and the PhiX 

control.  Reads corresponding to the PhiX control were mapped and used with Sanger’s spatial filter 

program to identify reads from other lanelets that contained spatially oriented INDEL artefacts and mark 

them as QC fail. Mapping of the human samples was carried out using the BWA backtrack algorithm with 

the GRCh37 1000 Genomes phase II reference (also known as hs37d5). PCR and optically duplicated 
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reads were marked using Picard MarkDuplicates and after manual QC passing data was deposited with 

the EGA and the Sanger Institute’s internal archive (study/dataset accession numbers 

EGAS00001001558/EGAD00010000965 and EGAS00001000545/EGAD00001001639, respectively). 

One sample from the Genome in a Bottle highly curated set was included for validation of the data 

processing pipeline (NA12878). PCR-free reads were used for these validation samples, to avoid PCR 

artefacts. This validation sample was downsampled to 4x coverage, and processed through the same 

pipeline (Figure S1), to provide a comparator against high coverage 30x data. This was considered the 

gold standard for evaluation. The accuracy of called data from a 4x sample would provide a guide to the 

accuracy of the workflow applied.  

QUALITY CONTROL OF SEQUENCE DATA 

In order to ensure the quality of the large quantity of BAMs produced for the project, an automatic 

quality control system was employed to reduce the number of data files that required manual 

intervention. This system was derived from the one originally designed for the 

UK10K project(Consortium, 2015b) (http://www.uk10k.org) and used a series of empirically 

derived thresholds to assess summary metrics calculated from the input BAMs. These thresholds 

included: percentage of reads mapped; percentage of duplicate reads marked; various statistics 

measuring INDEL distribution against read cycle and an insert size overlap percentage. Any lane that fell 

below the “fail” threshold for any of the metrics were excluded; any lane that fell below the “warn” 

threshold on a metric would be manually examined; and any lane that did not fall below either of these 

thresholds for any of the metrics was given a status of “pass” and allowed to proceed into the later stages 

of the pipeline. Fourteen samples were excluded at the QC stage.  

RE-ALIGNMENT OF READS AND BASE QUALITY SCORE RECALIBRATION 

Passed lanelets were then merged into BAMs corresponding to sample’s libraries and duplicates were 

marked again with Picard after which they were then merged into BAMs for each sample. We ran 

verifyBAMID to identify samples that did not match the frequency distributions of corresponding 

genotype data, and excluded eight samples as failures. Finally, sample level bam improvement was 

carried out using GATK and samtools. This consisted of re-alignment of reads around known and 

discovered INDELs followed by base quality score recalibration (BQSR) both using the GATK. Lastly 

samtools calmd was applied and indices were created.  Known INDELs for realignment were taken from 
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Mills 1000 Genomes indels set and the 1000G phase low coverage set both part of the Broad’s GATK 

resource bundle version 2.2.  Known variants for BQSR were taken from dbSNP 137 also part of the 

Broad’s resource bundle.  

ASSESSMENT OF CALLING ALGORITHMS 

We carried out careful assessment of several calling algorithms before calling our low coverage 

sequences. In order to explore the sensitivity and specificity of variant callers when applied to low 

coverage datasets, we carried out an evaluation with 1,986 samples from Uganda sequenced at 4x 

average coverage with Illumina HiSeq 2000. The downsampled GIAB sample(Zook et al., 2014)  (4x) was 

included in the called set for evaluation of calling accuracy. We calculated the sensitivity and specificity 

of calls relative to the highly curated variant sites for the NA12878 sample, to identify the caller with 

greatest area under ROC curve at different filtering thresholds (Figure S1b and S1c). We note that the 

accuracy of variant calling in this single European sample may not fully reflect the accuracy calls in the 

African samples; however, it is likely to give an indicator of the relative performance of calling algorithms. 

We used varied two different filters to generate ROC curves: the SNP quality metric (QUAL), and the 

VQSLOD score obtained using the VQSR model implemented by GATK for callers. We compared 

commonly used callers at the time of calling: Unified Genotyper v3.3, Haplotype caller v3.2, samtools 

v0.2.0-rc12+htslib-0.2.0-rc12 and FreeBayes v0.9.18-3. As the filtering algorithm recommended for data 

produced from Unified Genotyper and Haplotype caller is VQSR, we presented ROC curves using 

different VQSLOD thresholds. However, for comparability with other callers, we also present ROC curves 

using only QC thresholds. We also carried out additional evaluation, generating annotations on samtools 

based calls using GATK, followed by VQSR to assess using VQSLOD for filtering combined with samtools 

calling improved calls. With this evaluation, we show that UnifiedGenotyper3.3 produced the best area 

under ROC curve with the lowest FDR for a given sensitivity for SNPs and indels (Figure S1b and S1c); we 

therefore used this for variant calling for these data. All callers, however produce very low sensitivity 

and high FDRs for indel calls (Figure S1c), indicating the need for more stringent filtering downstream. It 

is likely that the sensitivity and specificity of calls will have improve with genotype refinement. We note 

that we only assessed these callers using filtering options available at the time, and use of different 

filtering approaches using these callers could potentially improve the sensitivity for a given FDR.  

DATA PROCESSING WORKFLOW 
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The workflow for data processing is represented in Figure S1a. Variant calling was carried out on the 

samples that passed QC in the UG2G data along with the sequence data from 320 individuals from the 

African Genome Variation Project (AGVP)(Gurdasani D., 2014).  Sequence data from the AGVP have been 

described in detail previously.(Gurdasani D., 2014) These combined data were called together with GATK 

Unified Genotyper 3.3. During variant calling each sample was by default downsampled to a maximum 

coverage of 250 (--downsampling_type BY_SAMPLE --downsample_to_coverage 250). Reads with an 

inferior mapping quality were ignored (--min_mapping_quality_score 20). Duplicate reads were filtered 

(-rf DuplicateReadFilter). Reads whose mate mapped to a different contig were filtered out (-rf 

BadMateFilter). Bases with an inferior quality were not considered for calling (--min_base_quality_score 

10). No more than 6 alternate alleles were emitted at each site (--max_alternate_alleles 6). In an attempt 

to provide better input for the subsequent variant filtering step, variants of inferior quality were not 

called (--stand_call_conf 10 and --stand_emit_conf 10). We carried out variant calling for the autosomes. 

The X chromosome was called as diploid within PAR1 and PAR2 and also outside the PARs. 

Filtering of variants was carried out with GATK VariantRecalibrator 3.2 using variant quality score 

recalibration (VQSR). To train the Gaussian mixture model and calculate a truth score (log odds ratio) for 

each variant we used HapMap III and 1000G phase 1 Omni2.5 sites as truth and training sets (prior 

probabilities of 15 and 12) for SNPs. High confidence 1000G phase 1 SNPs were used as an additional 

training set (prior 10) for SNPs. For indels we used the Mills 1000 Genomes gold standard as a truth and 

training set (prior 12). For both SNPs and indels dbSNP138 acted as a set of known sites. 

To build our VQSR Gaussian mixture model we used annotations at each site related to coverage 

(QD=QualByDepth and DP), strand bias (FS=FisherStrand, SOR=StrandOddsRatio) and mapping quality 

(MQ, MQRankSum, ReadPosRankSum). For indels we use the same annotations, except for MQ being 

left out, as per GATK Best Practice recommendations at the time. DP is the approximate read depth after 

filtering reads with poor mapping quality and bad mates. QD is the variant confidence normalized by the 

unfiltered depth for the variant allele. FS is a Phred-scaled p-value using Fisher's exact test to detect 

strand bias. SOR is the odds ratio of a 2x2 contingency table (rows and columns are positive/negative 

strand and reference/alternate allele) to detect strand bias. MQ is the RMS of the mapping qualities, 

which serves an average across reads and samples. MQRankSum is the Z-score from a Wilcoxon rank 

sum test of alternate vs. reference mapping qualities. ReadPosRankSum is the Z-score from a Wilcoxon 

rank sum test of alternate vs. reference read position biases. We did not use the InbreedingCoeff 

annotation, which is a likelihood-based Hardy-Weinberg test for the inbreeding among samples, because 
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of the possible deviation from Hardy-Weinberg equilibrium among the cohort due to substructure 

between ethno-linguistic groups and cryptic relatedness among individuals.   

We chose a truth sensitivity threshold based on the ROC curve (Figure S1d). We applied truth sensitivity 

thresholds of 99.5% and 99.0% to SNPs and indels, respectively. After variant filtering we called 

45,309,067 SNPs and 5,483,098 indels, respectively, across the UG2G and AGVP combined datasets. The 

Ti/Tv ratio was noted to be 2.2 and 1.9 for known and novel SNP variants with respect to dbSNP138, 

suggesting a high quality of calls. 

Following variant filtering, genotype refinement was carried out with Beagle v4.r1274 across all 

individuals. To evaluate the accuracy of variant calling we calculated the non-reference concordance for 

chromosome 20. Concordance was calculated by comparison to the GIAB/NIST reference/baseline calls 

for sample NA12878 (PMID 27578503). Prior to calculating the concordance the indels were left aligned 

and trimmed with bcftools norm.<http://samtools.github.io/bcftools/>. Concordance for 

SNPs and indels was noted to be 92% and 82%, respectively for SNPs, and indels for the GIAB sample. 

The script used to calculate the concordance is available 

from https://github.com/team149/tc9/blob/master/projects/uganda_gwas/co

ncordance.sh 

We carried out further quality control for analysis, for which additional samples were excluded as 

heterozygosity outliers (heterozygosity >=3 SD from mean).  Following quality control, 1,978 samples 

with WGS were included for analysis of sequence data.  

 

GENERATION OF MERGED REFERENCE PANEL 
 
To generate the reference panel for imputation, we phased combined data from the Uganda Genome 

Resource and 320 sequences from the African Genome Variation Project (Gurdasani D., 2014) . The 

merged reference panel was refined with Beagle4 and then phased with SHAPEIT2 release 790 using 

used an --effective-size of 17,469 as per the recommendations. These haplotypes were then merged 

with the 1000G phase III  database using the -merge_ref_panels_output_ref option with IMPUTE2. The 

final reference panel included 4,802 individuals and 98,608,172 variants. Following this, we extracted 

unrelated individuals from the reference panel. For this, we generated an IBD matrix from merged data 
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using an intersection of sites for sequence and genotyped data, and iteratively removed individuals, so 

that all individuals in the reference panel were related with an IBD<0.10.  

We used a subset of this reference panel for imputation into Ugandan and AGVP genotype sets to 

compare the accuracy of imputation using different panels. For this, we further extracted 3,895 

individuals unrelated to individuals in UGWAS and to other individuals in UG2G, to avoid bias in 

imputation accuracy due to inclusion of related individuals, and used this panel for imputation. 

PHASING, IMPUTATION AND FILTERING  
 

PHASING AND IMPUTATION 

Phasing and imputation into each study was carried out separately, except for DDS and DCC, which were 

combined for phasing and imputation, given the homogeneity of ancestry among these two studies. 

Following imputation, these studies were separated out for meta-analysis, as one group consisted 

primarily of a diabetic population, whereas DDS was a general population study.  

Imputation into the genotype data in UGR, DDS, DCC and AADM was carried out using the merged 

reference generated by merging whole genome sequence data from the African Genome Variation 

Project (n=320), the UG2G sequence resource (n=2,000), and the 1000 Genomes phase 3 project 

(n=2504), as outlined previously.   

Imputation for AADM was performed using the African Genome Resources Haplotype Reference 

Panel(Loh et al., 2016) available from the Sanger Imputation Service 

(https://imputation.sanger.ac.uk/); this is a more recent version of the panel described 

above, with the panel being curated by recalling genotype likelihoods across all samples, including from 

the 1000 Genomes Project Phase 3. The imputation reference panel comprised 4,956 individuals, 

including all 2,504 from the 1000 Genomes Project Phase 3, ~2,000 individuals from Uganda (Baganda, 

Banyarwanda, Barundi, and others), and ~100 individuals from each of a set of populations from Ethiopia 

(Gumuz, Wolayta, Amhara, Oromo, and Somali), Egypt, Namibia (Nama/Khoe-San) and South Africa 

(Zulu), yielding 9,912 haplotypes for 93,421,145 SNPs.  

For DDS, DCC and Uganda, phasing was carried out with SHAPEIT2(O'Connell et al., 2014) using default 

parameters, followed by imputation with IMPUTE2.(Howie et al., 2012) Pre-phasing for AADM was 

performed with EAGLE version 2.0.5 (Loh et al., 2016) and imputation was performed using 

PBWT.(Durbin, 2014)  
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FILTERING OF IMPUTED DATA 

UGANDA GENOME RESOURCE 

We used the info threshold output by IMPUTE2 to identify high quality variants. The info metric produced 

by IMPUTE2 is a measure of certainty of imputation. This typically takes values between 0 and 1. A value 

of 1 indicates that there is no uncertainty in the imputed genotypes whereas a value of 0 means that 

there is complete uncertainty about the genotypes. All of these measures can be interpreted in the 

context of effective sample size: an information measure of a on a sample of N individuals indicates that 

the amount of data at the imputed SNP is approximately equivalent to a set of perfectly observed 

genotype data in a sample size of axN. For SNPs overlapping between imputed and directly genotyped 

data (type 2 SNPs), we also used an r2 threshold for quality control. Here, r2 represents the squared 

correlation between the input genotypes and the best-guess imputed genotypes calculated, where the 

input genotypes at that SNP have been masked internally and then imputed as if the SNP were present 

in the reference set but not in the directly genotyped target sample 

(https://mathgen.stats.ox.ac.uk/impute/impute_v2.html).  

Following imputation, into the genotype data, we carried out sensitivity analyses using different filtering 

thresholds for the imputed data to ascertain whether different info thresholds were associated with 

varying degrees of inflation in quantile-quantile (QQ) plots. QQ plots were generated from GEMMA 

mixed model analysis and compared to see if inflation was related to the threshold. applied However, 

no relationship was seen between inflation factors and stringency for thresholds used in filtering of 

imputed data (data not shown), suggesting that the vast majority of data were high quality and a 

threshold of 0.3 was therefore considered adequate, and consistent with previous GWAS. 

We therefore opted to use an info score threshold of 0.3 for quality control. Furthermore, we also 

applied a threshold for type 2 SNPs (genotyped SNPs that are also in the imputation panel, and are also 

imputed, allowing an examination of correlation between genotyped and imputed data), requiring a 

minimum r2 of 0.60.  

DDS AND DCC 

Consistent with filtering of the UGR dataset, we used an imputation info threshold of 0.3 for filtering 

(this was used across both cohorts, as imputation had been carried out across these cohorts) and a type 

2 SNP correlation threshold of 0.6. GWAS analysis was carried out for each cohort separately, and a 
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minimum MAF threshold of 0.5% was applied to each cohort for analysis. A total of 24,419,014 and 

24,423,923 variants were analysed for DCC, and DDS respectively.  

AADM 

The AADM dataset is a combination of multiple ethno-linguistic groups, where imputation has been 

carried out separately. We did not have access to individual genotype data, or cohorts for analysis, but 

had results for summary statistics for analysis across all cohorts. We therefore applied an info threshold 

filter of 0.3 consistent with the other datasets. As these data include multiple cohorts that have been 

imputed separately, a minimum threshold of 0.3 across all cohorts was applied for each variant. Data 

regarding correlation for type 2 SNPs were not available for this cohort; therefore, this filter could not 

be applied. GWAS analysis was carried out only for SNPs with a MAF threshold above 0.5%, consistent 

with other cohorts.  A total of 19,580,546 variants were included in final analysis. 

MERGING UGR SEQUENCE AND GENOTYPING DATA 
 
As the Uganda Genome Resource included genotyped and sequenced indviduals, we merged imputed 

genotype and sequence data to create a single pooled dataset for analysis. We created a pooled dataset 

for analysis, rather than meta-analysing separately, as cryptic relatedness and family structure existed 

across the genotyped and sequence data, which would make data correlated, and not independent. As 

such, mixed model analysis, explicitly modelling this relatedness would be likely to provide more 

accurate results.  

Following a merger of imputed genotype and sequence data, we assessed and removed any systematic 

differences between imputed genotype data and sequence data. We did this by carrying out principal 

component analysis on these data to examine whether there was separation by data mode (imputed 

genotype data and sequenced data) among 343 individuals who had been genotyped and sequenced in 

duplicate. We noted clear separation of data points of genotype imputed and sequence data on PCA. 

We evaluated different thresholds of concordance between sequence and imputed genotype data for 

these 343 samples, filtering out SNPs that showed a concordance <0.80 and <0.90. We found that a 

minimum concordance threshold of 0.90 was required to abolish systematic effects observed between 

genotype array and sequence data on PCA. Following exclusion of 904,283 variants (2.3% of all variants) 

that showed <90% concordance in genotypes between the sequence and imputed genotype data (for 

343 samples that had been genotyped and sequence), PCAs did not show any systematic differences 
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between imputed genotype and sequence data. We inspected the first ten PCs to ensure that systematic 

differences did not represent an important axis of variation in the genetic data. Following filtering, a 

total of 39,312,112 autosomal markers in the joint set of 6,407 samples were taken forward for analyses. 

For GWAS association analyses, we only included a subset of variants (n=20,594,556) that met an MAF 

threshold of at least 0.5%.  

CURATION AND TRANSFORMATION OF PHENOTYPE DATA 
 
Transformation of traits was carried out uniformly for each cohort to make effect sizes comparable 

across cohorts, allowing meta-analyses of summary results.  A list of phenotypes used for analysis can 

be found in S1.2 and S1.3.  For association analysis, inverse normal transformation was carried out on 

residuals after regressing on age, age2 and sex. For HbA1c alone, regression was carried out on age, age2, 

sex & month of sample collection as an indicator variable, to allow for seasonal trends in HbA1C that 

have been described previously.(Tseng et al., 2005) 

Phenotypic trait information available across cohorts were variable, as shown in Table S1.3.  For each 

trait, all cohorts with relevant data on phenotype were included in the meta-analysis.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

ANALYSIS OF POPULATION STRUCTURE AND ADMIXTURE 
 

PRINCIPAL COMPONENT ANALYSIS 

To examine population structure in the Ugandan ethno-linguistic groups, we carried out principal 

component analyses (PCA) among 4,778 genotyped individuals (UGWAS). PCA was carried out in the 

Ugandan dataset among unrelated individuals, projecting onto others, as well as for unrelated 

individuals in a global context, including individuals from the 1000 Genomes Project,(Consortium, 2012) 

the African Genome Variation Project(Gurdasani D., 2014) and the Human Origins dataset (Table 

S1.4).(Patterson et al., 2012) For these analyses, only markers with a minor allele frequency (MAF) of 

above 1% were included, and LD pruning was carried out to an r2 threshold of 0.2 using PLINK.(Purcell et 

al., 2007) A summary of these datasets is provided in Table S1.4.  
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FINESTUCTURE ANALYSIS 
In order to take advantage of the linkage disequilibrium structure in the cohort, and the dense 

genotyping on the Illumina Omni 2.5M array, we carried out fineSTRUCTURE analysis, (Lawson et al., 

2012) which provides detailed information about structure among populations without loss of 

information due to LD pruning by identifying shared haplotypes among individual along the chromosome 

(with ChromoPainter), and estimating a co-ancestry matrix. This has previously been shown to produce 

more detailed information about population structure.(Lawson et al., 2012)  Only unrelated individuals 

were included in these analyses as relatedness itself can contribute to structure.  A total of 1,899 

unrelated individuals were identified by serially removing related individuals, until all individuals had a 

pairwise IBD of less than 0.10. Haplotype information was extracted for these individuals from phased 

data from the entire cohort, as phasing was likely to be more accurate due to relatedness within the 

cohort. Recombination files were generated from the Hapmap build 37 recombination map available for 

each chromosome.  

To input parameters into fineSTRUCTURE, for the analysis of unrelated individuals from UGWAS, we first 

estimated the mutation rate and effective population size, with a subset of 10 individuals (one in every 

200 individuals sampled) across all chromosomes. These parameters were then input into 

ChromoPainter, and a co-ancestry matrix was calculated for all individuals, with haplotypes of each 

individual sequentially considered as recipients, and haplotypes of all other individuals in the cohort 

considered donors (using the –a option). Hence, we were able to estimate the average number of 

chromosome chunks and chunk lengths that could be considered as donated to each individual from 

every other individual. Apart from quality filtering, no other filtering (LD pruning/MAF thresholds) was 

carried out, with a view to maximising information within the co-ancestry matrix. The co-ancestry matrix 

was used to generate trees of ethno-linguistic groups based on sharing of ancestry. Furthermore, we 

generated principal components from the co-ancestry matrix to study the relationships between these 

ethno-linguistic groups.  

First pass analyses showed several outliers belonging to the Baganda and Barundi ethno-linguistic groups 

on all principal components obtained (data not shown). On closer examination, these samples were 

noted to have much higher co-ancestry sharing with another sample in the cohort, and high 

heterozygosity, suggesting these were pairs of samples, with one contaminating another. We excluded 

6 samples, and reran fineSTRUCTURE analysis, as this element of contamination was predominating 
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many principal components. FineSTRUCTURE inferred PCs in our second pass analysis did not show the 

clines observed due to the few contaminated samples, so this was considered as our primary analysis.  

In addition to PCA analysis, we also inferred tree structure among the populations using the co-ancestry 

matrix generated by fineSTRUCTURE.  We also ran unsupervised fineSTRUCTURE analysis without ethno-

linguistic clusters, to infer population clusters from within the data, and assess the correlation of these 

inferred clusters with ethno-linguistic group, historical geographical structure, admixture, and current 

geographical coordinates (using GPS coordinates).  

CORRELATION OF GENETIC STRUCTURE WITH GEOGRAPHICAL STRUCTURE 
Next, we compared principal components to current GPS coordinates to identify if there was genetic 

correlation with current spatial structure in the cohort. We carried out Procrustes analysis on 

combinations of principal components and rotated this matrix and rescaled to best fit with the 

transformed GPS coordinates for individuals.  

 

In order to assess correlation between principal components and historical geographical structure prior 

to migration, we carried out Procrustes analysis using geographical coordinates based on the average 

coordinate of the centre of the region individuals are likely to have migrated from, as identified by their 

ethno-linguistic group, based on the map in Figure 1c. We considered that the migrant populations 

Basoga, Bakiga, Banyarwanda, Baganda, Barundi, Banyankole, Bafumbira migrated from the historical 

Soga, Kiga, Rwanda, Buganda, Urundi, Nkole, and Kisoro districts, respectively (Figure 1c).(Richards, 

1954) The latitude and longitude for each ethno-linguistic groups was assigned as the centre of each 

district as on the map (Figure 1c and Table S2.1). The same coordinate was used for all individuals 

belonging to a given ethno-linguistic group, as historical geographical origins of individuals were not 

available.  Additionally, admixture was not considered in this assignment. We note that admixture and 

migration among co-located migrant populations are likely to distort and dilute the association between 

genetic structure and historical geographical origins, producing conservative results.  

ANALYSES OF POPULATION ADMIXTURE 

We used several approaches to examine admixture among Ugandan populations, including unstructured 

ADMIXTURE analysis, in the Ugandan and in a global context. Additionally, we also formally confirmed 

the presence of historical Eurasian and hunter-gatherer admixture among several populations using 

different approaches, including admixture linkage disequilibrium based approaches (MALDER), (Pickrell 

et al., 2014) (Loh et al., 2013) f3, double conditioned site frequency spectrum analysis,(Yang et al., 2012) 
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analysis of Neanderthal ancestry(Sankararaman et al., 2014) and analysis of MT and Y chromosome 

haplotypes.  

 

ADMIXTURE ANALYSIS 

Clustering of genetic data from the Ugandan discovery cohort (UGWAS) was carried out using 

ADMIXTURE in the context of the global dataset, including data from the Human Origins array (Table 

S1.4). (Patterson et al., 2012)  Analysis was carried out specifiying K=2 to 20 clusters. ADMIXTURE 

analyses were repeated 20 times using a seed derived from the time of analysis, and results were 

combined using the LargeKGreedy algorithm in CLUMPP with 1000 repeats.(Jakobsson and Rosenberg, 

2007) LD pruning to an r2 of 0.2 was carried out prior to analysis, and known regions of long range LD 

were removed, as previously described.(Price et al., 2008)  

F3 TESTS 

We formally assessed admixture in the Ugandan populations among unrelated individuals from the 

genotyped dataset (UGWAS) using the f3 test. In order to examine Eurasian ancestry in AGVP 

populations, we tested a model with admixture between populations related to European/Middle 

Eastern populations and YRI by using these as reference populations testing the tree (European/Middle 

eastern population, YRI; X), X being each of the Ugandan ethno-linguistic groups. Here, Eurasian 

ancestry/gene flow refers to ancient gene flow from an ancestral population that is closely related to 

populations currently living in Western Europe. However, as it is difficult to identify the precise source 

of this ancestry, which may be the result of multiple population movements—including through Europe, 

the Middle-East, or from other parts of Africa, we shall henceforth broadly refer to this as ‘Eurasian gene 

flow/ancestry’. f3 tests are robust to complex ancestry in the admixing populations, ascertainment bias 

and the choice of reference populations, as has been described previously.(Patterson et al., 2012) The 

test statistic is negative if X has complex history and admixture from populations related to the reference 

populations, as this topology that would lead to a negative term in the f3 parameter. We note that results 

from these tests would be subject to the outgroup case, where the reference population is an outgroup 

to the true mixing population.  

LINKAGE DISEQUILIBRIUM BASED TESTS FOR ADMIXTURE 

In order to confirm the presence of admixture, and date this, we used admixture-LD based 

approaches.(Pickrell et al., 2014) This approach is based on the relationship between admixture-LD, time 
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since admixture and the difference in allelic frequency between SNPs in mixing populations. It leverages 

the fact that admixture LD between 2 SNPs weighted by difference in allelic frequency between two 

mixing populations decays exponentially as a function of time since admixture. The amplitude of the 

curve allows estimation of admixture proportions. We applied two methods that use similar principles 

of admixture LD decay for inferring admixture: MALDER(Pickrell et al., 2014, Loh et al., 2013) and 

GLOBETROTTER. (Hellenthal et al., 2014)   

 

Admixture inference with MALDER 

We assessed multiple admixture events and identified populations most similar to ancestral mixing 

populations for Ugandan populations, using methods described previously.(Pickrell et al., 2014) For 

these analyses, we estimated curves from a minimum distance of 0.5cM. We estimated the lower bound 

and upper bounds of the number of generations since admixture for each event, by assessing the rate 

of decay of each exponential curve. 

In addition to identifying multiple admixture events and most likely source populations using MALDER, 

(Pickrell et al., 2014, Loh et al., 2013) we assessed the probability of each Eurasian and HG-like admixture 

event by using a process similar to that described by Pickrell et al,(Pickrell, 2013) as described 

previously.(Gurdasani D., 2014) We recapitulate these methods here. 

We identified combination of source populations that were associated with the highest amplitude as the 

most likely representatives of ancestry within the target population (if Z>3). Where the highest 

amplitude of admixture LD in a target population was produced by the combination of Eurasian and 

African reference populations, we compared the highest amplitude with the highest amplitude produced 

when both reference populations had <1% Eurasian admixture, as reported previously.(Gurdasani D., 

2014) We calculated this as follows: 

𝑍"#$ =
𝐴𝑚𝑝)*+ − 𝐴𝑚𝑝)*+-./01%

3𝑆𝐸)*+6 +	𝑆𝐸)*+"#$01%6
 

𝑍"#$  represents the statistical difference between the highest amplitude and the highest amplitude 

when both populations have <1% Eurasian ancestry. Similarly, we estimated the probability of HG 

admixture when the highest amplitude included either a Khoe-San, Hadza or  rf-HG (Pygmy) population, 

as follows: 

𝑍9: =
𝐴𝑚𝑝)*+ − 𝐴𝑚𝑝)*+;<01%

3𝑆𝐸)*+6 +	𝑆𝐸)*+9:01%6
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where the proportion of HG admixture was estimated from ADMIXTURE analysis as the sum of Khoe-San 

and Pygmy like ancestry.   

For some populations, admixture events with the highest amplitude included both a hunter-gatherer 

(Khoe-San, Mbuti Pygmy or Hadza) and Eurasian population. For these we calculated the separate 

probability of HG and Eurasian admixture using the Z scores described above. The source of admixture 

was considered to be the population with a Z score of above 2. If both ZHG and ZEUR were >2, this was 

considered a dual admixture event where a HG-like population had admixed with a Eurasian-like 

population. When only one of these events were high probability, and the other one was low probability, 

this was considered an admixture event with a single source. We also note that MALDER can only indicate 

the source population most similar to the ancestral mixing population among a set of modern 

populations provided. However, gene flow may arise from an ancestral population with allele 

frequencies correlated to the source population inferred by MALDER. 

We note that, as described by Pickrell et al. – Supplementary Material 1.2.3 

(https://www.pnas.org/content/pnas/suppl/2014/01/29/1313787111.DCSupplemental/sapp.pdf) , 

MALDER is biased towards identifying source populations that are more drifted, even if they contribute 

little proportionally to ancestry.(Pickrell, 2013) This is because the drift parameter predominates over 

the proportion weight in this instance, favouring the most drifted population as the source population 

(this will have greatest amplitude in these scenarios). 

 

Admixture inference with GLOBETROTTER 

We also carried out GLOBETROTTER(Hellenthal et al., 2014) analysis to assess potential sources and 

dating of admixture among Ugandan populations. We included all individuals for all nine ethno-linguistic 

groups, except Baganda, where 200 individuals were randomly subsampled to make this analysis 

computationally tractable. We also examined admixture within Jola and LWK to assess specificity of 

events to Ugandan populations, and within East Africa. Consistent with previous applications of 

GLOBETROTTER,(Tambets et al., 2018, Hudjashov et al., 2017) we conducted our analyses in two ways: 

1) including all possible source populations within the Human-origins and 1000 Genomes combined 

dataset, including regional east African populations (‘all population’ analysis; and 2) including only a 

subset of donor populations representative of certain types of ancestry: YRI representing Bantu ancestry, 

TSI and CHB representing Eurasian ancestry; Dinka representing east African Nilo-Saharan ancestry, 
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Hadza, and rfHG (Mbuti Pygmy) representing east-African hunter-gatherer ancestry; and Juhoan_North 

representing Khoe-San ancestry. We refer to this analysis as ‘limited population’ analysis. The purpose 

of the limited population analysis was to help identify ancestral sources representative of certain types 

of ancestry, where the least admixed representative populations of these groups were used. While the 

‘all population’ analysis is the most informative with regards to admixture events, inferences drawn 

regarding ancestral components that mixed may be limited due to the admixed nature of donor 

populations. Hence, we analysed the data using these two approaches to better understand the 

ancestral populations representing source populations inferred as contributing to modern Ugandans.  

For each of the analyses described above (‘all population’ and ‘limited population’), a first run of 

fineSTRUCTURE was used to estimate a global mutation rate and effective population size. This was 

carried out on a subset of the dataset by randomly subsampling 1 in 10 individuals, for efficiency. The 

global mutation rate and effective population size estimated through ten iterations then input into a 

second run, to estimate the length of chunks copied from each donor population haplotype. The merged 

Ugandan, AGVP genotype African data, 1000 Genomes Project and Human origins dataset was used for 

these analysis (Table S1.4).  

For the ‘all population analysis’, a total of 87 populations were considered donors and 12 Ugandan 

ethno-linguistic groups, LWK and Jola were considered recipients. As mentioned, LWK was included to 

assess ancestral components and admixture specific to Uganda, and Jola, a West African population was 

included to assess events specific to East Africa.  For computational tractability, we randomly 

subsampled 25 individuals from all populations (and included all individuals when <25 individuals were 

in a population group. All donor populations were also allowed to be recipients in the algorithm, in line 

with the suggested mode of analysis for GLOBETROTTER. However, Ugandan populations, LWK and Jola 

were only considered recipients to avoid loss of power, in line with guidance for running GLOBETROTTER 

to identify admixture.  

For the ‘limited population’ analysis, only 7 donor populations were considered, as described above. The 

output across all chromosomes was combined with ChromoCombine, following which GLOBETROTTER 

was run to assess admixture among recipient populations, allowing for >2 donor populations, multiple 

events and dates of admixture.  We identified the source population and admixture events based on the 

‘best guess’ event inferred by GLOBETROTTER: these included three types of events – 1) one-way 

admixture involving a single event with two source populations; 2) multi-way admixture involving a 

single time point of admixture but with multiple source populations; and 3) multiple-dates events which 
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involved admixture at different time points with two source populations at each point. In order to better 

understand the ancestral components represented by source populations, we also extracted these 

source components from GLOBETROTTER output based on principal component analyses. For multiple 

events, bootstrapping could not be carried out to resolve confidence intervals (as this capability is not 

currently present in GLOBETROTTER); hence we have presented CIs only for MALDER analysis.  

DELINEATION OF EURASIAN ANCESTRY IN UGANDANS USING THE DOUBLE CONDITIONED SITE FREQUENCY SPECTRUM 

 

The results from f3, fineSTRUCTURE and MALDER may suggest gene flow, or shared ancestry with a 

population with Eurasian affinity. However, this does not confirm that this ancestry originated out of 

Africa, as an alternate hypothesis of gene flow from a population in East Africa with ancient substructure 

with Eurasians would also lead to similar results in these tests. In other words, statistically significant 

results in f3, and MALDER may result from allele sharing or gene flow from an ancestral population within 

Africa with allele frequencies correlated with modern European populations.  

 
Two possible models: Ancient structure and recent admixture 

In order to differentiate deep ancient structure in Ugandans with shared history with European 

populations from more recent shared ancestry due to gene flow, we used a method that has been 

previously used to examine affinity observed between European and Neanderthal genomes, and study 

the interrelationship between modern humans within Africa, out of Africa and Neanderthals.(Yang et al., 

2012) This method utilises a double conditioned site frequency spectrum (dcsfs), where the site 

frequency spectrum (sfs) in the population being examined is conditioned on alleles being derived in a 

random haplotype in one population, and ancestral in a random haplotype in another population.(Yang 

et al., 2012) 

We now apply this method to consider two models (Figure S5a and S5b): the ancient structure model 

within Africa, and the recent gene-flow model. The ancient structure model postulates that there were 

two or more deeply structured populations of hominins within Africa, with limited gene flow among 

them. The ancestors of modern day Eurasians originated from the same structured subpopulation from 

which modern day East Africans (in this case, Ugandans) arose. As a result of this, modern day Ugandans 

share a more recent common ancestor with modern day Eurasians, as compared with other modern day 

populations within Africa (e.g. West Africans) (Figure S5b). This would explain the correlation of allele 

frequencies observed between Ugandans and modern day Europeans on D statistics. We further 
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hypothesise that following the out-of-Africa migration that gave rise to modern Europeans and Asians, 

the gene flow between ancestors of modern Africans that share a more recent common ancestor with 

Europeans, and ancestors of other modern Africans would have made these modern African populations 

more similar to each other, than either is to Europeans.  

We also consider a second model: the recent gene flow model, which postulates that Ugandans arose 

from an African population that did not have more recent common ancestry with Eurasians compared 

with other African populations, and shared alleles observed with Europeans in D stastistics are a direct 

consequence of recent gene flow from Eurasian populations due to back migration into Africa (Figure 

S5a).  

The double conditioned site frequency spectrum (dcsfs) 

To examine these hypotheses, we calculate a site frequency spectrum (sfs) among Ugandans conditioned 

on alleles being derived in a random European haplotype, and ancestral in a random West African 

haplotype. Such a double-conditioned sfs is expected to be approximately uniform in the scenario of 

ancient structure, as has been shown previously.(Yang et al., 2012) In the event of recent gene flow, we 

would expect to see an excess of derived allele sharing with modern day Europeans due to the more 

recent shared common ancestry, producing an L shaped rather than flat curve. The exact shape of the 

curve is likely to be determined by the amount of admixture. We also carried out simulations to confirm 

this, and assess goodness of fit to observed data. It must be noted, however, that our observed derived 

sfs is based on low coverage data. Although we use methods to minimise bias associated with lower 

coverage, it is likely that the derived sfs may be biased towards less enrichment of rarer alleles. This 

would be likely to bias our inferences against the hypothesis of recent gene flow, as the sfs would appear 

more uniform.   

Assessment of the observed sfs among Ugandans 

In order to assess the two hypotheses, we first examined the shape of the observed dcsfs among 

Ugandans. We calculated a double conditioned site frequency spectrum (dcsfs) among 100 randomly 

sampled Ugandans. In order to condition the sfs, we first sampled one YRI and one French sample from 

the Simons Genome Diversity Project (SGDP). (https://www.simonsfoundation.org/life-

sciences/simons-genome-diversity-project-dataset/). As these data were unphased, 

we randomly sampled, one allele at each site for the YRI and French sample each. We used the human 

ancestral reference 
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(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_ance

stor_GRCh37_e59.tar.bz2) provided by the 1000 Genomes Project to assign alleles as ancestral 

or derived. We only used sites with high confidence (at least two alignments supporting the ancestral 

allele). We identified sites where the allele was derived in the French sample, and ancestral in the YRI 

sample. We note that although YRI has been shown to have small amounts of Eurasian ancestry, this 

would be unlikely to bias results, as this would only reduce the number of sites contributing to the dcsfs 

(ancestral in YRI and derived in the French sample), potentially reducing power slightly.(Prufer et al., 

2014)   

We then calculated the sfs for these sites in the Uganda sample. In order to minimize bias in calculation 

of sfs in our low coverage data, we used ANGSD,(Korneliussen et al., 2014) which uses a probabilistic 

estimation of sfs, using genotype likelihoods (GLs) at sites. This method directly estimates the sfs from 

sequencing data by first computing site allele frequency (SAF) likelihood for each site. In order to assess 

bias due to low coverage, we also re-calculated sfs in the sample of 100 Ugandans, including only sites 

with a minimum depth of 8 by specifying the  -setMinDepthInd 8 filter in ANGSD. This removes sites with 

a read depth<8 for each individual sample, so that sfs is only analysed among samples with adequate 

coverage at each site.  We used the GATK model to estimate genotype likelihoods within ANGSD. We did 

not find any differences n the sfs between low coverage sequence, and sequence data limited to high 

coverage regions, suggesting that the sfs estimated by ANGSD from low coverage data was unbiased. In 

both analyses, dcsfs appeared non-linear, with enrichment of derived alleles consistent with a recent 

admixture model, as we show subsequently. We present all results based on analysis of low coverage 

data in subsequent analyses. In order to assess whether the observed dcsfs was a better fit with the 

recent admixture model in comparison with the ancient structure model, we carried out simulations of 

different models, as we describe below. 

Simulation of dcsfs for ancient structure and recent admixture models 

Following estimation of sfs using ANGSD, we carried out several simulations to identify which population 

genetics model was the best fit to the observed data. We used the coalescent simulator ms(Hudson, 

2002) for simulation. The two models used in simulation are shown in Figure S5a and b. The various 

parameters used in simulation are shown in Table S3.3.  

We used the coalescent simulator ms to simulate models of recent admixture and ancient structure. We 

assumed an effective population size of N = 10,000 for European populations, and N= 20,000 for African 

populations, and a generation time of 25 years per generation.(Yang et al., 2012) We simulated 3 
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populations, using both these models. We refer to these as West Africans, East Africans and Europeans, 

given the current context. These represent two African populations, one of which may share a more 

recent common ancestor with Europeans (‘East Africans’) compared with another African population 

(‘West Africans’) in the ancient structure model. For the gene flow model, these represent African 

popualtions symmetrically related to Europeans, with a recent common ancestor ranging between 280-

800 generations ago.(Schiffels and Durbin, 2014) We generated 10,000 replicates of each model. In each 

replicate of both models, the simulated sample consisted of one European chromosome, one West 

African chromosome, and 200 East African haplotypes. 

In the recent admixture model, tN was set to 4,500 generations ago (112.5 kya).(Yang et al., 2012) 

Several values were assigned to f (0.03, 0.05, 0.07, 0.10, 0.15). tGF was varied between 10-100 

generations, consistent with results from MALDER. The parameter ranges for the simulations for both 

models are shown in Table S3.5. In the ancient structure model, T was varied between 4,600 generations 

and 5,000 ago, in steps of 200 generations. The intensity of ancient migration m was set to 4Nm ={0..20}. 

For both models, the population split time between YRI and the east-Africans (tH) was varied between 

280 to 800 generations ago, consistent with our MSMC analyses, and previous reports of divergence 

between YRI and LWK.(Schiffels and Durbin, 2014) 

For each model, a bottleneck reducing the effective size of the non-African populations by a factor of 

100 (b) for 100 generations was set to (tb) 2000 generations (50 kya).(Yang et al., 2012) We also 

considered ongoing symmetric gene flow between YRI and the East African population with rates 

4Nmt={1,5,10}. We simulated 100 fold population growth in Africans and non-Africans occurring 300-

820 generations ago. (20 generations before tH in each case).  

We also simulated a scenario of both ancient structure and admixture, and assessed differences in dcsfs 

with different proportions of gene flow.  

Given that parameters for models were approximates, and the true demographic history of several 

events in these populations are unknown, we simulated a range of values for each parameter, examining 

the impact on varying these parameters on the dcsfs. For the recent admixture model, we varied tH, tGF, 

f, mt and tG, varying each of these one at a time, keeping all other parameters constant. To assess 

variability in each parameter, we chose near mid-range values for the remaining parameters. The 

standard values chosen while assessing variability for each parameter were tH=0.01, 4Nmt=5, tGF=0.001, 

f=0.05, and tG=0.0105.  We also visually assessed the fit of each model to our observed dcsfs among 100 
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Ugandans.  Curves were smoothed using the smooth.spline function in R, checking visually, that the fit 

to individual values was good in each case.  

The following is the command line for implementing the recent admixture model using ms: 

ms  202 10000 -t 400 -I 3 1 1 200  -n 1 200 -n 3 200 -n 2 100 -m 1 3 $mt -m 3 1 $mt  -es $tgf 3 $p -ej $tgf 

4 2  -ej $th 3 1  -en  $tg 1 2 -en $tg 2 1  -en 0.05 2 0.01  -en 0.0525 2 1  -ej 0.112 1 2  

Here p=1-f  

Next, we simulated ancient structure, and examined the effects of varying various parameters, while 

keeping others fixed on the observed dcsfs in simulations. We varied th, mt, m, and T, one at a time, 

keeping all other parameters constant. The fixed parameters chosen were in the mid-range of all 

evaluated values. We used th=0.02, 4Nmt=5, 4Nm=4 and T=0.12 as the fixed parameters. The command 

line implemented in ms was as follows: 

ms  202 10000 -t 400 -I 3 1 1 200  -n 1 200 -n 3 200 -n 2 100  -m 3 1 $mt -m 1 3 $mt   -em $th 1 3 $m  -

em $th 3 1 $m  -en  $tg 1 2 -en $tg 3 2 -en $tg 2 1  -en 0.05 2 0.01  -en 0.0525 2 1  -ej 0.112 2 3 -ej $t 3 1 

We also simulated a model of ancient structure with recent admixture. As we did not see any variation 

in simulation sfs by varying different parameters, except with variation of proportion of gene flow in the 

recent admixture model, we fixed the remaining parameters (th=0.01, 4Nmt=5, 4Nm=5, t=0.12, tGF=0.001 

and tG=0.0105). We varied the proportion of gene flow per generation (f) from 5-15%.   

The command line used to generate these simulations was as follows: 

ms  202 10000 -t 400 -I 3 1 1 200  -n 1 200 -n 3 200 -n 2 100  -m 3 1 $mt -m 1 3 $mt -es $tgf 3 $p -ej $tgf 

4 2   -em $th 1 3 $m  -em $th 3 1 $m  -en  $tg 1 2 -en $tg 3 2 -en $tg 2 1  -en 0.05 2 0.01  -en 0.0525 2 1  

-ej 0.112 2 3 -ej $t 3 1 

Assessment of fit of simulated models to observed data 

In addition to visual assessment of fit of simulated data to the observed dcsfs among Ugandans, we 

assessed the relative statistical fit of various models by examining differences in squared errors between 

each model and observed data. For this, we calculated error terms for each model (models 1 and 2) in 

relation to the observed data for each point (smoothed). We then calculated the sum of differences in 

squared errors across all points as follows: 

𝐷> = 𝑒6>6 − 𝑒1>6  

, where emi
2 is the squared error term for model m at point i. We then calculated a Z score for S being 

different from 0 as follows: 

𝑍 =
𝑚𝑒𝑎𝑛(𝐷)
𝑆𝐸(𝐷)  
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, where 

𝑆𝐸(𝐷) =
𝜎
√𝑛

 

Here, s is the standard deviation of differences in squared error terms between models. The Z score 

here is indicative of whether one model shows a better fit to observed data compared to another. A 

positive Z score would indicate that model 1 is better than model 2 as the mean difference in squared 

error terms is positive. We calculated 2 sided p values for the Z score. We used a p value threshold of  

<0.005 to define statistical significance (corrected for 10 tests).  

NEANDERTHAL ANCESTRY AMONG UGANDANS 

To better understand the source of Eurasian-like ancestry in modern Ugandans, we examined whether 

Neanderthal ancestry could be detected in these populations. The presence of Neanderthal ancestry in 

Uganda would suggest that at least some of the Eurasian-like ancestry entered Uganda though back-to-

Africa migrations, as one would not expect to otherwise observe Neanderthal ancestry within Africans. 

Given the likely small proportion of Neanderthal ancestry among Ugandans, in the event of ancient 

Eurasian admixture, we used a Conditional Random Field (CRF) to identify potential sites of admixture 

among 100 randomly selected Ugandans. The CRF model developed by Sankararaman et 

al.(Sankararaman et al., 2014) identifies Neanderthal ancestry among samples using the following three 

features of variation at a given site: the model prioritises 1) sites at which a panel of sub-Saharan-African 

individuals (YRI, in this case) carry the ancestral allele and in which the sequenced Neanderthal and the 

test haplotype carry the derived allele, 2) genomic segments in which the divergence of the test 

haplotype to the sequenced Neanderthal is low, whereas the divergence to a panel of sub-Saharan-

African individuals (YRI, in this case) is high; and 3) segments that have a length consistent with what is 

expected from Neanderthal-to-modern-human gene flow approximately 2,000 generations ago, 

corresponding to a size of about 0.05 cM = (100 cM per Morgan)/(2,000 generations). Although the CRF 

model was originally trained for detecting Neanderthal ancestry among non-Africans, it is possible that 

the model may function reasonably well in inferring high confidence Neanderthal ancestral regions in 

the genome, if stringent probability thresholds are used, as opposed to marginal probabilities which may 

not be as accurate (in correspondence with Sankararaman S). We therefore evaluated the model in 

simulated data prior to running this on Ugandan sequence data.  

Simulation analysis 

We simulated European ancestry in an African population among 50 haplotypes for chromosome 10, at 

different proportions and different time points. We used the method used previously by Price et al.(Price 
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et al., 2009) In brief, we simulated 50 admixed haplotypes (chromosome 10 only) from the 198 Esan 

(ESN) and 198 CEU haplotypes. To construct each admixed genome, we randomly sampled an ESN and 

CEU haplotype to simulate admixture. Sampling was carried out without replacement, so each admixed 

genome had unique ESN and CEU ancestral haplotypes. To construct an admixed genome, we began at 

the first marker on chromosome 10 and sampled CEU ancestry with probability p and ESN ancestry with 

probability 1-p. We simulated recombination with a probability of 1-e-lg , where l is the number of 

generations in the past when admixture occurred, and g is the genetic distance in Morgans between 

sites. At each recombination event, we resampled CEU probability p and ESN ancestry with probability 

1-p. For each individual, we chose a value of p by sampling from a beta distribution with mean p and 

standard deviation s.  We simulated admixture 10 and 100 generations ago (in keeping with results from 

MALDER which inferred two events of gene flow into Ugandans, at approximately these time points), 

with p=0.10, and s=0.02. Pairs of haploid admixed individuals were merged to form 25 diploid admixed 

individuals. We then ran CRF to identify segments of Neanderthal ancestry among these individuals on 

chromosome 10. As we simulated European ancestry among Africans, true segments of Neanderthal 

ancestry were not known in the simulated data. However, as Neanderthal segments of ancestry were 

likely to lie within European ancestral segments, we examined overlap of inferred Neanderthal segments 

with European simulated segments. Additionally, a map of Neanderthal ancestry among Europeans and 

Asians in the 1000 Genomes project has been published.(Sankararaman et al., 2014) We compared the 

regions of inferred Neanderthal ancestry to this map, as most regions would be expected to lie within 

these segments. We also carried out permutation analysis (1000 permutations), permuting random 

segments of the genome of the same length as inferred segments to calculate the statistical significance 

of overlap with European segments in our simulated data, and overlap with current maps of Neanderthal 

ancestry among Eurasians.  CRF inference of Neanderthal ancestry was carried out using default 

parameters, and 100 YRI individuals, and 1 Altai Neanderthal as reference populations. Sites with >0.90 

probability of Neanderthal ancestry were inferred as Neanderthal. 

Direct assessment of Neanderthal ancestry among Ugandans 

Following validation of this approach in simulated data, we used CRF to identify segments of Neanderthal 

ancestry in real sequence data in a random sample of 100 Ugandans on chromosome 10. We identified 

regions of Eurasian ancestry in the same samples using fineSTRUCTURE(Lawson et al., 2012) on low 

coverage sequence data for the same samples. We first estimated parameters for fineSTRUCTURE on 

this sample set using the -i 20 -in -im –ip flags in ChromoPainter. This was carried across 425 chunks of 
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the genome, and parameters were calculated using ChromoCombine. We next ran ChromoPainter with 

parameters estimated, using 216 YRI, 198 CEU and 206 CHB donor haplotypes. The Ugandan haplotypes 

were recipient haplotypes and were painted based on these donor haplotypes. The Hapmap 

recombination map was used to provide information regarding recombination rates/bp. Ancestry was 

inferred on haplotypes, and then combined across two haplotypes for each individual to make this 

comparable with CRF output, which provides diploid ancestral inference.  

Distribution of introgressed Neanderthal segments 

We assessed the distribution of inferred Neandethal ancestry among Ugandans with respect to Eurasian 

ancestral segements in these genomes, as well as known maps of Neanderthal ancestry among 

Eurasians. Eurasian ancestry was inferred as the sum of CEU and CHB ancestry >0.90 within a haplotype.  

Background selection in inferred tracts of Neanderthal ancestry 

To help provide additional evidence for accurate inference of Neanderthal ancestry among Ugandans, 

we assessed background selection in regions of inferred Neanderthal ancestry. Previous work has 

suggested that tracts of Neanderthal ancestry are depleted in functionally important regions in the 

genome, and have suggested that collectively, regions which carry Neanderthal ancestry in modern 

humans are less likely to be under purifying selection.(Sankararaman et al., 2014) We examined this 

using the B statistic,(McVicker et al., 2009) which is likely to be lower in regions of purifying selection. 

We hypothesised that true regions of Neanderthal ancestry would have significantly higher B statistics, 

as compared to random regions of the genome, as has been shown before.(Sankararaman et al., 2014) 

We compared the B score distribution across inferred regions of Neanderthal ancestry with an empirical 

distribution of B statistics generated by 1000 permutations where we sampled an equivalent number of 

sites, with the same segment length per site across the genome.  

EXAMINATION OF ADMIXTURE USING UNIPARENTAL MARKER 

To further examine admixture in the Ugandan population, we examined possible signatures of Eurasian 

admixture among uniparental markers. Since uniparental markers (mitochondrial DNA and the Y 

chromosome in males) do not undergo recombination from generation to generation, examining these 

provides an alternative strategy to identify Eurasian admixture. It must be noted that absence of 

haplotypes from ancestral admixing populations do not necessarily suggest the absence of admixture, 

as drift or purifying selection can eliminate such haplotypes, given enough time.(Serre et al., 2004) 
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Mitochondrial DNA analysis 

We reconstructed the mitochondrial genomes of 1,978 UG2G and 2,535 1000 Genomes phase III samples 

using a majority/consensus rule caller, i.e. calling the most frequent base at each site. We did not 

consider insertions or deletions and required a minimum depth of coverage (DP) of 5 and a minimum 

base quality of 30. We generated a gVCF file for each of the genomes and predicted their mitochondrial 

haplogroups using Haplogrep(Kloss-Brandstatter et al., 2011) which relies on PhyloTree build 17.(van 

Oven and Kayser, 2009) 

To reconstruct the evolutionary history of UG2G and 1000 Genomes mitochondrial genomes, we aligned 

the UG2G and 1000 Genomes mitochondrial genomes (n=4,513) using Mafft (v7.222) and reconstructed 

the phylogenetic tree using the BioNJ method(Gascuel, 1997) implemented in Seaview v4.5.4(Gouy et 

al., 2010); distances were calculated with the Jukes-Cantor model. Similar results were obtained with a 

maximum likelihood tree reconstruction approach (results not shown) 

Y-haplogroups in the Uganda genome resource  

We examined Y chromosomal haplogroups to assess possible admixture within the Ugandan cohort. The 

prediction of Y haplogroups is harder than the prediction of mitochondrial haplogroups because the 

sequencing coverage for the mitochondrial genome is much higher than for the nuclear genome. With 

low coverage sequencing data, probabilistic methods like YFitter (http://arxiv.org/abs/1407.7988) are 

particularly appropriate. Instead of calling variants, YFitter analyses genotype likelihoods, and it does so 

for a set of 439 marker sites that discriminate the known Y haplogroups (Karafet).(Karafet et al., 2008) 

YFitter selects the haplogroup that best fits the data and also provides estimates of uncertainty. 

We obtained YFitter predictions for 829 UG2G and 1,244 1000 Genomes Project males. To assess the 

reliability of the haplogroup assignments we built a phylogenetic tree using the 439 sites used by YFitter. 

To call these sites we required a minimum depth of 1 and a minimum base quality of 30. We 

reconstructed the phylogenetic tree with different methods (neighbour joining and maximum likelihood) 

consistently obtaining topologies consistent with YFitter haplogroup predictions, suggesting these 

topologies are robust.  

 
DECONVOLUTION OF ADMIXTURE IN UGANDA USING ANCIENT POPULATIONS 

In order to understand complex admixture within Ugandan populations and identify source populations 

most closely representing ancestry in Uganda, we examined a combination of modern and ancient 

African and non-African data.  
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Curation of ancient and modern genomic data 

We merged data including several ancient East African and South African genomes (Skoglund et 

al.)(Skoglund et al., 2017) with Eurasian ancient genomes(Lazaridis et al., 2016) and the Human origins 

array.(Lazaridis et al., 2016) In order to maximise power, we included sequence data from 1,978 

Ugandans, and sequence data for Dinka (Simons Genome Diversity Project)(Mallick et al., 2016) 

extracted across the sites enriched for in the 1240K capture (Skoglund et al.).(Skoglund et al., 2017) In 

order to minimise ascertainment bias, we used Ugandan sequence data on 2,100 individuals called and 

refined across the Ugandan and 1000 Genomes Project phase 3(Consortium, 2015a) and AGVP 

panel.(Gurdasani D., 2014) We subsequently removed all related individuals (IBD>0.10), and included a 

final set of 1,154 Ugandans (893 Baganda, 130 Banyarwanda, 27 Banyankole, 26 Barundi, 42 Rwandese 

Ugandans, 19 Bakiga, 7 Batanzania, 7 Basoga, and 3 Batooro). We only included transversions 

(n=228,656) in our analyses to minimise bias due to ancient DNA damage. 

 

Three distinct streams of ancestry in Ugandan populations 

We first used qpwave (ADMIXTOOLS)(Patterson et al., 2012) to estimate the number of distinct streams 

of ancestry in modern Ugandans. For these analyses, we used 19 populations as global outgroups, as 

previously outlined,(Skoglund et al., 2017) including Mbuti, Dinka, Mende, South_Africa_2000BP, 

Tanzania_Luxmanda_3100BP, Ethiopia_4500BP (Mota), Levant_Neolithic, Anatolia_Neolithic, 

Iran_Neolithic, Denisova, WHG, Ust_Ishim, Georgian, Iranian, Greek, Punjabi, Orcadian, Ami, and Mixe.  

In this context, Ethiopia_4500BP/Mota represents East African hunter-gatherer ancestry,(Gallego 

Llorente et al., 2015) the Mbuti represent central African rainforest hunter-gatherer ancestry, and  

Tanzania_ Luxmanda_3100BP represents an early pastoralist lineage from eastern Africa.(Skoglund et 

al., 2017) Dinka represents modern Nilotic speakers in East Africa.  Consistent with previous approaches, 

we rejected a model if p<0.01 for the rank of a given matrix.(Skoglund et al., 2017) If the rank of a matrix 

was not rejected (p>0.01), we considered the number of streams of ancestry as rank+1. 

 

We then successively removed ethnolinguistic groups to identify whether distinct streams could be 

localised to specific ethno-linguistic groups. Given the identified clade structure in fineSTRUCTURE 

(Figure 1), we removed populations in the order of clades identified.  
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Delineation of source populations of complex admixture in Uganda 

In order to further understand the sources of ancestry among these populations, we used 

qpAdm.(Patterson et al., 2012) QpAdm tests whether the ancestral components in a given target 

population can be explained by ancestral components contributed by pre-specified source populations, 

and then estimates the ancestral components contributed by source-like populations. QpAdm first tests 

whether inclusion of a target population to a set of source populations adds an additional stream of 

ancestry (increases rank of f4 statistics matrix by one). If the ancestry in the target population is fully 

represented among source populations, one would expect the number of streams inferred to remain 

constant, even with addition of the target population, as these streams are already represented in the 

source populations. Following this, it uses a matrix f4 statistics calculated of the form (target; sourcen; 

outgroup1, outgroupm) to infer admixture proportions, where n source populations are included along 

with the target population on the left, and m outgroup populations are included on the right. Negatively 

inferred proportions suggest that the model is incorrect.  

 

In order to examine the sources of ancestry among Ugandan populations, we used the approach 

described previously by Skoglund et al,(Skoglund et al., 2017) first examining single source admixture, 

dual source admixture, and three sources of admixture, when  single and dual admixture models did not 

fit for a given target populations. We moved outgroup populations from the right to the left population 

set in turn to assess whether these fit as source populations.  

 

We examined a subset of outgroup populations as source populations; these included Mende, Mbuti, 

Dinka, Ethiopia_4500BP (Mota), Tanzania_Luxmanda_3000BP, South_Africa_2000BP, Anatolia_N, 

Levant_N, Iran_N and Orcadian.  

 

Sensitivity analyses to identify appropriate source and outgroup populations 

Given the recent identification of basal admixture in West African Bantu populations,(Skoglund et al., 

2017) we first evaluated whether these would provide appropriate source populations to represent 

bantu-like ancestry in East Africans.  We first evaluated the presence of basal ancestry in Ugandans 

relative to Mende, and Yoruba.  
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Asymmetry of East and West African populations with ancient South Africans  

In order to evaluate possible basal ancestry within Uganda, we carried out F4 tests of the form (chimp, 

South_Africa_2000BP; Mende/YRI, X), where X is a Ugandan population. We find asymmetry in test 

statistics f4(chimp, South_Africa_2000BP; Mende, X) and f4(chimp, South_Africa_2000BP; Yoruba, X) 

(Table S3.10), suggesting possibly higher levels of basal ancestry in Mende and Yoruba relative to 

Uganda. Another explanation for this asymmetry may be low levels of Hadza-like admixture in Uganda 

(Hadza is thought to be related to Khoe-San populations in South Africa). F4 statistics of the form (chimp, 

South_Africa_2000BP; Mota, X) did not show any asymmetry and were consistent with ancient South 

Africans being an outgroup to Mota and Ugandans, suggesting either no basal ancestry among these 

populations, or similar proportions of this ancestry.  

 

Subsequent sensitivity analyses suggested that Mende provided poor representation of Bantu-like 

ancestry in Uganda. Given the possibly lower basal ancestry observed in West African populations, we 

considered inclusion of an East African ancient Bantu-like source population to represent bantu-like 

ancestry in modern Ugandans. Tanzania_Pemba_700BP is an ancient East African sample represented 

most closely by Bantu ancestry in West Africans, as previously reported.(Skoglund et al., 2017) However, 

our tests suggest that this sample is symmetrical to Ugandans with respect to ancient South Africans, 

potentially making this more appropriate as a source population for East African Bantu ancestry. We 

therefore included 11 source populations in our analyses of admixture in Ugandans. We therefore tested 

11 single sources of admixture, (11, 2)=55 dual admixture models, and (11,3)=165 three-way models of 

admixture for each of the nine ethno-linguistic groups.  

 

Rf-HGs may have admixture from a Uganda-like East African population 

QpWave and qpAdm analyses assume there is no post-admixture gene flow between left and right 

populations.  Although rf-HG (Mbuti) and Dinka have generally been considered unadmixed, and has 

been previously used as a right sided population to assess admixture in modern East African populations, 

we formally assessed admixture in Mbuti rf-HGs and Dinka. We therefore carried out ALDER analysis to 

assess whether Ugandan population related gene flow was observed in East African right sided 

populations (Mbuti and Dinka). We found evidence suggestive of Uganda-like ancestry in Mbuti  rf-HGs 

(Baganda as reference, Z=18.4). We therefore carried out two sets of sensitivity analyses with qpAdm, 

including and excluding Mbuti as a right sided population (although this was assessed as a left sided 



	 53 

source population for all target populations). Although results were broadly similar, populations most 

representative of ancestry in Ugandans were found to be different in some cases; we therefore present 

both sets of results, with Mbuti excluded from right sided populations as the primary set of results.  

 

INFERENCE OF DEMOGRAPHIC HISTORY FROM HIGH COVERAGE GENOME SEQUENCES 

We explored the demographic history of the Ugandan population in relation to other African and global 

populations. In order to study this, we used the multiple sequentially Markovian coalescent model 

(MSMC2)(Schiffels and Durbin, 2014) to estimate the population size history of the Ugandans using a 

high coverage (30x) trio sequenced from the Baganda population. The trio was sequenced with paired 

end sequencing on the Hiseq 2000 platform. Aligment was carried out to the 1000Genomes_hs37d5 

reference with bwa aln. Duplicates were marked with Picard, following which re-aligment around indels 

was carried out with GATK. SNPs were called, and mask files were generated for each sample using 

samtools with the command: 

samtools mpileup -q 20 -Q 20 -C 50 -u –r <chrx> -f <ref.fasta> <sample.bam> | bcftools call -c -V indels | ./msmc-

tools/bamCaller.py <mean_coverage> sample_mask_chrx.bed.gz 

Input files were generated using scripts provided in the MSMC2 tutorial, the mask files generated with 

the above command, and additional mappability mask files downloaded from 

https://oc.gnz.mpg.de/owncloud/index.php/s/RNQAkHcNiXZz2fd. These masks 

include all regions across the genome for each chromosome where reads from short read sequence data 

can be uniquely mapped.  

1000 Genomes high coverage sequence data available were also processed in the same way as described 

above for a CEU trio, one high coverage LWK sample, a YRI trio and samples from GWD, ESN and MSL 

populations (Table S1.6). We used PCR-free samples, where available. Mapped bams were downloaded 

from the 1000 Genomes home page, and processed in the same way as the Ugandan samples for 

consistency.   

For samples that belonged to trios, trio based phasing was carried out, as implemented in msmc-tools. 

Reference based statistical phasing was carried out for unrelated samples that did not belong to trios. 

SHAPEIT2 r790 was used for phasing of these samples using a merged reference panel combining 1000 

Genomes Project phase3, AGVP populations, and the Uganda GWAS dataset (see Method Details). For 

phasing, only sites within the reference panel were included. These phased sites were then merged back 
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into the original calls using run_shapeit.sh from msmc-tools, leaving non-phased sites as ambigiously 

phased, as described in the MSMC2 tutorial (https://github.com/stschiff/msmc-tools). 

As only two LWK haplotypes were available in the high coverage 1000 Genomes sequence data, we also 

examined high coverage whole-genome sequences generated by Complete Genomics(Drmanac et al., 

2010) with a larger sample of LWK haplotypes (Table S1.7a). We also analysed data from corresponding 

Europeans (CEU) and Africans (YRI) from these data for comparability with results from the 1000 

Genomes sequence data(Table S1.7b).  Complete Genomics data were called using msmc-tools 

./cgCaller.py, calling the consensus sequence from the  masterVarBeta file. YRI and CEU samples were 

part of trios, and were phased as such, while LWK were phased using reference data, as described 

previously. 

We estimated the effective population size over time of all popualtions using MSMC2, as well as split 

times between Uganda and other populations by estimation of the cross-coalescence rate (CCR) with 

MSMC2. We implemented MSMC2 on 4 haplotypes from every population, except for LWK, ESN, MSL 

and GWD from the 1000 Genomes dataset, where only 2 haplotypes were available for analysis for each 

population. For all initial analyses, we specified 32 time segments -p 1*2+25*1+1*2+1*3. We excluded 

ambiguous sites from analyses for estimation of cross-coalescence rates. Inclusion or exclusion of 

ambiguously phased sites did not appear to impact estimation of effective population sizes. Here, we 

present all results estimated with exclusion of ambiguously phased sites, as recommended. We used a 

generation time of 30 years and a rate of 1.25 x 10-8 mutations per nucleotide per generation for 

estimation of coalescence rates. We also conducted sensitivity analyses to assess the impact of different 

modes of phasing on split times estimated by MSMC2, assessing more recent population growth my 

finer-scale parametrisation of segments, using the option -p 27*1+1*2+1*3 with MSMC2, allowing 

parameters to be different in the leftmost 27 time segments (of 32 time segments in total) (Table S1.7c) 

and (-p 30*1+1*20), examining population history and finer scale.  

 
To examine split times between Ugandans and other populations we used MSMC2 estimation of cross-

coalesence rates and considered splits to have occurred when gene flow between the populations 

dropped to below 50%. We examined cross-coalescence between Uganda and other African populations 

in the 1000 Genomes high coverage data, and the Complete Genomics dataset (Table S1.6 and Table 

S1.7).  
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Previous studies have that suggested that phasing inaccuracies can lead to split times being biased and 

appearing more recent in comparison with experimentally phased data on samples.(Song S, 2014) We, 

therefore also examined the robustness of dating of cross-coalescence to errors in statistical phasing. In 

order to examine the impact of reference based phasing on results, we re-analysed the Uganda-YRI CCR, 

using reference panel guided phasing for Uganda, and YRI from both the 1000 Genomes Project data 

and Complete Genomics data. We used trio phasing as the gold standard in this context, and compared 

results to results obtained with trio phased data.  

SHARING OF F2 VARIANTS AND ESTIMATION OF DATES OF SHARED VARIANTS BETWEEN UGANDA AND 
OTHER POPULATIONS 

To better understand recent population history among Ugandan populations, and between Ugandan 

populations and others, we examined f2 variation in our sequence data combined with the AGVP and 

the 1000 Genomes Project phase 3 dataset. Curation of this merged dataset is detailed in Methods 

Details. The number of individuals in each population group is provided in Table S1.5. F2 variants are 

variants that occur only two times in a dataset, in two different individuals. Examining such rare variants 

can provide important information about recent population history as well as population demography, 

recent bottlenecks, ancient splits, and relationships between populations. As dating of haplotypes 

shared within and between populations would provide important insights into split times among 

populations, we sought to date haplotypes around f2 variation as has been described previously. 

(Mathieson and McVean, 2014) 

To explore population relationships, we first examined sharing of f2 variants among populations. Our 

large sample of WGS allowed us to examine very rare variants, and hence more recent population history 

among these populations. Given the differences in numbers of samples from each population, inferences 

about f2 variant sharing are likely to be biased, with f2 variants from large populations likely to be rarer 

than f2 variants in a smaller number of individuals. We examined f2 variants in a set of combined 

sequences including UG2G, AGVP and 1000 Genomes Phase III sequence (N=3,895) (Table S1.5). 

Although we ascertained f2 variants across the entire sample set of 3,895 individuals, we subsequently 

subsampled 40 haplotypes from each population 100 times and calculated the mean number of shared 

f2 variants. These were then normalised by the total number of f2 variants existing in each population.  

We further explored these f2 variants by defining the extent (length) of haplotypes around these, and 

estimating most likely dates in generations of each haplotype using a maximum likelihood approach 

described by Mathieson et al.(Mathieson and McVean, 2014) We removed low complexity regions of 
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sequence as defined by the 1000 Genomes Project, as described previously.(Consortium, 2015a) We 

defined the extent of haplotypes by scanning along the genome on both sides until homozygote 

inconsistencies were observed between individuals. We used the HapMap recombination map to 

estimate haplotype length. We used an estimate of power of 0.60 for singleton discovery for these data, 

and a mutation rate of 1.2e-08 for our analyses.  

We observed a total of 12,477,686 f2 variants in our dataset belonging to 9,875,361 f2 haplotypes. Given 

our ascertainment of f2 variants in a sample size comprising largely Ugandans, we expect f2 variation 

within Ugandans to be more recent than within other populations; therefore, we decided only to focus 

on the relationship of f2 variation between Ugandan and other populations, as this is likely to be 

relatively unbiased. We compared the relationship of Baganda to other Ugandan and 1000 Genomes 

Project and AGVP populations by examining the dating of shared f2 variants between Baganda and other 

population groups.  

We first examined sharing of f2 variation between European and African populations. We observe old 

sharing of f2 variation between African and European populations (median f2 sharing between YRI and 

Europe ~51,000 ya), (Figure S3b) consistent with previous reports,(Mathieson and McVean, 2014) and 

with known divergence times between these populations.  Compared with other African populations, f2 

sharing between Baganda and European populations was noted to be more recent (median f2 sharing= 

19,500 ya). We hypothesised that this might be due to greater Eurasian admixture in Uganda, compared 

with YRI. However, this might also reflect ascertainment of f2 variants in a large sample of Ugandans, 

resulting in these being more recent. However, we found that median shared f2 dating between LWK-

Europe was more recent than between YRI-Europe, with sharing between Ethiopian populations and 

Europe being even more recent (in spite of the small sample size of these populations) (Figure S3b), 

strongly suggesting that recent dating was a consequence of Eurasian gene flow. This is consistent with 

possible gene flow from Europe into Uganda as a result of back migration.  

ANALYSIS OF MUTATIONAL SPECTRUM IN UGR 

COMPARISON OF DIVERSITY WITH OTHER LOW COVERAGE WGS RESOURCES 

We compared the variants (SNPs and Indels) discovered with UG2G with discovery within global low 

coverage sequencing datasets, including the 1000 Genomes Project Phase 3, sequence data on 320 

individuals from the African Genome Variation Project, and the UK10K cohorts. It must be noted that 

average coverage for the 1000 Genomes Project and the UK10K cohorts was higher than for UG2G 
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(average coverage 7x, 6x and 4x, respectivelyu).  We also compared the variants discovered in UG2G 

with those in the GnoMAD database. To better characterise individual level variation, we examined the 

number of variants per individual within each of these datasets to examine diversity at individual level. 

In order to examine the spectrum of variation, and compare this with other resources, we compared 

variation in a random sample of 379 unrelated Ugandans with an equal number of European individuals 

(n=379) from the 1000 Genomes Project, which has more comparable depth of coverage. For this 

comparison, we excluded target exonic regions sequenced to higher depth in the 1000 Genomes project, 

for consistency.  

 In order to compare diversity among African populations, we examined heterozygosity among different 

Ugandan populations in the context of AGVP.  

To assess the influence of sample size of the resource on discovery of variants, we performed 

subsampling of individuals in incremental steps. This provides a direct observation of the variant 

discovery in large sampling projects, and provides useful information for future large-scale sequencing 

endeavours in African populations. We also compared gains in discovery as a function of sample size 

between UG2G and the UK10K ALSPAC data. For homogeneity in the analysis, for analysis within UG2G, 

we analysed the Baganda population only, for which we sequenced 1,549 individuals. We picked 

randomly a combination of individuals for each sample size and calculated the number of variants in 

each combination. Then we averaged the number of variants in intervals of 10 additional samples to 

reduce the effect of chance on sampling. We carried out similar analyses with the same sample sizes in 

UK10K ALSPAC data.  

FUNCTIONAL VARIATION IN UG2G  

In order to understand the relative distribution of functional variants in UG2G, we examined the 

spectrum of these variants in this cohort, and compared putatively functional variants in UG2G with 

other European cohorts.   

In order to understand the burden of these mutations among individuals in our cohort, we assessed the 

spectrum of the annotations given in the Human Gene Mutation Database (HGMD)(Stenson et al., 2003) 

in relation to our sequence data (Figure 3). We specifically studied the burden of the most deleterious 

variants according to the HGMD annotations, namely the DM (disease-causing mutations), counting the 

number of DM alleles per individual. We also examined the frequency of ClinVar mutations of clinical 

significance (clinical significance=5).   As DMs are likely to be rare, they may be underestimated in the 

Ugandan cohort due to low-coverage sequencing leading to under-calling of rare variation. We assessed 
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this by comparing estimated DMs in three high coverage sequence (30x) samples belonging to a Ugandan 

trio, with the DM calls for the same samples from the low coverage sequence data.  The sensitivity of 

detection of DMs in these samples was 94% and the specificity is 91%. Additionally, the mean number 

of DMs detected by high and low coverage data in these three samples were very similar (33 and 34, 

respectively), thus validating our DM discovery.  

We also validated our DM discovery by using ANGSD, a method that accounts As an account for genotype 

calling biases in low coverage.(Korneliussen et al., 2014) The approach implemented in ANGSD has been 

shown to produce accurate site frequency spectra even in low coverage data.(Han et al., 2014) Our 

results comparing ANGSD calls from low coverage data to our standard calls with Unified Genotyper (UG) 

produced highly comparable results (median of 28.4 and 29DMs/individual in ANGSD and UG called data 

respectively), providing further validation, and suggesting that results from comparisons are likely to be 

accurate and closely approximate the true distribution of DMs among individuals in the UG2G cohort. 

We sought to evaluate the clinical relevance of the DM annotations in the context of the UG2G resource.  

We closely examined these DMs that were common in our data, to assess the effect of these on relevant 

haematological and cardiometabolic traits.  DMs are considered to be primarily mutations that cause 

severe disease phenotypes or monogenic disorders; therefore, one would expect them to be very rare 

in a given population as a result of purifying selection. There are several reasons we might find DMs to 

be common in a given population cohort; 1. The mutations truly cause monogenic disease, but confer 

protection against a competing disease, and are therefore under positive or balancing selection; 2. The 

mutations are not functionally relevant, and are incidental findings that have been erroneously 

associated with a given phenotype; 3. The mutations are in LD with the true causal mutation in European 

populations and a proxy for this, but not in our East African cohort; 4. The true penetrance of these 

mutations is much lower than previously thought; or 5. The mutations have different phenotypic effects 

among different populations due to differences in epigenetic or epistatic factors. Interrogation of these 

mutations in an independent cohort of different ancestry allows us to identify DMs that may need 

further exploration to better understand their effects and disease penetrance among different 

population groups.  

Due to limitated availability of phenotypic data, we were only able to assess the impact of DMs 

associated with cardiometabolic diseases with those specific phenotypes. This may limit inferences 

relating to potential impact of these mutations on other phenotypes. We focused on 38 DMs that were 

common (>5%) in the UG2G cohort but rare or absent (<1%) in the UK10K cohort (Table S4.3).  
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THE UGANDA GENOME RESOURCE AS AN IMPUTATION REFERENCE PANEL 

In order to assess improvement in imputation accuracy when using UG2G as a reference panel,  we 

compared three panels: the 1000 Genomes Phase III dataset, the 1000 Genomes Phase III dataset 

merged with the African Genome Variation Project sequences from 320 individuals, and a combination 

of the 1000 Genomes Phase III dataset, the AGVP sequences and the UG2G data from 1,071 unrelated 

individuals from the GPC. The generation of the UG2G+AGVP panel has been outlined in Methods 

Details.  

For imputation, we used Omni 2.5M genotype data available for UGWAS and AGVP populations, as the 

target set. We measured the accuracy of imputation using the leave one out method in IMPUTE2 and 

calculating the correlation (r2) between the imputed and original genotype calls. This method 

systematically leaves out each SNP from the target data treating this as missing, and then imputes the 

marker from the reference data. Accuracy of imputation at each of these sites is then determined by 

calculating the correlation between imputed genotype calls and the original genotype data in the target 

set.  

HERITABILITY OF TRAITS IN THE GENERAL POPULATION COHORT 
 
We examined the heritability of traits within the General Population Cohort using the genotype data 

within the Uganda genome resource. In addition to assessing the narrow sense heritability across 

multiple traits, we were also able to examine the contribution of shared environment to the phenotypic 

variance, using novel methodology, and show that not accounting for this can lead to marked 

overestimation in estimates.(Heckerman et al., 2016) We recapitulate our methods here. 

STATISTICAL MODEL 

The linear mixed model (LMM) is now routinely used to estimate narrow sense heritability. 

Unfortunately, LMM estimates of heritability can be inflated when environmental correlation is not 

explicitly modeled. To help avoid inflated estimates, we can use an LMM with two random effects—one 

based on genetic markers and one based on environmental factors. In order to assess narrow sense 

heritability, we used a mixed model approach in FaST-LMM using similar methodology to previous 

studies.(Zaitlen et al., 2013) Given the unique pedigree structure in the cohort, we were able to phase 

the haplotypes for 4,778 individuals (UGWAS) included in the analysis very accurately and generate very 

accurate estimates of IBD. We have previously shown that haplotype phasing in this cohort using 
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methods that leverage relatedness such as SHAPEIT2 are very accurate, even when the pedigree 

structure is not explicitly input into the algorithm.(O'Connell et al., 2014) We further improved on 

accuracy by including the known complex pedigree structure into SHAPEIT2, using duo-HMM to correct 

any phasing errors. For this, we excluded pedigrees where the age differences did not match pedigree 

structure (parent was reported to be aged >60 when the child was born, parent-offpsring pairs with an 

age difference <12). We ran KING (http://people.virginia.edu/~wc9c/KING/) to check the 

pedigrees, and further excluded any sibling pairs where it was unclear whether these were full or half 

siblings and parent-offspring pairs where the inferred parent seemed incorrect. These produced a highly 

accurate set of pedigrees for phasing. MERLIN(Abecasis et al., 2002) was used for error correction before 

using duo-HMM in SHAPEIT2 for phasing. For the remaining individuals who were excluded, haplotypes 

inferred from phasing the entire cohort as unrelated individuals were used, and merged with the 

haplotypes inferred using duo-HMM. Using these combined phased haplotypes, we calculated an IBD 

matrix, using methods that have been outlined previously.(Price et al., 2011) This IBD matrix was used 

in the mixed model to provide accurate estimates of narrow sense heritability.  

Previous studies examining heritability and genetic associations in large cohorts have tended to regard 

related individuals as having uncorrelated environment that contributes to phenotypic variance. This 

assumption is very unlikely to be true, and previous work has suggested that not accounting for this 

shared environment can lead to overestimation of heritability.(Zaitlen et al., 2013) Here, we modelled 

environmental correlation using spatial distances and assessed the impact of this on heritability and 

GWAS estimates.  These methods are described in detail elsewhere.(Heckerman et al., 2016) We 

recapitulate these methods here: 

For the environmental random effect, we constructed a radial basis function kernel, where the entry for 

a pair of individuals was the exponential of the negative scaled distance between the two individuals. 

The scaling parameter as well as the weights of the two random effects were determined by maximizing 

the restricted likelihood of the data.  As the impact of various types of environmental clustering on 

phenotypic variance and estimates of heritability was unclear, we fit a number of models outlined: 

 

1. In the first model, we only estimated the contribution of the IBD matrix to phenotype variance, and 

considered environmental effects as independent, as studies have done previously.  

 

𝑉𝑎𝑟(𝑌) = 𝜎:6𝐼𝐵𝐷 + 𝜎"6	𝐼 
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Var(Y) is the phenotype variance, while 𝜎:6  and 𝜎"6  are the genetic and environmental components of 

variance, respectively. IBD represents the IBD matrix, while I is an identity matrix representing 

uncorrelated environmental components. Narrow sense heritability is calculated as follows: 

ℎ6 = 	
𝜎:6

𝜎:6 +	𝜎"6
 

 

2. Given the relatedness among individuals and the clustered nature of the cohort into villages, and 

households, the above model is an unlikely representation of the truth, as environment among 

individuals living in the same household/village is likely to be more correlated than those living further 

apart. Modelling environment as unrelated, in this case could potentially overestimate the genetic 

contribution to heritability. We modelled the effect of correlated environment as follows: 

 

𝑉𝑎𝑟(𝑌) = 𝜎:6𝐼𝐵𝐷 + 𝜎"6	𝐺𝑃𝑆 +	𝜎$6𝐼 

 

Here, GPS represents the distance matrix derived from GPS coordinates, and 𝜎$6  represents residual 

variance. Here, heritability was calculated as: 

ℎ6 = 	
𝜎:6

𝜎:6 + 𝜎"6+	𝜎$6
 

 

and the contribution of shared environment to phenotypic variance was calculated as: 

𝑒6 = 	
𝜎"6

𝜎:6 + 𝜎"6+	𝜎$6
 

All parameters were estimated using maximum likelihood estimation. Standard errors for heritability for 

models 1 and 2 were calculated using a bootstrapping approach allowing comparison with published 

estimates for heritability in studies that have used a similar methodology.  

 

In addition to the above two models, we also assessed gene-environment interaction for all phenotypes 

by fitting a model with the IBD matrix, distance matrix, in addition to a GXE term, as follows: 

𝑉𝑎𝑟(𝑌) = 𝜎:6𝐼𝐵𝐷 + 𝜎"6	𝐺𝑃𝑆 + 𝜎:"6 𝐾:O" +	𝜎$6𝐼 

 

where i2 is the proportion of phenotypic variance explained by the interaction component. 
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𝑖6 = 	
𝜎:"6

𝜎:6 + 𝜎"6+𝜎:"6 + 	𝜎$6
 

 

 

For the variance estimates, we tested the null hypothesis that the variance component was equal to 

zero. To test 𝜎"6 = 0, we performed a permutation test by permuting the distance matrix, by randomly 

shuffling identifiers of individuals. A p value for 𝜎:"6 = 0, was similarly determined by permuting entries 

of the 𝐾:O"  matrix. In both cases, we performed 10,000 permutations. We carried out a comparison of 

our heritability estimates with those from Zaitlen et al, (Zaitlen et al., 2013) that had been obtained using 

very similar methods. We also re-calculated heritabilities using GCTA for consistency, using the same 

method they outlined in the paper(Zaitlen et al., 2013) and found that using this for estimation of 

heritability in the Ugandan cohort did not materially alter comparisons of estimates with the Icelandic 

study (data not shown). The methods implemented in Fast-LMM are described in detail in Heckerman 

et al.(Heckerman et al., 2016) and the relevant code is available at: 

https://github.com/MicrosoftGenomics/FaST-LMM.  

 

COMPARISON OF HERITABILITIES WITH EUROPEAN COHORTS 

We compared heritability estimated using our method with heritability estimated using similar methods 

in an Icelandic population.(Zaitlen et al., 2013)  We also compared our estimates with a pedigree based 

study from Pilia et al.(Pilia et al., 2006) in a Sardinian population which reported heritability on a large 

number of complex traits.  

 

We note that the shared environment model of heritability estimated in the Sardinian study only 

modelled shared environment within pedigrees, and is therefore not directly comparable to estimation 

within the Ugandan cohort, where geographical distances were modelled; therefore, estimates from the 

Sardinian study may be more biased than the estimates from the Ugandan data.  
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We additionally evaluated whether the differences observed between European and Ugandan 

populations with regard to heritability could arise due to reduced bias in heritability estimation due to 

better correction of environmental sharing in the Ugandan cohort. In order to examine this, we 

compared uncorrected heritabilities in Uganda (heritability estimates calculated assuming uncorrelated 

environment among indivduals) with those estimated by Pilia et al.(Pilia et al., 2006), Zaitlen et al.(Zaitlen 

et al., 2013), and Kang et al(Kang et al., 2010b). Here, we used uncorrected estimates from the basic 

model in Pilia et al.(Pilia et al., 2006) not accounting for shared environment for consistency of 

comparison. The estimates in Zaitlen et al. are adjusted for geographical region, but not for any 

additional environmental sharing. We also compared with estimates of pseudoheritability estimated by 

Kang et al. using the EMMAX model.(Kang et al., 2010b) We note that pseudoheritability estimates 

calculated by EMMAX based on the IBS matrix are not actually estimates of narrow sense heritability, as 

outlined in Zaitlen et al.(Zaitlen et al., 2013) As these estimates do not utilise the thresholded IBS matrix, 

which provides similar estimates to the IBD matrix, these would provide estimates of heritability 

intermediate between GWAS heritability and narrow sense heritability(Zaitlen and Kraft, 2012); 

therefore, these are likely to be underestimates of narrow sense heritability. We, however, include these 

for completeness.  

 

GENOME-WIDE ASSOCIATION STUDY OF 34 TRAITS  

META-ANALYSIS ACROSS COHORTS TO MAXIMISE DISCOVERY 

To discover loci associated with traits, we carried out a meta-analysis of association statistics across four 

cohorts: the Ugandan Genome Resource (n=6,400), the Durban Diabetes Study (DDS) (n=1,165), the 

Diabetes Case control study (n=1,542), and the AADM study (n=5,231). Details regarding studies are 

below. 

MIXED MODEL ANALYSIS  

Uganda Genome Resource 

In order to identify loci associated with traits within the Uganda Genome Resource, we used a linear 

mixed model (LMM) approach to account for relatedness (including cryptic relatedness) and 

population structure.  
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Given the influence of environmental correlation on estimation of heritability, we first evaluated 

whether modelling environmental correlation influenced beta estimates and p values obtained in GWAS 

of the 34 traits, and independent signals observed above the threshold for statistical significance. We 

conducted these analyses using the Fast-LMM model discussed before. We did not identify any 

additional loci at the genome-wide significance threshold using the 2 kernel (IBD and GPS coordinates) 

versus the 1 kernel (IBD matrix only) model (Table S5.5) and found no systematic difference in p values 

between the two models (kruskall wallis p=0.46), suggesting that although modelling environmental 

correlation did alter heritability estimates, GWAS results were not altered significantly. We, therefore 

opted to use a simple LMM approach with uncorrelated environment for GWAS.   

For this, we used the exact linear mixed model approach implemented in GEMMA v24 for analysis of 

pooled data from 6,407 individuals in the Uganda Genome Resource.  We evaluated different 

approaches for generation of the kinship matrix to control type I error in analysis. It has been shown that 

inclusion of causal SNPs in the kinship matrix can lead to overly conservative results for these SNPs, and 

reduction in power for GWAS discovery. In order to maximise discovery, we used the leave one 

chromosome out (LOCO) approach for analysis.(Listgarten et al., 2012, Yang et al., 2014) In this approach 

each chromosome is excluded from generation of the kinship matrix in turn, for association analysis for 

markers along that chromosome. This ensures that causal SNPs at a locus on a given chromosome are 

not used for generation of the kinship matrix used in analysis of that specific chromosome. Therefore, 

we generated 22 kinship matrices for analysis, each excluding the chromosome being analysed using the 

given matrix.  

For computational efficiency, and to avoid correlation effects due to LD, we LD pruned the data prior to 

calculation of the GRM matrix for each LOCO analysis. We carried out sensitivity analyses using different 

r2 thresholds for pruning, to examine whether type I error was appropriately controlled on examining 

genome inflation factors from QQ plots. We finally used all markers with an MAF>1%, pruned to an r2 

threshold of 0.5, using PLINK(Purcell et al., 2007) with the flags --maf 0.01 and --indep-pairwise 100 10 

0.5, where 0.01 is the minimum MAF threshold of 1% and 0.5 is the r2 threshold within each 100 marker 

window sliding by a step size of 10 markers during each iteration. All genome inflation factors for traits 

were noted to be below 1.05 using this approach.  

We also included a covariate to indicate whether data originated from imputed genotyped individuals 

or sequenced individuals to allow for any systematic differences between data (although earlier PCA 

suggested no systematic effects in filtered data).  A MAF threshold of 0.5% was applied in GEMMA 



	 65 

analysis.  

DDS and DCC  

Analyses for the DDS and DCC datasets were carried out in exactly the same way as described for the 

UGR dataset. LOCO analysis was used for each chromosome, and 22 GRM matrices were generated for 

each dataset. Analyses were carried out separately for DDS and DCC in GEMMA using an MAF threshold 

of 0.5% for each cohort. We confirmed that genome inflation factors were <1.05 for all traits.  

AADM 

For AADM, analyses of all markers were carried out using EPACTS (Efficient and Parallelizable Association 

Container Toolbox) pipeline (http://genome.sph.umich.edu/wiki/EPACTS), which includes an 

implementation of EMMAX,(Kang et al., 2010a) which is an approximate linear mixed model approach 

similar to GEMMA. While a LOCO approach was not used in these analyses, we note that this would only 

make results more conservative for a given locus, and would not generate increased type I error.  We 

carried out filtering for info score (0.3) following analysis, in this case, as we only had access to summary 

statistics. On examining QQ plots, we confirmed that genome inflation factors were <1.05 for all traits.  

META-ANALYSIS METHODS 

In order to maximise power for discovery, we carried out meta-analysis of results across all four cohorts 

(UGR, DDS, DCC and AADM), subject to availability of phenotypic data for given traits (Table S1.3). Given 

genomic diversity, admixture, and geographical distribution of studies, we used a union set of all SNPs 

(rather than the intersection), to maximise discovery, and allow for heterogeneity of effect, as well as to 

examine population-specificity and reproducibility of associations. Rather than exclude associated 

variants with heterogeneity in effect observed, we explored the underlying factors contributing to this 

heterogeneity of effect. While we do expect for heterogeneity in effect to arise as a result of artefactual 

associations in some cases, we opted to use this approach to allow for real heterogeneity in effect across 

populations; we discuss this in more detail subsequently, and describe implications of heterogeneity in 

meta-analyses of GWAS among diverse African populations.  

Consistent with previous literature, we used the Han-Eskin random effects meta-analysis approach 

implemented in METASOFT (RE2).(Han and Eskin, 2011) This approach corrects for the overly 

conservative standard random effects meta-analysis approach by correctly assuming no heterogeneity 

of effect sizes if the null hypothesis is true (i.e. all betas are zero).  
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We find this approach gives highly comparable results to MANTRA meta-analysis, (Morris, 2011) a 

bayesian approach used commonly for trans-ethnic meta-analyses, but is more computationally 

tractable, and easily interpretable with the output including a frequentist p value for combined effect. 

This also provides insight into heterogeneity across studies, which we examine in greater detail 

subsequently. We observed a strong correlation of 0.80, p<2.2e-16, between log10(BF) from  MANTRA 

analysis and –log10(pval) from METASOFT analysis (for variants with support from single studies the p 

value from GEMMA analysis within the study was used instead of the RE2 p value). For LDL METASOFT 

analyses, we observed that of 546 variants with p values<5e-09 in METASOFT analysis, 97.4% (532) 

exceeded a log10(BF) threshold of 7 in MANTRA analysis, suggesting high concordance between results, 

and validating the approach used here.  

DERIVATION OF A GENOME-WIDE SIGNIFICANCE THRESHOLD FOR GWAS IN AFRICAN POPULATIONS 

Genome-wide association studies examining common variation across the genome for association with 

complex traits typically use a significance threshold of p<5.0x10−08, with more stringent thresholds 

suggested for examination of rare variants.(Xu et al., 2014) The 5x10-08 threshold has been derived from 

the total number of effective common variant (MAF ≥ 0.05) tests in European populations and has been 

based on HapMap data. When studying populations of African descent, a new statistical significance 

level needs to be defined, as lower levels of linkage disequilibrium between common variants may 

necessitate a more stringent threshold in Africans compared to Europeans.  

Many methods exist which exploit the correlation structure, either haplotypic or genotypic, between 

variants to estimate the effective number of independent tests, and then use standard techniques for 

independent tests (Sid�ak or Bonferroni correction for multiple testing) to calculate an appropriate 

significance threshold. Some methods use the eigenvalues of the correlation matrix, since their absolute 

values correspond to the amount of the overall variance accounted for by the corresponding principal 

component (see for instance (Gao et al., 2008)). However, for large datasets of SNPs, it is not feasible to 

calculate the eigenvectors, and instead techniques have been developed which rely solely on the 

coefficients (see for instance  (Chen and Liu, 2011) and  (Moskvina and Schmidt, 2008)). In  (Chen and 

Liu, 2011) the correlation coefficients are used directly to estimate the effective number of tests, while 

in  (Moskvina and Schmidt, 2008) the joint distributions of the event that the markers are not deemed 

significant are found based upon the correlation coefficients. We implemented 4 of these methods: 

SimpleM,(Gao et al., 2008) Chen and Liu Method,(Chen and Liu, 2011) Keffective,(Moskvina and Schmidt, 
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2008) and Cheverud-Nyholt.(Nyholt, 2004) The Keffective method produced the most robust results, 

which we present here. It uses the pairwise haplotypic Pearson’s correlation coefficients between SNPs 

to estimate the statistical independence between each SNP and those which preceded it, and sums them 

to estimate the total number of independent tests. 

Three populations from the 1000 Genomes Project (sequence data, phase 1 integrated public data 

release) were used; Luhya in Webuye, Kenya (LWK) and Yoruba in Ibadan, Nigeria (YRI), to estimate the 

significance thresholds for African data, and Utah residents (CEPH) with Northern and Western European 

ancestry CEU dataset as a European comparison. Standard quality control steps were performed on all 

autosomes after excluding indels.  

DEFINITION OF DISTINCT LOCI 

Based on our derivation of a new threshold for statistical significance in African popualtions, we applied 

a statistical significance threshold of 5.0x10-9 to define statistical significance at a given locus in Han-

Eskin meta-analysis. MANTRA-meta-analysis(Morris, 2011) was carried out for fine mapping across loci 

identified to be statistically significant. We calculated 99% credible intervals, and credible sets, as has 

been discussed previously.(Morris, 2011) 

We defined a significant locus based on the peak SNP with the lowest p value in a given region. A 

significant locus was defined as a 500MB region flanking a peak SNP on either side (total 1MB region). If 

there were SNPs outside this region that were statistically significant, these were defined as separate 

associated loci, once again identifying the variant with the lowest p value in the region, and defining a 

500MB region around it on either side. We note that this definition is arbitrary, and in regions of high 

LD, or regions with strong association signals, statistically significant variation can extend across several 

MB. Therefore, where loci were adjacent to each other, we considered the hypothesis, that these loci 

represented one locus primarily, with ‘satellite’ loci representing the same peak signal. In order to 

understand whether these adjacent loci represented the same causal signal, we carried out joint 

conditional analyses to examine whether joint conditional analysis abolished the association at the 

‘satellite’ locus. Following joint analyses, we reported ‘distinct’ loci as those that were associated with 

traits independently from surrounding regions. We found that for almost all adjacent loci, these satellite 

loci represented the same peak signal; we therefore collapsed these into single ‘distinct’ signals.  

CONDITIONAL ANALYSES AND CONDITIONAL META-ANALYSES 
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We carried out joint and conditional analyses to identify distinct association signals; these analyses were 

carried out for two scenarios: 

1.  To identify whether two or more adjacent loci (defined based on distance)    represented a single 

locus, or multiple distinct loci. 

2.  To examine whether a peak variant at a known locus (previously associated with the given trait) was 

distinct from previously associated variants at that locus. 

In both these scenarios, we carried out joint and conditional analyses either on the most significant SNP 

in the region (in scenario 1), or on all previously known SNPs identified to be associated with the trait (in 

scenario 2). Joint conditional analyses were carried out in GEMMA separately for each cohort, and these 

conditional estimates were then meta-analysed using the Han-Eskin method implemented in METASOFT. 

As we did not have access to individual level data for the AADM cohort, or accurate LD reference data, 

we could not carry out conditional analysis for AADM. As a result, whether a locus was distinct was 

determined by a comparison of the conditional meta-analysed p value from random-effects meta-

analysis, to the original p value from meta-analysis across all cohorts excluding AADM. Association 

signals were considered distinct if the conditional meta-analytic p value < 5x10-09, or if in joint analyses 

with all other SNPs, the given SNP emerged most statistically significant in joint conditional analysis. 

Previously known trait-associated SNPs within a given locus were extracted from the NHGRI 

catalogue,(MacArthur et al., 2017) from large consortium meta-analyses for given traits, and from a 

literature search.  

ANALYSES OF TRANSFERABILITY 

 Analyses across populations of differing ancestry and from different geographical regions across Africa 

allows an examination of transferability of association signals across regions. Understanding 

transferability of association signals has implications for the design and analysis of medical genetic 

studies in Africa.  

For statistically significant association signals observed, we define transferability as the presence of 

nominally significant p values (p<0.05) in at least two or more studies.  

We note that the lack of transferability of association signals across diverse cohorts or populations does 

not always indicate artefactual signals. This can arise from differences in statistical power to observe 

association, including from differences in demographic structure of cohorts, measurement error in 

phenotypes, allele frequency differences, differential LD of sampled variants with the causal SNP(s), 
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differences in accuracy of imputation across different populations and sample size and real differences 

in effect size due to gene-environmental interactions.  

We examined statistical heterogeneity of effect as one of the factors affecting transferability of 

association signals across cohorts. In order to assess heterogeneity, we used the Cochran’s Q statistic, 

as output by METASOFT. We assessed this genome-wide, applying a stringent threshold of 5x10-09, 

equivalent to the genome wide association threshold for statistical significance. We note that this 

statistic is likely to be highly conservative, and that statistically significant heterogeneity is unlikely to be 

due to chance and is suggestive of real differences in effect size (as a result of either artefactual or 

biological factors). These differences are unlikely to be due to differences in allele frequency or sample 

size (which would affect the SE). We also evaluated the consistency of this statistic with the null (using 

QQ plots), and examined whether there were regions of high heterogeneity in associations with traits 

across the genome, and whether these were in regions of known associations with given traits. We 

confirmed that heterogeneity statistics did not show any inflation relative to the null (lambda<1.05 for 

all traits).  

CLASSIFICATION OF DISCOVERED LOCI 

We defined distinct loci based on conditional analysis and distance metrics as defined in previous 

sections. Among identified independent loci, we define different categories of association signal as 

follows: 

1. Novel locus (NL):  

A locus that has not been previously associated with the given trait, or any biologically similar and 

correlated traits in previous GWAS, or in the literature.  

2. Novel locus – known for related trait (NL-KRT):  

A locus that has not been previously associated with the given trait, but has been associated with 

biologically similar or correlated traits in previous GWAS, or in the literature. 

3. Known locus: 

A locus that has been previously associated with the trait in a previous GWAS or in the literature. These 

loci can be divided into the following sub-categories: 

a) Known locus – known SNP (KS): 

The peak associated SNP at the locus has been previously identified as associated with the trait 

of interest in a previous GWAS or in the literature.  
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b) Known locus – unknown SNP: 

The given locus has been associated with the trait in a previous GWAS or in the literature, but 

the specific SNP is not known to be associated with the given trait. This can be further divided 

into two subcategories: 

i) Known locus – distinct association  (KL-DA) : On joint and conditional analysis the peak 

associated SNP is distinct from previously known SNPs associated at this locus.  

ii) Known locus- non-distinct association (KL-NDA): On joint and conditional analysis, the 

peak associated SNP is not distinct from previously known SNPs associated at this locus.  

 ASSESSMENT OF ALLELIC HETEROGENEITY 

We assessed allelic heterogeneity at this locus by examining whether multiple causal variants were 

present in joint and conditional analysis within the Ugandan cohort. We carried out joint and conditional 

analysis by conditioning SNPs within a 1MB region (500KB flanks) around the peak SNP, and examining 

if another distinct signal below p<5e-09 was observed following conditioning. If this was the case, we 

continued iteratively, conditioning on the two distinct SNPs identified, and so on. At each stage, prior to 

the conditioning step, we carried out joint analysis of the distinct SNPs identified, and dropped any SNPs 

with a p<5e-09 in joint analysis.  

FINE-MAPPING AT THE HBA1/HBA2 LOCUS 

In order to fine-map identified associations with serum total bilirubin and HbA1c locus, we considered 

that peak associations identified at this locus may be tagging a known common alpha thalassemia variant 

observed in African populations.  This thalassemia variant has been thought to have risen to high 

frequencies in Africa due to protection conferred against severe malaria,(Mockenhaupt et al., 2004) and 

has previously been associated with several haematological markers in cohorts including individuals of 

African-American ancestry.(Chen et al., 2013) This deletion was not called in the 1000 Genomes Phase 3 

project data, but was present in a previous release of the 1000 Genomes Project Phase 1 Project data 

with an MAF=22% among Africans. In order to assess whether associations identified at this locus were 

being driven by the a-3.7 thalassemia deletion, we re-imputed data within this region with the 1000 

Genomes Phase I imputation panel, and re-analysed data using the same methods across all cohorts 

where phenotype data on bilirubin and HbA1c were available.  We carried out joint conditional analysis 

between the a-3.7 thalassemia deletion, and the peak SNP identified in the region within our analysis in 
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the data that did not include the deletion to identify the primary driver of the association signal within 

the region.  

 

DATA AVAILABILITY 
 
Summary GWAS and allele frequency data are publicly available 

at https://www.ebi.ac.uk/gwas/downloads/summary-statistics. The combined UG2G+AGV 

imputation panel is available for imputation from the Haplotype Reference 

Consortium:http://www.haplotype-reference-consortium.org/participating-cohorts. All individual 

level data, phenotype,  genotype and sequence data are available under managed access to 

researchers. Requests for access to the phenotypic data will be granted for all research consistent with 

the consent provided by participants.  This would include any research in the context of health and 

disease, that does not involve identifying the participants in any way.  The UMIC committees are 

responsible for curation, storage, and sharing of phenotypic and genetic data under managed access. 

The array and low and high depth sequence data have been deposited at the European Genome-

phenome Archive (EGA, http://www.ebi.ac.uk/ega/, accession numbers 

EGAS00001001558/EGAD00010000965, EGAS00001000545/EGAD00001001639 and 

EGAS00001000545/EGAD00001005346 respectively).  Requests for access to data may be directed 

to segun.fatumo@mrcuganda.org. While data cannot be released on public databases as this would 

conflict with the study protocol and participant consent under which data were collected, we aim to 

facilitate data access for all bona fide researchers. Applications are reviewed by an independent data 

access committee (DAC) and access is granted if the request is consistent with the consent provided by 

participants within two weeks of submission. The data producers may be consulted by the DAC to 

evaluate potential ethical conflicts. Requestors also sign an agreement which governs the terms on 

which access to data is granted. 

 
Main	Figure	Legends:	
	
Figure	1:	Figure	1	represents	genetic	substructure	and	population	admixture	within	the	General	
Population	Cohort.	Figure	1a	shows	the	study	area,	which	encompasses	25	villages	in	the	South-
western	region	of	Uganda.	Figure	1b	shows	fineSTRUCTURE	inferred	principal	components	(PCs)	
among	unrelated	individuals	with	the	clines	along	PC1	and	PC2	representative	of	Eurasian	and	East	
African	gene	flow	respectively	(N=1,893).	Modest	structure	is	observed	by	ethno-linguistic	group.	
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Figure	1c	 shows	a	map	of	 the	district	 structure	of	Uganda	during	 the	 colonial	 era,	 representing	
different	 districts	 different	 ethno-linguistic	 groups	 are	 likely	 to	 have	 migrated	 from	 (Map	
reproduced	with	 permission	 from	 ‘Economic	Development	 and	Tribal	 Change:	 Study	 of	 Immigrant	
Labour	 in	 Buganda’).22	 Figure	 1d	 represents	 the	 dendrogram	 tree	 of	 population	 relationships	
among	ethno-linguistic	groups	inferred	by	fineSTRUCTURE	based	on	a	summary	co-ancestry	matrix	
in	 analysis	 of	 unrelated	 Ugandans.	 Numbers	 used	 for	 making	 tree	 inference	 are	 shown	 in	
parentheses.	 The	 tree	 represents	 the	 summary	 of	 population	 relationships	 for	 ethno-linguistic	
groups,	and	shows	substructure	among	populations	based	on	their	geographical	source.	Two	major	
clades	are	represented,	one	from	central	Uganda,	and	the	second	from	populations	migrating	from	
western	 and	 south-Western	 Uganda.	 	 Figure	 1e	 shows	 unsupervised	 tree	 structuring	 with	
fineSTRUCTURE	 analysis	 of	 unrelated	 Ugandans.	 The	 dendrogram	 shows	 the	 inferred	 tree	
structure,	 with	 various	 panels	 annotated	 for	 additional	 information	 below,	 including	 ethno-
linguistic	group	(EL	group),	proportion	of	Eurasian	ancestry	as	inferred	by	ADMIXTURE,	K=4	(EUR	
anc),	proportion	of	Nilo-Saharan	ancestry	as	inferred	by	ADMIXTURE	(NS	anc),	and	transformed	
latitude	(south	gps)	and	longitude	(east	gps)	coordinates	for	each	individual.	Prominent	clustering	
of	clades	is	observed	by	ethno-linguistic	group	and	Eurasian	ancestral	proportions.	
	
	
Figure	2:	 Figure	 2	 represents	 unsupervised	 ADMIXTURE	 analysis	 of	 Ugandan	 populations	 in	 a	
global	context	(n=3,904)	for	clusters	K=2	to	K=18.		K=2	represents	separation	of	African,	and	non-
African	 ancestry.	 Subsequent	 clusters	 show	 further	 delineation	 of	 Eurasian,	 East	 Asian,	 African	
hunter-gatherer	(light	purple	ancestry	seen	in	the	Khoe-San),	and	Nilo-Saharan	ancestry	(light	pink	
component	 observed	 predominantly	 in	 the	 Dinka).	 The	 Ugandans	 appear	 to	 be	 represented	 by	
multiple	ancestral	components,	including	ancestry	predominant	in	East	African	bantu	populations,	
Nilo-Saharan	populations,	as	well	as	different	proportions	of	Eurasian-like	components.		
	
Figure	 3:	 Figure	 3	 represents	 the	 genomic	 diversity	 and	 mutational	 spectrum	 of	 the	 Uganda	
Genome	 Resource.	 Figure	 3a	 shows	 the	 discovery	 of	 autosomal	 SNP	 variation	 among	 1,978	
individuals	from	UGR	relative	to	the	1000	Genomes	phase	III	project	(n=2,504),	the	African	Genome	
Variation	 Project	 (n=320),	 and	 UK10K	 cohorts	 (n=3,781).	 Figure	 3b	 shows	 the	 number	 of	
heterozygous	sites	per	individual	for	each	population	in	AGVP	and	the	UGR.	Figure	3c	represents	
the	comparative	allele	frequency	spectrum	between	379	Europeans	from	the	1000	Genomes	Phase	
I	 Project,	 and	 a	 random	 sample	 of	 379	 individuals	 from	 all	 Ugandans	 (Uganda-all-379),	 and	 a	
random	sample	from	only	unrelated	Ugandans	(Uganda-unrel-379).	Figure	3d,	e	and	f	represent	the	
distribution	 of	 different	 functional	 classes	 of	 HGMD	 mutations	 within	 the	 UGR,	 and	 also	 in	
comparison	 with	 UK10K	 ALSPAC.	 In	 Figure	 3d,	 we	 stratify	 the	 variation	 in	 four	 categories	
depending	on	frequency:	common	(>5%	AF),	low	frequency	(0.5%-5%	AF),	rare	(0.1%-0.5%	AF)	
and	 very	 rare	 (<0.1%	 AF).	 We	 find	 that	 while	 categories	 (FP,	 DFP,	 and	 DP)	 are	 preferentially	
observed	as	common	variants	in	the	UG2G	data,	the	DM	and	DM?	categories	(disease-causing)	are	
mainly	observed	as	low-frequency	or	rare	variants,	as	expected	with	deleterious	mutations	that	are	
prone	 to	 purifying	 selection.	 Figure	 3e	 represents	 the	 allele	 frequency	 spectrum	 for	 different	
functional	classes	of	HGMD	mutations	within	UGR.	Expectedly,	DMs	are	highly	enriched	for	rare	
variation.	Figure	3f	shows	the	distribution	of	DM	among	individuals	in	UG2G	compared	to	UK10K	
ALSPAC.	
	
Figure	4:	 Figure	4	 shows	 the	 improvement	 in	 imputation	accuracy	with	addition	of	 the	African	
Genome	Variation	Project	(AGVP)	and	Ugandan	sequence	(UG2G)	panel	to	the	1000	Genomes	phase	
III	(1000Gp3)	imputation	panel	(N=3,895	for	the	combined	reference	panel),	when	imputation	is	
carried	out	into	the	Omni	2.5M	genotype	data	for	AGVP	population	sets	not	included	in	the	reference	
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panel.	Marked	improvements	are	observed	for	East	African	populations	such	as	Kalenjin	and	Kikuyu	
across	the	allele	frequency	spectrum.	We	also	observe	substantial	improvements	when	imputing	
into	the	unrelated	individuals	from	different	ethno-linguistic	groups	in	UGWAS.	The	tables	below	
the	figure	show	the	number	of	variants	successfully	imputed	(info	score	³	0.3)	into	the	Omni	2.5M	
array	data	 for	each	population	using	different	reference	panels.	We	see	a	substantial	 increase	 in	
informatively	 imputed	 variants	with	 addition	 of	 the	 UG2G	 sequence	 reference	 panel	 across	 all	
populations.	
	
	
Figure	5:	Figure	5	represents	 the	heritabilities	 for	34	complex	traits	within	the	Ugandan	GWAS	
cohort	(UGWAS-	N=4,778)	(green	markers)	measured	using	FAST-LMM	(blue	markers),	compared	
with	 those	 estimated	 in	 a	 Sardinian	 and	 Icelandic	 population	 by	 Pilia	 et	 al.	 (red	markers),	 and	
Zaitlen	et	al	(blue	markers),	respectively.		The	estimated	heritabilities	in	UGWAS	are	adjusted	for	
environmental	correlation	among	individuals	using	GPS	coordinates.	The	heritabilities	in	Pilia	et	al.	
are	also	adjusted	for	shared	environment	in	pedigrees.	We	observe	statistically	different	heritability	
for	LDL-cholesterol,	total	cholesterol,	height	and	serum	GGT.		
	
Figure	6:	 Figure	6	 shows	 locusview	plots	 for	selected	novel	 association	signals	associated	with	
specific	traits	in	a	GWAS	of	up	to	14,126	individuals.	Figure	6a	shows	the	novel	association	of	the	
GULP1	 locus	with	HbA1c.	We	highlight	 functionally	 important	and	novel	associations	of	 the	a-3.7	
thalassemia	deletion	with	total	bilirubin	(Figure	6b).	We	also	 identified	a	novel	association	with	
WBC	 count	 at	 the	 CD44	 locus	 (Figure	 6c);	 CD44	 encodes	 a	 cell-surface	 protein	 that	 regulates	
neutrophil	adhesion,	migration	and	apoptosis,	among	other	functions.	Figure	6d	and	6e	represent	
associations	of	Africa-specific	variants	with	HDL	levels	(Figure	6d),	and	total	albumin	(Figure	6e).	
Figure	6f	represents	the	association	of	the	sickle	cell	variant	with	RDW,	recapitulating	the	known	
pathophysiology	of	sickle	cell	disease.		
	
	
Supplementary	Figure	Legends:	
	
Figure	S1:	Calling	algorithms	for	UGR	sequence	data	(relates	to	STAR	Methods).	Figure	S1a	
represents	the	workflow	for	variant	calling	applied	to	the	UGR	sequence	data.	Figure	S1b	and	Sc	
depicts	a	comparison	of	various	calling	algorithms	using	different	filters	for	calling	SNPs	(S1b)	and	
indels	(S1c)	 in	 low	coverage	data.	The	x	axis	represents	 the	 false	discovery	rate	(FDR),	which	 is	
defined	as	the	proportion	of	calls	produced	by	a	given	algorithm	that	are	false	positives	at	a	given	
filtering	 threshold.	 The	 y	 axis	 represents	 the	 true	 positive	 rate	 or	 the	 sensitivity,	 which	 is	 the	
proportion	of	all	true	calls	in	the	GiaB	sample	that	are	captured	by	a	given	algorithm	for	a	given	
filtering	threshold.	The	curves	are	generated	by	varying	filtering	thresholds	for	each	algorithm.	UG:	
UnifiedGenotyper;	FB:	FreeBayes;	HC:	HaplotypeCaller;	QUAL:	Phred-scaled	quality	score;	VQSLOD:	
Variant	Quality	Recalibration	scores;	NIST:	National	Institute	of	Standards	and	Technology.	Fig	S1d	
depicts	the	ROC	curve	for	the	true	positive	rate	(TPR)	and	False	Discovery	rate	(FDR)	for	SNPs	(blue	
line)	 and	 indels	 (green)	 respectively,	 using	 different	 VQSLOD	 scores	 for	 filtering.	 We	 chose	
thresholds	of	99.5%		and	99%	truth	sensitivity	for	SNPs	and	indels	respectively.	*BQSR;	Base	quality	
score	recalibration	

	
Figure	S2:	Principal	component	analysis	of	the	Ugandans	in	a	regional	and	global	context	
(relates	to	main	manuscript).	Figure	S2a-b	show	PCA	for	4,778	individuals	with	genotyping	data	
in	the	UGR.	PC1	and	2	show	a	cline	highly	correlated	with	the	proportion	of	Eurasian	admixture	in	
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these	 individuals.	 No	 clear	 separation	 between	 different	 ethno-linguistic	 groups	 is	 observed.	
Figures	S2c	and	d	represents	PCA	of	UGR	along	with	African	populations	 in	 the	African	Genome	
Variation	Project.	PC1	represents	a	cline	seen	among	East	and	West	African	populations,	possibly	
representative	of	Eurasian	admixture,	while	PC2	separates	out	populations	from	different	regions.	
Fig	S2e	and	f	depicts	PCs	1-4	for	UGR	in	the	context	of	African	populations	within	the	AGVP,	Human	
origins	global	populations	 in	 the	1000	Genomes	project.	PC1	 represents	a	 cline	 seen	among	 the	
Ugandan	populations	extending	towards	Europeans,	suggestive	of	admixture	among	these.	
	
Figure	 S3:	 GLOBETROTTER	 and	 MALDER	 analysis	 of	 Ugandan	 populations	 with	 inferred	
admixture	source	populations	and	dating	of	admixture	events	(relates	to	main	manuscript).	
Figure	 S3	 shows	 results	 from	 GLOBETROTTER	 and	 MALDER	 analysis	 of	 Ugandan	 populations.	
Figure	S3a	 represents	 the	 ‘all	population	analysis’,	 examining	87	populations	as	possible	source	
(‘donor’)	 populations,	 while	 the	 ‘limited	 analysis’	 (Figure	 S3b)	 only	 included	 7	 possible	 source	
(‘donor’)	populations	representing	different	global	ancestral	groups.	Results	from	MALDER	analysis	
are	 also	 shown	 for	 comparison.	 MALDER	 and	 GLOBETROTTER	 are	 admixture	 linkage	
disequilibrium	 based	 methods	 that	 identify	 populations	 that	 are	 best	 representative	 of	 source	
populations	for	a	given	target,	inferring	multiple	events	in	some	cases,	as	well	as	time	of	admixture.	
In	some	cases	GLOBETROTTER	inferred	multi-way	admixture	(more	than	two	donor	populations)	
at	a	single	time	point;	for	simplicity,	these	are	presented	as	events	1	and	2,	even	though	the	event	is	
inferred	to	have	occurred	at	the	same	time.	The	populations	listed	on	the	left	are	the	target	Ugandan	
populations.	The	coloured	boxes	represent	the	best	representative	donor	populations	for	a	single	
or	two	events,	as	inferred	by	GLOBETROTTER	(shown	under	GT),	and	MALDER.	The	colour	of	the	
population	indicates	the	ethno-linguistic	group	the	source	population	belongs	to,	as	shown	in	the	
key	on	the	right.	For	GLOBETROTTER,	 the	 first	source	 is	represented	as	 the	source	 identified	as	
contributing	the	minority	proportion	to	the	target	population,	and	the	second	source	is	the	source	
contributing	the	majority	of	ancestry	to	the	target	population.	For	MALDER,	this	inference	is	not	
readily	available,	so	the	order	of	boxes	for	each	source	have	no	meaning.		The	time	of	admixture	is	
shown	as	inferred	for	each	target	population	by	GLOBETROTTER	(red	circle	and	green	triangles	for	
the	 first	 and	second	event,	 respectively),	 and	MALDER	 (blue	square	and	purple	 line	as	 first	and	
second	 event	 with	 95%	 confidence	 intervals	 shown)	 The	 panels	 on	 the	 right	 show	 bar	 charts	
representing	the	proportion	contributed	by	each	donor/source	population,	with	the	colours	within	
the	 bar	 chart	 representing	 the	 haplotype	 composition	 of	 the	 source	 populations	 as	 inferred	 by	
GLOBETROTTER	for	admixture	events	1	and	2	(where	applicable).	This	provides	an	indication	of	
the	 ancestral	 components	 that	 are	 most	 likely	 to	 be	 represented	 by	 source	 populations,	 and	
proportions	of	these	within	these	each	inferred	source.	
	
Figure	S4:	Analysis	of	MT	and	Y	chromosomes	in	UGR	(relates	to	main	manuscript).	Figure	
S4a	shows	the	phylogenetic	tree	of	1,978	UG2G	and	2,535	1000G	mitochondrial	genomes.	Samples	
have	been	coloured	according	to	their	continent	of	origin	(legend	in	the	middle	of	the	figure).	In	the	
outside	circle,	colours	and	labels	indicate	the	assignment	of	haplogroups	to	each	sample.	Each	leaf	
corresponding	 to	 an	 African	 sample	 has	 been	 highlighted	 with	 a	 small	 circle,	 red	 circles	
corresponding	 to	 UG2G	 samples.	 Figure	 S4b	 shows	 the	 distribution	 of	major	 Y	 haplogroups	 in	
among	the	UG2G	and	1000G	populations	and	continental	groups.	
	
Figure	S5:	Using	the	double	conditioned	site	frequency	spectrum	to	infer	population	history	
(relates	to	STAR	Methods	and	main	manuscript).	Figure	S5	represents	simulation	of	two	models,	
the	recent	gene	flow	model	(Figure	S5a)	and	the	ancient	structure	model	(Figure	S5b).	The	recent	
gene	 flow	model	 considers	 separation	 between	African	 and	 non-African	 populations	 at	 time	 tN,	
followed	by	migration	between	the	African	populations.	This	separation	is	followed	by	a	bottleneck	
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at	time	tb,	which	lasts	for	100	generations.		We	model	gene	flow	(f	is	the	proportion	of	gene	flow)	
from	 the	 European	 population	 into	 East	 Africans	 (Ugandans)	 at	 time	 tGF.	 The	 ancient	 model	
considers	structure	between	the	two	African	population	starting	T	generations	ago,	 followed	by	
limited	migration	m	between	the	two	African	populations.	The	ancestral	population	to	Uganda	has	
a	more	recent	common	ancestor	with	Europeans	tN	generations	ago.	We	model	a	bottleneck	as	in	
the	recent	gene	flow	model.	In	both	models	we	consider	population	growth	at	time	tG.	We	consider	
instantaneous	100	fold	population	growth	at	this	time.	Figure	S5c,	d	and	e	represent	simulated	dcsfs	
for	200	haplotypes	(10,000	replicates)	when	altering	parameters	systematically,	keeping	all	other	
parameters	constant.	The	standard	values	chosen	while	assessing	variability	 for	each	parameter	
were	tH=0.01,	4Nmt=5,	tGF=0.001,	f=0.05,	and	tG=0.0105.		In	each	case	the	black	line	represents	
the	observed	dcsfs.	The	model	seems	robust	to	most	parameters,	except	f.	Low	levels	of	admixture	
p=0.97	(f=1-p)	appear	to	produce	a	sharply	L	shaped	sfs,	while	higher	levels	tend	to	produce	a	flatter	
L	shaped	curve,	similar	to	the	observed	dcsfs	among	100	unrelated	Ugandans.	Figure	S5f	represents	
the	dcsfs	simulated	under	a	dual	model	with	ancient	structure	and	recent	admixture.	Varying	levels	
of	proportional	admixture	are	shown	(the	legend	shows	p=1-f,	f	being	the	proportion	of	admixture).	
The	 observed	 data	 is	 the	 black	 line,	 which	 fits	 reasonably	well	with	 the	 dual	model	 of	 ancient	
structure	and	recent	admixture	of	~7%	(p=0.93)	Figure	S5g	and	h	represent	simulated	dcsfs	for	
200	 haplotypes	 (10,000	 replicates)	 for	 the	 ancient	 structure	 model	 when	 altering	 parameters	
systematically,	keeping	all	other	parameters	constant.	The	standard	values	chosen	while	assessing	
variability	for	each	parameter	were	T=0.12,	tH=0.01,	4Nmt=5,	tG=0.0105	and	4Nm=5.		In	each	case	
the	black	line	represents	the	observed	dcsfs.	The	model	seems	robust	to	most	parameters,	showing	
a	flat	shaped	sfs,	which	differs	from	the	L	shaped	dcsfs	observed	among	100	unrelated	Ugandans,	
suggesting	the	model	is	a	poor	fit	to	the	observed	data.	
	
	
Figure	 S6:	 Inference	 of	 demographic	 history	 and	 split	 times	 of	 Uganda	 relative	 to	 other	
populations	(relates	to	main	manuscript).	Figs	S6a	and	S6b	show	the	population	size	history	of	
Uganda,	different	African	populations	and	CEU	estimated	using	Complete	Genomics	data	(a)	and	
1000	Genomes	phase	III	data(b).	Fig	S6c	shows	the	inferred	population	size	history	of	Uganda	and	
LWK,	using	different	time	segmentation	options	(-p	option)	in	MSMC2.	While	segmentation	of	time	
into	32	intervals	did	not	show	any	population	growth	in	Uganda	in	recent	times,	further	fine	scale	
segmentation	 into	50	 time	 intervals	suggests	 recent	population	growth.	Fig	S6d	and	e	 show	the	
cross-coalescence	rates	of	Uganda	with	other	African	populations	and	CEU	from	the	1000	Genomes	
Phase	III	data(d),	and	with	various	LWK	sample	pairs	(4	LWK	haplotypes	in	each	analysis),	and	YRI,	
and	CEU	trio	data	from	Complete	Genomics	data	(e).	Fig	S6f	represents	the	cross-coalescence	rate	
between	Uganda	and	YRI	haplotypes	using	Complete	Genomics		(cg)	and	1000	Genomes	Phase	III	
(1kg)	data,	with	two	different	modes	of	haplotype	phasing.	The	four	Ugandan	and	YRI	haplotypes	
for	each	analysis	belong	to	trios.	Dashed	lines	show	cross-coalescence	results	from	1000	Genomes	
data,	in	comparison	with	solid	lines	which	show	CCRs	from	Complete	Genomics	data.	Analysis	was	
carried	out	in	two	ways:	with	trio	based	phasing	of	haplotypes	(red	lines),	and	reference	panel	based	
phasing	 of	 haplotypes	 (refphased)	 (blue	 lines).	 All	 analyses	 gave	 consistent	 results,	 except	 for	
reference	based	phasing	of	YRI	Complete	genomics	data,	which	produced	more	recent	estimates	of	
split	times.	cg:	Complete	Genomics.	LWK:	Luhya;	YRI:	Yoruba;	CEU;	Utah	residents	with	Western	
and	Northern	European	ancestry.	
	
Figure	S7:	f2	sharing	and	dating	of	variants	within	and	between	populations	(relates	to	main	
manuscript).	Figure	S7a	represents	sharing	of	f2	variants	between	populations.	The	numbers	have	
been	 generated	 based	 on	 subsampling	 40	 haplotypes	 from	 each	 population	 (to	 reduce	 bias).	
Subsampling	was	 done	 a	 100	 times,	 and	 average	 number	 of	 f2	 variants	 shared	was	 calculated.	
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Normalisation	was	carried	out	by	the	total	number	of	variants	per	population	(in	each	row)	before	
plotting.	Figure	S7b	represents	a	heatmap	of	median	dates	(in	generations)	of	f2	haplotypes	shared	
among	populations,	with	dark	blue	representing	younger	shared	variation,	and	yellow	representing	
older	shared	f2	variation.	Figure	S7c	represents	 the	distribution	of	ages	of	 f2	haplotypes	shared	
between	Baganda	and	other	populations.	We	find	ancient	sharing	of	f2	variation	between	Baganda	
and	European	populations,	and	relatively	old	sharing	with	Ethiopian	populations	and	the	Zulu.	
	
Figure	 S8:	 Cumulative	number	of	 variants	discovered	 as	 a	 function	of	 sample	 size	 in	 the	
Ugandan	population	and	UK10K	ALSPAC	(relates	to	main	manuscript).	Figure	S8a	represents	
gains	 in	variant	discovery	as	a	 function	of	sample	size	comparing	randomly	sampled	Bagandans	
within	UG2G	and	UK10K	ALSPAC	data.	Figure	S8b	shows	the	number	of	new	SNPs	discovered	per	
individual	 in	 the	 Baganda	 population	 and	 UK10K	 APLSAC	 as	 a	 function	 of	 sample	 size.	We	 see	
greater	discovery	per	added	individual	in	Baganda	in	comparison	to	ALSPAC	up	to	~500	samples.	
It	must	be	noted	that	the	average	sequencing	coverage	of	UK10K	ALSPAC	is	7x	relative	to	4x	mean	
coverage	in	the	Uganda	sequence	resource.		

	
Figure	S9:	Distribution	of	disease	traits	by	DMs	in	HGMD	(relates	to	main	manuscript).	Fig	S9	
a-e	represents	levels	of	different	phenotypic	traits	by	common	variants	denoted	as	DM	in	the	HGMD.	
We	do	 not	 see	 any	 differences	 in	 phenotype	 for	 certain	 variants	 thought	 to	 be	 associated	with	
Cholesterol,	diabetes	and	thrombocytopeania	(a,	b	and	d),	while	statistically	significant	differences	
are	noted	for	some	DM	variants	(c	and	e).	
	
Figure	S10:	Locusview	plots	for	associations	(relates	to	main	manuscript).	Fig	S10a	shows	
the	association	at	with	ALT	at	the	GPT	locus.	Fig	S10b	shows	the	association	with	ALP	at	the	ALPL	
locus.	Figs	S10c	and	d	shows	multiple	independent	associations	(strength	of	LD	shown	in	red,	blue	
and	green)	with	bilirubin	at	the	UGT1A	locus,	and	GGT	at	the	GGT1	locus,	respectively.	Fig	S10e	
shows	the	association	of	the	a-3.7	thalassemia	deletion	with	HbA1c	levels.	Fig	S10f	shows	the	
locusview	plot	for	triglycerides	association	at	the	APOC1	locus.	Figs	S10g	and	S10h	show	
potentially	artefactual	associations	with	height	and	hip	circumference	on	chr3	and	ch14	
respectively.	There	is	no	correlation	observed	between	the	strength	of	significance,	and	LD.	Fig	
S10i	shows	the	novel	association	with	RDW	on	chr7.		
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