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Abstract

Understanding factors associated with varying affjicof Bacillus Calmette-Guérin (BCG)
would aid the development of improved vaccines ragjatuberculosis (TB). In addition,
investigation of individual-level factors affectingycobacterial-specific immune responses
could provide insight into confounders of vaccirfcacy in clinical trials. Mycobacterial
growth inhibition assays (MGIA) have been developedssess vaccine immunogeniaky
vivo and provide a measure of immune function agdimstmycobacteria. In this study, we
assessed the impact of immune cell phenotype, ®gdafavirus (CMV)-specific response
and sex orex vivo growth inhibition following historical BCG vaccitian in a cohort of
healthy individuals (n=100). A higher frequency oftokine-producing NK cells in
peripheral blood was associated with enhaneedivo mycobacterial growth inhibition
following historical BCG vaccination. A CMV-speaifiresponse was associated with T-cell
activation, a risk factor for TB disease and we abserved an association between T-cell
activation andex vivo mycobacterial growth. Interestingly, BCG-vaccinafechales in our
cohort controlled mycobacterial growth better thaales. In summary, our present study has
shown that individual-level factors influence capado control mycobacterial growth
following BCG vaccination and the MGIA could be dsas a tool to assess how vaccine

candidates may perform in different populations.

Keywords: tuberculosis vaccine, BCG, growth inhibition asseytomegalovirus, sex, NK

cell
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Introduction

Tuberculosis (TB) is the number one cause of dé&ath an infectious disease worldwide
and it is currently estimated that a quarter of therld population is infected with
Mycobacterium tuberculosis (Mtb) [1, 2]. The introduction of Bacillus Calmette-Giné
(BCG) vaccination and chemotherapy in the pasturgnprovided optimism to fight the
disease. Despite this, drug-resistant TB is nowagonrisk to global health security, and
BCG as the only licensed vaccine for TB is knownheve a variable efficacy against
contagious adult pulmonary TB [3, 4]. BCG remairss the most widely used vaccine
worldwide, primarily because it provides good potittn against TB in children [3].
Understanding factors associated with varying B@@getion could aid the development of

improved vaccination practice as well as novel e against TB.

It has been proposed that the observed variatidO6 efficacy is attributed to individual-
level factors which influence host mycobacteriaesiiimmune responses [5-7]. In a recent
systematic review, protection following BCG vacdioa was shown to vary according to the
geographical latitudes in which the vaccine waggivun the UK, a country where exposure
to environmental mycobacteria andMtb is regarded to be lower (latitude >°40BCG is
known to provide efficacy of up to 80% against paoirary TB [8] and vaccination of school-
aged children could provide protection for morentl2® years [9]. Another factor that may
influence the mycobacteria-specific immune resposssex. Globally, TB case rates are
much higher in men than in women, as reflected gipbal male to female ratio (M:F) of 1.7
for case notifications in 2016 [10]. Males conttduo 65% of TB cases worldwide and
although it is thought that socioeconomic and calttactors are contributing to the observed
sex bias, differences in the immune responses letthe sexes also play a role [11, 12]. It is
generally acknowledged that females exhibit morbusb immune responses towards
infection and vaccination compared to males [1B8]tHe context of susceptibility to TB,
differences in immune cells frequencies and fumstibave been thought to contribute to
higher TB rates in males [14]. With regard to BC&ceination, there is currently limited
evidence concerning the impact of sex on its ptoteceffect against pulmonary TB in
adults. Interestingly, BCG is thought to providenan-specific protective effect against
unrelated pathogens, thus contributing in reductibroverall cause of mortality, and this

effect is more pronounced in females rather thalesd5-17].
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Recently, Fletcheet al. found that T-cell activation is an immune cortelaf risk of TB
disease in BCG-vaccinated infants in a study eingpk large cohort of infants [18]. Chronic
exposure to antigen from persistent viral or baaltenfection is known to drive continuous
T-cell activation which could lead to dysfunctiohamtigen specific T-cells [19]. Further to
the findings of the infant study, it was identifigtht cytomegalovirus (CMV)-specific IFN-
responses were associated with T-cell activati@hcmuld have contributed to increased risk

of developing TB disease [20].

The mycobacterial growth inhibition assay (MGIA)shbeen developed as a measure of
vaccine immunogenicitgx vivo. Following optimisation works in the past few yef21-23],

the assay has gained attention for its potentidityato detect vaccine-mediated inhibition of
growth following BCG vaccination in adults and infa [24-26]. The assay described in the
present study involves direct co-culture of perijphélood mononuclear cells (PBMCs) with
mycobacteria, and subsequent measurement of myeolahcgrowth inhibition as a
functional assessment of vaccine response. Sestrdies have demonstrated the ability of
the MGIA to detect changes in the innate and adaptompartment following vaccination
[25, 27-30]. Recently, Joosten and colleagues (P@d8nd that the capacity to control
mycobacterial growth following receMtb exposure or BCG vaccination is associated with
nonclassical monocytes, and this observation ikatfe of the trained innate immune
mechanism [26]. In a study by Jensenal., IFN-y was associated with reduction of
mycobacterial growttex vivo following immunisation with a TB vaccine candidatemice
[31]. However, in that study the source IfNvas not found among the investigated vaccine-

specific T-cells, suggesting potential contributfoam other cell types, such as NK cells.

In this study, we demonstrated the impact of immeglephenotype, CMV-specific response
and sex on vaccine-specific mycobacterial growthibmion following historical BCG

vaccination in adult healthy volunteers.

Materials and Methods

Study participants and ethics statement

We recruited 100 healthy adult participants withn@ history of BCG vaccination or (ii) a
history of BCG vaccination more than 6 months befstudy enrolment. Verbal interviews
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were conducted to determine eligibility based om ébsence of any major chronic iliness,
current medication administration or symptoms déation. Participants were aged 18 to 80
years with no evidence of exposure or infectiorhwiB. Participants were excluded if they
were suffering from any persistent medical condito infection. Sample size was calculated
based on the assumption of effect size 0.70, wittvgp 0.8 and significance level 0.05.
Written informed consent was obtained from all jggyaints prior to enrolment in the study.
Individuals were recruited under protocols approbgdhe LSHTM Observational Research
Ethics Committee (ref 8762 and 10485). All proceduwvere conducted in accordance with
the Declaration of Helsinki, as agreed by the Wafledical Association General Assembly
(Washington, 2002) and ICH Good Clinical PractiGEp).

PBMC:s isolation and IFNy Enzyme-linked immunospot (ELISpot) assay

Peripheral blood (50ml) was collected and procesg#itin 6 hours. PBMCs isolation and
IFN-y ELISpot assay were performed as previously desdrihy32]. PBMCs were
cryopreserved in FBS (Labtech International Ltdkfid, UK) containing 10% DMSO
(Sigma-Aldrich) and stored in -8 freezer using CoolCell containers (VWR Internalp
Lutterworth, UK). PBMCs were thawed and @avivo IFN-y ELISpot assay was performed
to assess antigen-specific response. PBMCs weubabted overnight for 18 hours with 20
ug/ml purified protein derivative (PPD) (Oxford Bistem, Oxfordshire, UK). Positive
control Phytohemagglutinin (PHA) (1Qg/ml, Sigma-Aldrich) and negative control
(medium-only) wells were included for each partipsamples. Results are reported as spot
forming cells (SFC) per million PBMCs, calculate¢ Isubtracting the mean of the
unstimulated wells from the mean of antigen weflld aorrecting for the numbers of PBMC
in the wells. Spots were quantified using an autechgplate reader with ELISpot 5.0

software as well as checked visually.

Ex vivo Mycobacterial Growth Inhibition Assay

The growth inhibition assay was performed usingoprgserved PBMCs of the study
participants, as previously described [32]. In bre2-ml screw-cap tubes containing 3 X 10
PBMCs in 600 ml of medium were rotated af@#vith (.00 Colony Forming Units (CFU)
of BCG Pasteur Aeras strain (Rockville, MD, USAj fbdays. The PBMCs were then lysed
with sterile water, and the lysate transferred ®aatec MGIT supplemented with PANTA
antibiotics and OADC enrichment broth (all from Bet Dickinson, Oxford, UK). The tube
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was placed in a Bactec MGIT 960 and incubated gndWth was detected (measured as time
to positivity [TTP]). Use of a standard curve emabtonversion of the TTP of a sample tube
into bacterial numbers (log CFU) (Supplementary. Bd). All work with cells pre-BCG
infection and involving BCG infected samples washeldn Biosafety Level (BSL) 2

laboratory.

Enzyme-linked immunosorbent assay (ELISA)

MGIA supernatants were analysed to assess cytakineentrations by ELISA. The levels of
following cytokines were measured: IFN4interleukin (IL)-12p40, IL-6 [BD OptiEIA Kits,
Becton Dickinson, UK], tumor necrosis factor alp(iENF-a), granulocyte-macrophage
colony-stimulating factor (GM-CSF), interferon-gammduced protein 10 (IP-10),
granzyme B, IL-32, IL-22 [R&D Systems, Abingdon, PKIL-10, IL-17 [BioLegend,
London, UK] and perforin [Abcam, Cambridge, UK]. 9&ys were performed according to

the manufacturers’ instruction.

Flow cytometric immune phenotyping

PBMC were washed and stained witfalAnl Live Dead Blue Stain (Invitrogen), followed by
staining with the following titrated antibody fdané Lymphocyte panel: 2.5l CD3-AF700
(clone UCHT1, Ebioscience, Loughborough, UK), 1125CD4-APC/Cy7 (clone RPA-T4,
BioLegend), 1.25 CD8-Superbright645 (clone RPA-T8, Ebioscience}, # CD19-FITC
(clone HIB19, BioLegend), 2.5 CD56-APC (clone HCD56, BiolLegend), 28 CD16-
BV510 (clone 3G8, BioLegend), @ HLA-DR-PE (clone L243, BioLegend), gl LAG3-
PE/Cy7 (clone 11C3C65, BioLegend) and 1.pb PD1-BV421 (clone EH12.2H7,
BioLegend). For the Monocyte panel, the cells wst@ned with the following titrated
antibodies: 2.5u1 CD3-AF700 (clone UCHT1, Ebioscience), 2156 CD19-FITC (clone
HIB19, BioLegend), 2.5ul CD14-BV421 (clone HCD14, BioLegend), 26 CD16-BV510
(clone 3G8, BioLegend), 1.21 CD86-APC/Cy7 (clone IT2.2, BioLegend),.b HLA-DR-
PE (clone L243, BioLegend), fl CD206-APC (clone 15-2, BioLegend), | CD163-
BV605 (clone GHI/61, BioLegend), 218 CD64-APC/Cy7 (clone 10.1, BioLegend) angl5
CD123-BV650 (clone 6H6, BioLegend). Fluorescencausione (FMO) controls were set
using cells for each antibody and used to guidangaCells were acquired on a BD LSR |l

flow cytometer. Data was analysed with FlowJo safewersion 10.4 (Treestar Inc., USA).
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Results are presented as percentages of cells gedterg out of dead cells and doublets.
Gating strategies for the lymphocyte and monocyeefs are described in Supplementary
Fig. S2A and S2B.

Intracellular cytokine staining (ICS) flow cytometry

The ICS flow cytometry was performed as previowdgcribed [32]. In brief, PBMCs were
then incubated alone (medium only) as a negativeral with 5 pg/ml Saphylococcus
enterotoxin B (SEB; Sigma, UK) as a positive cohtmith (1100 CFU BCG (as per the
MGIA protocol) and with 10pg/ml CMV peptide pool (5 peptides, Rg/ml/peptides,
ANASPEC, Fremont, CA, USA). The CMV peptide pookdss the same as the Fletcler
al. study [20]. The incubation with BCG was perfornfed 4 days and the addition of SEB
and CMV was performed on Day 3. Two hours afterdtdition of SEB and CMV to the
respective tubes, brefeldin A (Sigma, UK) was adubedll tubes which were then incubated
for 18 hours at 3T until Day 4. Data was acquired using an LSRIivfloytometer (BD
Biosciences) and FACSDiva acquisition software [@Dsciences). ICS flow cytometry data
was analysed using FlowJo software version 10.&gStar Inc., Ashland, OR, USA).
Samples were gated sequentially on singlet, livB14€CD19, CD3 (lymphoid), CD4,
CD8" cells and negative control stimulation tubes wesed to set cytokine gates (see

Supplementary Fig. S3, ICS gating).

Statistical analysis

To identify statistical significance @&k vivo growth inhibition (log CFU values) and ELISA

responses, studentstest were used. Mann-Whitney Test was performed to identify

significant differences of the ELISpot, cell sudadlow cytometry and ICS responses
between groups. Spearman’s correlation coefficieag used to test for correlations between
growth inhibition and immune responses. A multipemparison correction was included
(Bonferroni), as indicated in each figure legendatiStical analyses were performed in
Graphad Prism 7 (GraphPad, La Jolla, CA, USA).

Results

Demographics of enrolled participants
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One hundred participants were enrolled in the st@fyvaccine-naive volunteers with no
history of BCG vaccination and 63 volunteers prasig-vaccinated with BCG (average time
since vaccination 29.4 years prior to enrolmengbl& 1 summarises the characteristics of
the study participants. Almost 70% of the BCG-vaated participants were from the UK.

Assessment ofex vivo growth inhibition and mycobacterial antigen-specifc cytokine

responses

The growth inhibition assay was performed to assepact of historical BCG vaccination on
ex vivo mycobacterial growth control. Using cryopreserieBMCs, enhanced growth
inhibition in PBMCs from BCG-vaccinated individualas observed compared to vaccine-
naive individuals (median log CFU 1.680 and 2.0@¥0.0001, Figure 1A). The IFM-
ELISpot assay was performed to measure the magnitfdthe mycobacteria-specific
response. The secretion of IFNR response to PPD was elevated in samples fracinated
individuals in comparison to unvaccinated individugmedian SFC 109.5 and 48, p<0.0001,
Figure 1B). There was a significant inverse cotreta between higher IFN-ELISpot
response and lower mycobacterial growth (p=0.0p2a8nan r = -0.23, Figure 1C).

Trends for higher production of Thl-type cytokif#aN-y, IP-10, TNFe, IL-12) as well as
GM-CSF were observed in the BCG-vaccinated grouppared to the vaccine-naive group
(Table 2). There was a statistically significantretation between higher IL-10 production
and higher mycobacteriggrowth (Spearman r = 0.37, p=0.0003, Table 2). Mdule,
historical BCG-vaccination was associated with #iggntly increased frequency of
mycobacterial antigen specific IL-ZD4 T-cells in the BCG-vaccinated group upon 4 days
of stimulation with BCG (p=0.008, Supplementary g S4). Similar trends were observed
with the frequencies of IFN- as well as TNFx" CD4 T-cells (Supplementary Figure S4).
There were no significant correlations between fteguencies of BCG-specific CD4 and
CD8 T-cells and mycobacterial growth, although dhserved trends suggest that these cells

may contribute to control of growth (Supplementaaple S1).

Associations between historical BCG vaccination andhe frequency of circulating
leukocyte subsets
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Historical BCG vaccination was not associated Virigguencies of circulating leukocytes in
T-cell, NK cell and monocyte compartments (Suppletagy Table S2). However, significant
correlations were observed between the frequerafid$K cells and enhanced control of
mycobacterial growtlex vivo in the naive and BCG-vaccinated groups (p<0.05af®pan’s

correlations, Table 3). In the BCG-vaccinated grdugher frequency of cytokine-producing
NK cells was associated with reduced mycobactegraivth (Spearman r = -0.41, p=0.015,
Figure 2A). A higher production of perforin was ebsgd from the cells of BCG-vaccinated
participants compared to naive (p=0.018, Figure ZB§ production of perforin significantly
correlated with enhanced growth inhibition (Spearma= -0.44, p=0.013, Figure 2C and
Supplementary Table S3), and the association vilasighificant when the correlation was
performed in the BCG-vaccinated group only (Spearn=a-0.36, p=0.037, data not shown).
Correlations with other measured NK cell associateakers (granzyme, 1L-32, 1L-22) did

not reach significance (Supplementary Table S3).

Impacts of CMV-specific T-cell response and T-cekictivation on ex vivo mycobacterial

growth inhibition

CMV-specific T-cells producing IFN: and TNFea*, notably in the CD8 compartment, were
significantly associated with the frequency of Ticexpressing LAG3 and PD1 markers
(p<0.05, Spearman’s correlations, Table 4 and EiguA-D). Historical BCG-vaccination
was not associated with differences in CMV-specifesponse nor T-cell activation
(Supplementary Table S2 and S4). However, T-ceilaion was shown to correlate with
higher growth of mycobacteriax vivo, particularly in the naive group (Figure 3 and
Supplementary Table S5). LAG8D4 T-cells were significantly associated with gtvef
mycobacteria (p=0.047), with a similar trend for G& CD8 T-cells (p=0.072) (Figure 3 F
and I).

Impact of sex onex vivo mycobacterial growth inhibition and cytokine resporses, and its

association with immune cell phenotype

In this study, we demonstrated that sex was adsdciwgith differences in immune response
following historical BCG vaccination. First, BCG-a@nated females exhibited a superior
capacity to control mycobacterial growth when coregao males (p=0.029, Figure 4B). In

contrast, males showed a trend towards higheryiFésponse from PPD-stimulated PBMCs
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as well as higher IP-10 production in the MGIA suya¢ant, both in naive and BCG-
vaccinated groups (Figure 4 C-F). Supplementary€l8b6 summarises the sex comparisons

of all measured cytokines from the MGIA supernaant

In the BCG-vaccinated group, females had a higheguiency of cytokine-producing NK
cells (p=0.018, Figure 5A). There was also a higbed/CD8 ratio in females compared to
males in the naive group (p=0.028, Figure 5B).regtngly, there was a higher frequency of
monocytes in males in the BCG-vaccinated group @49 Figure 5C), with a trend of
higher monocyte-to-lymphocyte (ML) ratio in BCG-eatated males compared to females
(p=0.08, Supplementary Table S7). In terms of T-aetivation, BCG-vaccinated females
exhibited a lower frequency of LAGXDS8 T-cells (p=0.0297, Figure 5D). While in the
naive group, females also had lower frequenciesctivated CD8 T-cells expressing HLA-
DR, LAG3 and PD1 (p<0.05, Supplementary Table $Wg lower frequencies of activated
T-cells in females may be a consequence of loweV&lecific CD8 T-cells response

(Figure 5E and Supplementary Table S7).

Discussion

The present study reports that mycobacterial gramtitbition ex vivo is enhanced following
historical BCG vaccination in adult healthy voluert® In this study, the average time since
BCG vaccination was 29.4 years prior to enrolménir results are in line with previous
studies such as Fletcher al. [24] and Prabowat al. [32] which detected the impact of
historical BCG vaccination after more than 20 yeasgg the same PBMC-based MGIA.
Most vaccinated individuals enrolled in our studye &JK participants in which BCG
vaccination is known to be effective [9]. A high&N-y response was also observed in the
BCG-vaccinated group compared to the naive groumgyube ELISpot assay, reflecting the
presence of mycobacterial-specific memory cells. réduer, there was a significant
correlation between IFN-response and lower mycobacterial growth. Seveudllighed
MGIA studies reported increased IFN3roduction following BCG vaccination [24, 33, 34],
and BCG-specific IFN-response measured by ELISpot assay is known &sdmciated with
reduced TB disease risk following BCG vaccinationimfants [18]. The ELISpot assay
measures all cells that secrete izl response to antigen stimulation, including N&l<
and yd T-cells in addition to conventional T-cells. Foirigs on the conventional T-cells

response, in our study, we did not observe a sogmf association between Thl-type

10
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cytokine-expressing T-cells ama vivo mycobacterial growth inhibition. This finding was i
contrast with the study of Smitit al. [25] which showed an association between MGIA
control capacity and the frequency of polyfunctio@®4 T-cells using studying a small
cohort of BCG-vaccinated infants. However, our lsswere consistent with the finding of
Joosteret al. [26] using the same PBMC-based MGIA, as well ahwaitstudy by Kaginat

al. [35] which showed no association between polyional T-cells and the risk to develop

TB disease following BCG vaccination.

We also observed trends of higher Thl-type cytakinghe MGIA supernatants from BCG-
vaccinated participants compared to the naiverdstmgly, there was a strong significant
correlation between IL-10 production and reducedtrad of mycobacterial growth. This
observation replicates earlier findings, in whith10 was associated with reducexivivo
growth inhibition, and was significantly predictivef mycobacterial growth through
inhibition of other pro-inflammatory cytokines [3637]. IL-10 is known to have
immunosuppressive activity by inhibiting T-cell pferation and IFNy production, leading
to reduced macrophage activation [38]. The capadftindividuals to produce IL-10 may
need to be considered when assessing TB vaccieetfh clinical trials.

In this study, the frequency of NK cells — in pautar cytokine-producing NK cells — is
associated with enhanced vivo mycobacterial growth inhibition following historicBCG
vaccination. This may account for our correlatiogiviieen IFNy ELISpot response and
control of mycobacterial growth as IFNsecreting NK cells will be measured in addition to
CD4 and CD8 positive T-cells. Our results againpsupa recent finding, in which a greater
frequency of putative cytokine-producing CDI$K cells was associated with reduced
mycobacterial growth in the multiple regressionlgsia of MVA85A correlate of risk study
[36, 39]. Cytokine-producing NK cells are the maource of NK-cell derived cytokines such
as IFNy, TNF-a and GM-CSF [40], which were modestly increasedthe MGIA
supernatants of the BCG-vaccinated group in outystinitially, cytotoxicity and cytokine-
producing functions of NK cells were regarded ae tlistinct functions with little synergy
between them [40, 41]. However, it was recentlywainahat IFNy and TNFe could
synergistically enhance NK cell cytotoxicity [43h our study, cells obtained from BCG-
vaccinated participants produced a higher levepafforin and the secretion of this Iytic

granules was associated with enhanced growth iidrbi

11
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Although considered a component of innate immurstesly, an emerging body of evidence
has revealed that NK cells can also behave in aanetike manner following infection or
vaccination [reviewed in [43, 44]]. NK cells isatat from pleural fluid express the memory
marker CD45R0O and produce higher amounts of yFd IL-22 in response to stimulation
with IL-12, IL-15 and BCG when compared with CD45R®@lIs [45, 46]. Even though NK
cells do not have antigen receptors generated Imetige rearrangement, they possess
receptors which allow direct antigenic contact,ulésg in subsequent cellular activation
[44]. This process will generate antigen-specifi€ dells, which lead to enhanced response
following re-exposure with the same stimulus [43].4n addition, work by Kleinnijenhuiet

al. reveals that BCG vaccination promotes augmenteahsiacy responses towards the same
and unrelated stimulus through trained innate imtgumechanism [49]. The growth
inhibition assay has recently been shown to be tblgetect contribution from the trained
innate immune compartment, followirngtb exposure or BCG vaccination, by the role of
nonclassical monocytes [26]. Our present studyshasvn the additional contribution of NK
cells toex vivo mycobacterial growth control, and in line with thiscent clinical trials also
reported that immune cells associated with pratecfrom TB disease and after BCG

vaccination were not T-cells, but IFNjproducing NK cells [50, 51].

Furthermore, we have demonstrated that a CMV-speei$ponse may be associated with T-
cell activation, in particular in the CD8 compartmeand this activation is correlated with
mycobacterial growtkex vivo. In HIV, T-cell activation has been establishechassk factor
for acquisition of infection as well as progressioom infection to disease [52-54]. In TB,
evidence has emerged denoting the role of CMV andlTactivation on TB disease risk [18,
20], and our study is the first the show such aasion withex vivo mycobacterial growth. In
this study, we chose to measure CMV-specific T-cgllokine response with ICS flow
cytometry rather than with serology, as evidencthaliterature showed that CMV-antibody
levels do not correlate with the size of the T-ceiponse against CMV and the ICS method
iIs more sensitive for detection of CMV-specific akihe-producing T-cells [55, 56].
Unfortunately in this study due to a technical temion, we were unable to perform CMV
serology in our cohort samples. CMV infection i€agnised to drive the expansion of
NKG2C" NK cells [57], which do not respond well to cytoki stimulation discussed above
[58, 59]. Further studies are required to bettedemstand the interplay between CMV-
specific response, T-cell activation and NK cellshie context of BCG vaccination.

12
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Differences in TB disease notification rates betwdiee sexes are well documented and
thought to be a result of biological factors, ind#éidn to social factors [11, 14, 60].
Therefore, it is of interest that our study demmatsd a higher capacity of BCG-vaccinated
females to control mycobacterial growgk vivo compared to males. In conjunction to this
data, we found that females had a higher frequaiayytokine-producing NK cells, and
lower frequency of activated T-cells as well CM\espic response. In addition, females also
had a lower monocyte frequency, with a trend obwer ML ratio compared to males.
Altogether, these individual-level factors appear dontribute to the enhanced growth
inhibition in females following BCG vaccination. &u sex specific effect has also been
observed with measles and smallpox vaccines, wieenales are more protected than males
following vaccination [61, 62]. The epidemiologicaibservation that the sex bias in TB does
not arise until puberty has suggested the impontalet of sex hormones [11]. In general,
testosterone is considered to downregulate ther@$donse, whereas estrogen is believed to
enhance it [14]. Moreover, genetic or epigenetifedences between sex may also play a role

as well in the observed sex-differential protecta¥iect [13].

In summary, we have demonstrated the impact ofviddal-level factors onex vivo
mycobacterial growth inhibition in a cohort of higl adult volunteers. Our results indicate
that immune cell phenotype, cytomegalovirus-speaiéisponse and sex have impacts on
immunity following BCG vaccination. Thesex vivo observations are reflective of
epidemiological data and published human studies, such impacts may need to be
considered when testing TB vaccine candidatesahpgopulations. Importantly, researchers
should consider the impact of sex in clinical vaecistudies, as the impact of sex in
infectious diseases is common but often negled&{l [The MGIA assay offers aex vivo
testing platform for assessment of a wide rangeaoflidate TB vaccines, either using BCG
or virulent Mtb as the immune target, with the ability to reflester-individual variation
which may be important for vaccine effectivenesbe Ex vivo MGIA is therefore an
important additional tool for the TB vaccine comntyrand should continue to be assessed
for its ability to act as a correlate of vaccinetoed protection.
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Tables

Table 1.Characteristics of study participants.

Total Participants : 100

Characteristic Naive (n=37) BCG Vaccinated (n =63)
Female [no. (%)] 28 (75.7 %) 42 (66.7 %)
Median age [yr (range)] 31 39

(23-70) (24-80)
Average time since BCG - 294
vaccination [yr (range)] (10-58)
Sﬁu[rr‘]t(;y (‘3/‘;)(]’“9'” 8(21.6 %) 44 (69.8 %)

Table 2. Summary of mean cytokine responses measdravith ELISA assays, assessed
from MGIA supernatant samples after 4 days of dtdoe. Comparisons were made between
naive and BCG-vaccinated groups (unpaired t-tést)yalues indicate mean of concentration
in pg/ml [95% CI]. Correlations were assessed wthvivo mycobacterial growth among
responders (Spearman’s correlation). A p value x@s considered statistically significant
(in bold), and after a multiple testing correctimmy values with p <0.0063 were considered

significant (underlined).

n= 37 BCG-naive and n=@BG-vaccinated participants.

***n<0.001.
Cytokine Comparison Correlation V\_/ith ex vivo
(pg/ml) _ . mycobacterial growth
Naive BCG-vaccinated p-value r p-value
IFN-y 12.47 [8.245-16.69] 23.37 [10.8-35.94] 0.1962 | -0.027 0.8432
IP-10 111.7 [55.42-168] 204.5 [112.1-297] 0.1505 190. 0.1158
TNF-a 37.97 [2.547-73.4] 97.98 [38.61-157.4] 0.1471 -0.35 0.0558
IL-12 27.6 [3.033-52.17] 63.61 [20.83-106.4] 0.2299 -0.23 0.3158
IL-10 52.55[31.07-74.03] 59.99 [36.56-83.41] 0.868 0.37*** 0.0003
GM-CSF | 7.729[-1.688-17.153] 88.54[26.19-150.9] 51D -0.37 0.1552
IL-6 356.7 [246.1-467.3] 315 [236.5-393.4] 0.5293 .01 0.5449
IL-17 0.00 [0.00-0.00] 0.1596 [0.00-0.4083] 0.3291 -0.13 0.2141

Table 3. Correlation of immune cell frequencies in peripheral blood aed vivo

mycobacterial growth inhibition. Assessment wasfgrared from 16 BCG-naive and 34
BCG-vaccinated participants. Correlations wereqrered from a total of 50 participants, as
well as from each naive and BCG-vaccinated groeggactively (Spearman’s correlation). A
p value <0.05 was considered statistically sigaific(in bold), and after a multiple testing
correction only values with p <0.0031 were consdesignificant (underlined). Note: The
ML ratio was obtained by dividing the percentage mbnocytes by the sum of the
percentages of T- and B-cells. The NK cell raticcwatained by dividing the percentage of
cytokine-producing by cytotoxic NK cells. *p<0.05p<0.01.
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Correlation with ex vivo mycobacterial growth
Leukocyte subsets All participants Naive BCG-vaccinated
r p-value r p-value r p-value
T-cells -0.068, 0.6367 0.29 0.2708 -0.30 0.0866
CD4 T-cells -0.041  0.7764 0.17 0.5172 -0.091 08®%
CD8 T-cells 0.24 0.0938 0.36 0.1714 0.093 0.6011
CD4/CD8 ratio -0.16 0.2718 -0.2( 0.4579 -0.068 .74@8
NK cells -0.27 | 0.0593 | -0.71** | 0.0028 -0.19 0.2833
Cytokine NK cell -0.26 0.0702 -0.47 0.0679 -0.41* 0.0147
Cytotoxic NK cell -0.25 0.0814| -0.64** | 0.0093 -0.19 0.2699
NK cell ratio -0.2 0.1602 -0.35 0.1866 -0.087 6211
Monocytes 0.12 0.4244) -0.0088 0.9758 0.13 0.4638
ML ratio 0.064| 0.6609| -0.044 0.8714 0.083 0.6390
M1 monocytes -0.076  0.5993 -0.28 0.286[7 -0.031 .8610
M2 monocytes -0.16 0.2784 -0.16 0.5458 -0.12 914
M1/M2 ratio 0.059| 0.6831 -0.17 0.5283 0.15 0SB93
CD64 monocytes -0.063  0.6659 -0.29 0.2664 0.0pP8 0.87pH9
CD123 monocytes -0.072  0.6169 -0.27 0.3025 0.015 0.9313
Suppressor monocytes 0.201 0.1414 0.31 0.2381 890J0 0.6149

Table 4. Correlation of CMV-specific T-cell responses and T-cell activatiégssociations
were investigated from 3 different subsets of CMéaific cytokiné T-cells producing IFN-
y', IL-2" or TNF", respectively. Three markers were used for T-aefivation: HLA-DR,

LAG3 and PD1. A p value <0.05 was considered sieaidy significant (in bold), and after a
multiple testing correction only values with p <083 were considered significant

(underlined) (Spearman’s correlation). n=50 pgvaais, consisted of 16 BCG-naive and
n=34 BCG-vaccinated participants. *p<0.05, **p<Q.01

Correlation with activated T-cells

CMV-specific HLA-DR * CD4 T-cells | LAG3" CD4 T-cells | PDT° CD4 T-cells
cytokine™ T-cells
r p-value r p-value r p-value
IFN-y" CD4 T-cells | 0.026 0.8748 -0.004  0.9805 020 02112
IL-27 CD4 T-cells -0.045 0.7823 0.056 07310  -0.0082 601
TNF-a* CD4 T-cells | 0.054 0.7401 0058  0.7239| 0091 05757
HLA-DR * CD8 T-cells | LAG3" CD8 T-cells | PDT’ CD8 T-cells
IFN-y" CD8 T-cells | 0.31 0.0552 | 0.39* | 00140 | 0.44* | 0.0049
IL-27 CD8 T-cells -0.087 0.5917 0.0024  0.9885 -0.15 00360
TNF-a* CD8 T-cells | 0.28 00799 | 0.35* | 00281 | 0.33* | 0.0375
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Figure Legends

Figure 1. Growth inhibition and immune responses following hstorical BCG
vaccination. Assessment was performed from 37 BCG-naive andB6®&-vaccinated
participants.(A) Growth inhibition was compared using BCG input00 Colony Forming
Unit (CFU) as immune target (unpaired t-test). Dataresented as total number of log CFUs
per sample, which was determined by use of a stdndave.(B) IFN-y production from
PBMC following stimulation with PPD was comparedgivh-Whitney test). Numbers above
each group represent median (range). SFC, spoirfgroells.(C) The correlation between
ex vivo growth inhibition and PPD-specific IFN-response was assessed (Spearman’s
correlation). A p value <0.05 was considered diasiBy significant. Dots and squares
represent individual data points, and the cenimaklindicate the median response with inter-
guartile range (IQR). ****p<0.0001.

Figure 2. NK cells correlations. A higher frequency of cytokine-producing NK cells
(CD56"" CD16™) correlated with enhanceex vivo mycobacterial growth inhibition
(Spearman’s correlation(A). A perforin ELISA was performed from MGIA superaats
and the response was compared between vaccinataupg (unpaired t-testiB). The
production of perforin was associated with enhareedvo growth inhibition (Spearman’s)
(C). A p value <0.05 was considered statistically gigant. *p<0.05, **p<0.01.

Figure 3. CMV-specific responseswere associated with higher CD8 T-cell activation,
expressing markers LAGA{B) and PD1 C-D) respectively. Activated CD4 and CD8 T-

cells E-J) were correlated with higher growth of mycoba@egenotably in the naive groups

(F, I). A p value <0.05 was considered statisticallygigant (Spearman’s correlation). n=50
participants, consisted of 16 BCG-naive and 34 B@Geinated participants. *p<0.05,

**np<0.01.

Figure 4. Sex impact on growth inhibition and immune respons following historical
BCG vaccination. Assessment was performed from 37 BCG-ndA&,E) and 63 BCG-
vaccinated participantéB,D,F). (A-B) Growth inhibition was compared between sad
data was presented as total number of log CFUsgmple (unpaired t-test). (C-D) IFN-
production from PBMC following stimulation with PRRas compared (Mann-Whitney test).
Numbers above each group represent median (raB§€), spot forming cells. (E-F) IP-10
was measured from MGIA supernatants using ELISAygsnean, unpaired t-test). Dots and
squares represent individual data points, and éméral lines indicate the median response
with IQR. *p<0.05.

Figure 5. Comparison by sex of immune cells phenotype (A-CJ.-cell activation (D) and
CMV-specific T-cell response(E). Assessment was performed from 16 BCG-naive and 34
BCG-vaccinated participants. The box plots showrtiieimum and maximum values (ends
of the whiskers), the median (band near the midtikhe box) and interquartile ranges. Blue
and red colour represent males and females, regggctA p value <0.05 was considered
statistically significant (Mann-Whitney). *p<0.05p<0.01, ****p<0.0001.
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