Exogenous Phytase Added to Lipid Based Nutrient Supplements Increases Fractional and Total Absorption of Zinc Among Young Gambian Children: A Randomized Controlled Trial (OR07-01-19)

K. Ryan Wessells, 1 Sarah Zyba, 1 Leslie Woodhouse, 2 Kabiru Ceesay,³ Andrew Prentice,³ Kenneth Brown,¹ and Rita Wegmuller³

¹University of California, Davis; ²Agriculture Research Service, Western Human Nutrition Research Center, US Department of Agriculture; and ³MRC Unit The Gambia at London School of Hygiene & Tropical Medicine

Objectives: Dietary phytate inhibits zinc absorption from composite meals in adults. The objective of this study was to investigate the efficacy of adding exogenous phytase to a small-quantity lipid based nutrient supplement (SQ-LNS) on zinc absorption among young children.

Methods: In a double-blind randomized controlled trial, intraindividual differences in fractional and total absorption of zinc (FAZ and TAZ, respectively) from SQ-LNS with and without phytase were measured in 30 asymptomatic 18-23 month old children in the Kiang West district of The Gambia. Using a cross-over design, children received for one day each test meals of a millet-based porridge with 20 g SQ-LNS containing 8 mg zinc and either: 1) exogenous phytase (~500 phytase units (FTU)) or 2) no exogenous phytase. The test meals were provided on consecutive days in randomized order. FAZ was measured

using a dual-stable isotope tracer ratio technique with ⁶⁷ Zn and ⁷⁰ Zn as oral tracers, randomized independently of SQ-LNS product, and 68 Zn as the intravenous tracer. TAZ was calculated as the product of total dietary zinc (TDZ) intake from test meals (i.e., porridge, SQ-LNS and stable isotope) and FAZ. FAZ and TAZ were compared for meals with and without phytase using mixed-models ANOVA with product, study day, and oral isotope allocation as fixed effects and individual child as a random effect.

Results: Twenty-six participants completed the study. The prevalence of stunting, underweight and wasting were 20%, 30% and 13%, respectively; no children had low plasma zinc concentrations (< 65 μ g/dL). TDZ and phytate intakes from the test meals were 7.2 ± 2.2 mg and 182.9 ± 64.7 mg, respectively (phytate: zinc molar ratio = 2.4 \pm 0.2). Mean FAZ increased from 8.6 \pm 1.3% to $16.0 \pm 1.3\%$ when exogenous phytase was added to the SQ-LNS product (P = 0.0002). Mean TAZ from porridge test meals containing SQ-LNS with phytase was more than double that from test meals containing SQ-LNS without phytase (1.12 \pm 0.07 mg and 0.52 \pm 0.07 mg, respectively; P < 0.0001).

Conclusions: The addition of exogenous phytase to a meal of milletbased porridge with SQ-LNS improved both FAZ and TAZ. These results suggest that phytate reduction may be an important strategy to improve zinc absorption among young children.

Funding Sources: Nutriset, SAS.