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S1. ASSUMPTIONS81

Based on our understanding of how CYD-TDV works in transmission settings of interest, we model the expected82

life time benefits and costs of vaccination interventions versus status quo on an individual basis. This framing implies83

that interventions have no effect beyond the individual, which effectively ignores any changes to transmission.84

Similarly, all benefits and cost are on the margin, so for example expenditure on testing and vaccination is85

independent of coverage level. However, economies of scale could be incorporated by, say, adjusting the vaccine or86

test prices to account for lower unit costs.87

Our model is on a discrete, annual time scale. Practically, this means representing all dengue natural history88

effects as discrete-year effects (e.g. transient cross-serotype immunity). Likewise, interventions only occur once a89

year, and all data is interpreted at this yearly scale.90

We assume dengue is an environmental risk, rather than a dynamically spread infection, with multiple, but91

indistinguishable, serotypes. Combined with the annual time scale, this means we represent dengue exposure risk as a92

probability per year-of-life effect; see SI Section Exposure Model for details. Since we assume the dengue serotypes93

are indistinguishable, they have identical infection probability, disease risk, circulation probability, etc. We assume94

that any particular serotype is life-time immunizing against that serotype, and that infection in one year precludes95

infection by any serotype in the next year. Finally, we assume no direct age-dependence for any aspect of dengue96

disease.97

Using this model of dengue exposure, we pre-compute sample life trajectories for 1 million individuals (to ensure98

relatively smooth estimates), all living to age 70. We did not explicitly explore sensitivity to this life expectancy99

(either mean or distribution), but the qualitative trends can be determined from reasoning: increase in life expectancy100

increases the intervention value (and vice versa), as more people are likely to have multiple life infections, and any101

increase in single infections is well outside the test and vaccinate window. However, this effect applies to such a small102

proportion—those with a single infection by or during the test-then-vaccinate window, on the margin of having one103

or two total life time infections that gain or lose an infection by extending or shortening life decades later—and so we104

expect it to have little impact on any of these assessments.105

For dengue disease natural history, we assume only the first and second infections have potentially associated106

disease.107

We assume that, aside from infection-history-derived disease outcomes, vaccination has no impact on infections108

over life. That is, the transient immunity observed during CYD-TDV trials does not change the number of lifetime109

infections any individual experiences. We justify this based on the relatively short duration of immunity compared110

to life expectancy. By making this assumption, we can use pre-sampled life infection trajectories without having to111

perturb them by vaccination. We also assume the vaccination perfectly replaces one natural infection; this is equivalent112

to assuming it is perfectly efficacious against disease in seropositive recipients. Estimates indicate that seropositive113

efficacy is more like 70-80% [1]. We used an optimistic assumption because we are computing a threshold. Additionally,114

assuming a leaky vaccine would be incompatible with pre-computing life histories. However, the derivation that follows115

could accommodate a non-leaky, imperfect vaccine efficacy.116

Finally, we assume tests are perfectly sensitive and specific. This provides an upper bound on benefit, which can117

be used to preclude combinations of strategy and price for vaccines and tests, irrespective of test performance. The118

detailed cost performance of real tests will vary by setting, test properties, and intervention approach. We assume119

any extant individual test history (e.g. previous lab confirmed dengue infection) is irrelevant to this strategy on a120

longer term basis, and so we ignore that testing; going forward, any non-vaccine related testing could be reasonably121

considered part of our cost estimate.122

On balance, these assumptions tend to overvalue the intervention. We judge that the net effect is likely small123

relative to estimating limiting space of a test-then-vaccinate regimen for the yes or no decision many settings now124

face for CYD-TDV. For those settings where the prices are in (or close enough to) the beneficial space, this type of125

analysis should be revisited with more modelling detail.126

S2. COST-BENEFIT EQUATIONS127

A. Definitions128

Our model represents the following costs:129

• F , S: the average individual costs of first-like and second-like infections, respectively. These should be based on130

local economic data, e.g. hospital costs, lost productivity, willingness to pay, but like most economic decisions131

will have a subjective element132



5

• V , T : the unit cost of vaccine and testing regimens; these values are to be constrained, or have proposed prices133

to be evaluated against those constraints134

• ν = V
S

, τ = T
S

: the costs of the vaccine and test as a fraction of the cost of second-like infection; deriving equations135

in these terms allows general results136

• CX , the total individual cost for scenario X (no intervention, vaccination without testing, etc.)137

• ∆X , the difference between status quo (C0; no vaccination) and intervention X: ∆X = C0 − CX . For an138

intervention to have net benefit, ∆X ≥ 0 must be true139

Note, that these costs may represent any perspective (individual, societal, etc.), but should be from a consistent140

perspective.141

The population is stratified by total lifetime infections, as well as number of infections at the routine testing age142

(or vaccination age, for the comparison scenario without testing). These proportions in turn determine the costs and143

benefits of a particular vaccination and testing strategy. We represent these proportions with the following general144

constructions:145

• PX : proportion having X infections during life; this value is age independent146

• NPX{A}, proportion having N infections prior to consideration for vaccination at age A, and X total lifetime147

infections148

• N and X can include modifiers, like X+ to mean X or more, or have ∀ to mean any number of total infections149

(by definition, X ≥ N).150

• C{A}, the conditional probability of seroconverting between age A and A + 1, given seronegativity at age A.151

In general, we drop A, as it is the same for all terms in most equations. We only use it explicitly for multiple testing152

scenarios. Here are some example proportions which are relevant to our final derivation results:153

The proportion of individuals that154

• P0: . . . are lifetime seronegative155

• P1+ : . . . have one or more lifetime infections156

• 0P2+ , 1P2+ : . . . have no or one infection, respectively, prior to routine age, and have two or more infections over157

life158

• 2+P∀: . . . have two or more infections at the time of vaccination159

• 1P∀, 1+P∀: . . . have exactly one or at least one infection at the time of vaccination160

In a later section, we will define an exposure model to estimate these probabilities, but we may take the specifics161

of that for granted while we layout the cost relationships. Because the cost model is defined only in terms of the162

probabilities, we could replace the exposure model with another approach that provides the same probabilities, as163

long as it addressed other pertinent assumptions, like the independence of individuals.164

B. Status Quo and Vaccination Only Costs (C0, CV )165

Without vaccination, an individual’s expected lifetime dengue burden would be:166

C0 = (1 − P0)F + P2+S (1)

Note that the proportions are all independent of age, and only concern lifetime outcomes. When considering167

interventions, age becomes a factor (implicit with the XPN terms, which are a function of A). With universal168

vaccination (i.e., irrespective of serostatus), the cost would be:169

CV = 1P∀F + 2+P∀(F + S) + V + 0P1+S (2)
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FIG. S1. Diagram Key. Legend for the diagrams showing life time trajectories for various intervention scenarios.

FIG. S2. Outcomes for Status Quo. Pathways show the probability of various life trajectories and ultimate costs for Eq. 1.

C. Model with Free Testing170

To begin understanding the cost model with testing, we imagine combining the vaccine with a free test (denoted171

V ′); this assumption is obviously ludicrous—the test will cost resources to produce and use—but provides insight172

about the limits of vaccine value for an epidemiological setting.173

We assume this imaginary test identifies the number of past dengue infections, so we refer to it as the ordinal174

test. This test enables us to only vaccinate seropositives that could have another disease-bearing infection, and avoid175

vaccinating seronegatives until they seroconvert. We use the test every year from the routine testing age, until the176

individual receives the vaccine. The cost for this hypothetical regimen is:177

CV ′ = (1 − P0)F + (1 − P0 − 2+P∀)V ′ + 2+P∀S (3)

Note that V ′ vaccination only occurs for seropositives that have only had one infection and individuals that se-178

roconvert after the routine testing age; because we assume no benefit against third and later infections, we do not179

administer vaccine to those with multiple past infections. If we have a test that only detects seropositivity but not180

detailed infection history, which we refer to as a binary test, then costs would be:181

CV † = (1 − P0)F + (1 − P0)V † + 2+P∀S (4)
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FIG. S3. Outcomes for Unconditional Vaccination. Pathways show the probability of various life trajectories and
ultimate costs for Eq. 2. Compared to Fig. S2, individuals that will experience infections over life are now either vaccinated
before or after their first infections, meaning they may have a first-like infection converted to a second-like infection, or possibly
avoid second-like infections. The vaccination may also be wasted, if given to individuals having already experienced multiple
infections.

FIG. S4. Outcomes for Vaccination with a Free Ordinal Test. Pathways show the probability of various life trajectories
and ultimate costs for Eq. 3. Compared to Fig. S3, we never induced second-like infections, and indeed avoid all of them that
would have occurred after the routine testing age.

which we distinguish by the V † term. The only change is on the coefficient for the V term (and the ν = V
S

terms,182

when we switch to non-dimensional form); this result will be consistent as we consider more complicated models.183

D. Cost-Benefit Constraint Equations for Vaccination-Only and Free Testing Models (CV , CV ′ , & CV †)184

If we compare all these testing scenarios to non-vaccination:185
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FIG. S5. Outcomes for Vaccination with a Free Binary Test. Pathways show the probability of various life trajectories
and ultimate costs for Eq. 4. Note that the only distinction from Fig. S4 is the additional vaccination along the uppermost
path, the trajectory corresponding to two or more infections prior to the routine vaccination age. While only a single term,
this can make vaccination substantially more expensive in settings where multiple infections are frequent prior to the routine
testing age.

∆V = C0 −CV = (1 − P0 − 1P∀ − 2+P∀)F + (P2+ − 0P1+ − 2+P∀)S − V
= (P1+ − 1P∀ − 2+P∀)F + (0P2+ − 0P1+ + 1P2+ + 2+P2+ − 2+P∀)S − V
= 0P1+F + (1P2+ − 0P1)S − V (5)

∆V ′ = (P2+ − 2+P∀)S − (1 − P0 − 2+P∀)V ′ (6)

∆V † = (P2+ − 2+P∀)S − (1 − P0)V † (7)

Recall that by definition, vaccination without testing is only net beneficial if ∆V ≥ 0. Testing can expand the region186

of vaccine benefit, but only if ∆V ′ ≥ 0 or ∆V † ≥ 0, depending on the test mechanism. For routine vaccination at a187

certain age to be net beneficial after the introduction of any real testing cost, the vaccine regimen cost must obey:188

ν′ < P2+ − 2+P∀
1 − P0 − 2+P∀

(8)

ν† < P2+ − 2+P∀
1 − P0

(9)

Note that combined with either of the free tests, the constraint on vaccine cost depends only on three generic189

parameters of the context (the average cost of second-like infections (S, implicit within ν), and the lifetime probabilities190

of 0 or 2+ infections) and one parameter of the intervention (i.e., age A of consideration for vaccination, which191

determines the fraction of the population that has had two or more infections, 2+P∀, at that point). As the routine192

age is shifted earlier, the probability of two infections prior to consideration for vaccination becomes vanishingly small,193

i.e. 2+P∀ → 0. Therefore, at a young enough vaccine age the constraint equations converge to the ratio194

ν′ = ν† ≤ P2+

1 − P0
(10)

or the fraction of infectees that will have multiple infections out of all infectees. We could have arrived at this result195

reasoning from event probabilities: an individual only pays the vaccine cost if they experience at least one infections196
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FIG. S6. Maximum Vaccine Cost Fraction Allowing Net Benefit. The approximate maxima for ν based on Eq. 8-9,
including their convergence at younger ages. These curves represent the thresholds for vaccine costs given real tests, i.e. non-
free with less than perfect sensitivity and specificity. Note that these curves only represent the restriction on ν for some benefit;
the amount of benefit is generally shrinking faster than the cap on vaccine cost, particularly for the ordinal test. We facet
by epidemiological parameters here: seroprevalence in 9-year-olds (a surrogate for dengue transmission level) and disparity (a
measure of risk heterogeneity).

(1 − P0), and only individuals that experience multiple infections benefit (by avoiding S). Therefore, the maximum197

value of V is the conditional probability of experiencing S given any infections.198

Note that ν′ ≥ ν† for any routine testing age, but the value of ν† grows faster with decreasing age (as it must for199

them to converge).200

E. Models with Non-Free Testing (CV T ′ , CV T †)201

If we now acknowledge the cost of testing, T , and consider only a single test (instead of potentially testing several202

times), the individual costs are:203

CV T ′ = T ′ + (1 − P0)F + (0P2+ + 2+P∀)S + 1P∀V (11)

CV T † = T † + (1 − P0)F + (0P2+ + 2+P∀)S + 1+P∀V (12)

and the intervention benefits are:204

∆V T ′ = (P2+ − 0P2+ − 2+P∀)S − T ′ − 1P∀V
= P2+1P2+S − T ′ − 1P∀V (13)

∆V T † = P2+1P2+S − T † − 1+P∀V (14)

Which makes our non-free, single testing constraints for cost effectiveness:205

τ ′ + 1P∀ν ≤ P2+1P2+ (15)

τ † + 1+P∀ν ≤ P2+1P2+ (16)

Notably, there is still no dependence on the cost of first infections (F ).206

F. Multiple Testing (CV LT ′ , CV LT †)207

Now consider if we allow testing every year, up to a maximum of L tests (including the first). Like the free test208

intervention, we may identify people who seroconvert after initial consideration for vaccination, though since there is209

a test cost, there will be diminishing returns (and eventually losses) with repeat testing.210
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FIG. S7. Vaccine and Single Test Cost Fraction Boundary. The approximate boundary for ν and τ based on Eq. 15-16.
To be net beneficial, the costs of testing and vaccine (under a single test strategy) must result in a point below the relevant line
(based on routine vaccination age and context). We show how the threshold line shifts with age. We facet by environmental
sensitivity parameters here: seroprevalence in 9-year-olds (a surrogate for dengue transmission level) and disparity (a measure
of risk heterogeneity).

Relative to CV T ′ or CV T † , lifetime seronegatives (P0) will pay for L − 1 additional tests. The fraction of the211

population in 0P1+ will pay for some number of additional tests, and possibly vaccination (i.e., for the proportion of212

individuals seroconverting during the testing window). This means costs for this strategy will change some 0P1+{A}213

(i.e., seronegative at A, the routine initial testing age) to 1P1+{A + n} at some later age prior to A + L − 1 (i.e.,214

seroconverting during the testing window, and therefore vaccinated).215

Relative to single testing, there will instead be some average number of tests, ⟨n(A,L)⟩, and additional vaccination216

based on the amount of seroconversion during the testing period, thus increasing the cost of the intervention. In217

return, there will be a reduction in the proportion incurring S. Relative to indefinite free testing, this reduction will218

be incomplete, as some proportion will pass the entire L years of the testing period without seroconversion, but still219

suffer multiple future infections.220

The average number of tests is related to the proportion of people already seropositive at the start of the testing221

interval—who will get only one test—and the annual seroconversion probability each year through the end of the222

testing interval. Note that the average number of test is identical for both binary and ordinal tests. Under our223

assumed perfect testing model and at-most one infection per testing interval, the distinctions between outcomes in224

the first test only influences vaccination at that time, and further testing is only identifying initial seroconversions.225

⟨n(A,L)⟩ =1 + 0P1+{A}(C{A} + 2
0P1+{A+1}
0P1+{A}

C{A+1} + 3
0P1+{A+2}
0P1+{A}

C{A+2} + . . .

. . . + (L−1) 0P1+{A+L−2}
0P1+{A}

C{A+L−2}) + (P0 + 0P1+{A+L−1}) (L−1) (17)

which can be conveniently expressed as a summation of terms226

⟨n(A,L)⟩ = 1 + 0P∀{A+L−1}(L−1) +
L−2

∑
i=0

C{A+i}0P1+{A+i}(i+1) (18)
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FIG. S8. Outcomes for Vaccination with Multiple Ordinal Tests. Pathways show the probability of various life
trajectories and ultimate costs for Eq. 21, assuming the ordinal test. Unlike to single testing, both the upper (corresponding
to infection(s) prior to testing) and lower (an initial non-passing test followed by any future trajectory) paths are allowed.

note that for the case L = 1, the summation term is empty, and therefore ⟨n(A,1)⟩ = 1, recovering the single test227

case.228

Vaccination can also be considered in terms of this series, but since we are unconcerned about whether they229

are vaccinated due to the first test or the last, only if it happens during the interval, we can instead consider the230

complementary proportion of the un-vaccinated. For all versions of the test, those that are still seronegative at the231

end of the testing period, 0P∀{A+L−1}, will not be vaccinated. For the ordinal test, those with two infections at232

the start of routine testing will also not be vaccinated; n.b., these categories are mutually exclusive. Therefore, the233

proportion of the population vaccinated, PV is:234

P †
V {A+L−1} = 1 − 0P∀{A+L−1} (19)

P ′

V {A+L−1} = P †
V {A+L−1} − 2+P∀{A} (20)

Revisiting our net cost equations, using T ∗ to mean either test scenario:235

CV LT ∗ = ⟨n(A,L)⟩T ∗ + (1 − P0)F + (0P2+{A+L−1} + 2+P∀)S + PV ∗ {A+L−1}V (21)

Meaning the benefit constraint equations are:236

∆V LT ∗ = (P2+ − 0P2+{A+L−1} + 2+P∀)S − ⟨n(A,L)⟩T ∗ − P ∗

V {A+L−1}V (22)

Again, the cost of first-like infections, F , does not appear anywhere in the constraints. We can also divide by S237

and again work in the non-dimensional terms to find the net benefit constraint relationship:238

⟨n(A,L)⟩τ∗ − P ∗

V {A+L−1}ν ≤ (P2+ − 0P2+{A+L−1} + 2+P∀) (23)
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FIG. S9. Outcomes for Vaccination with Multiple Binary Tests. Pathways show the probability of various life trajecto-
ries and ultimate costs for Eq. 21, assuming the binary test. Again, note that the only distinction from Fig. S8 is the additional
vaccination along the uppermost path, the trajectory corresponding to two or more infections prior to the routine vaccination
age.

G. Comparison to Vaccination Without Testing239

As a final step, we compare the benefits of vaccination with and without testing. This allows us to determine240

where adding testing of makes vaccination a more cost-effective intervention. Recalling CV and CV LT ∗ from Eq. 2241

and Eq. 21, respectively, we can write:242

CV −CV LT ∗ = (1+P∀ − 1 + P0)F + (0P1+ − 0P2+{A+L−1})S − ⟨n(A,L)⟩T ∗ + (1 − PV ∗ {A+L−1})V (24)

For testing to improve the intervention cost-benefit, CV − CV LT ∗ ≥ 0. Imposing that constraint, and re-arranging243

to match the form of Eq. 23:244

⟨n(A,L)⟩τ∗ + (1 − PV ∗ {A+L−1})ν ≤ (0P1+ − 0P2+{A+L−1}) − 0P1+
F

S
(25)

Some notable results are derivable directly from this relationship. Increasing vaccine cost increases the advantage of245

the testing intervention, which is intuitive: testing decreases vaccination rates, so the more expensive the vaccine, the246

more cost avoided by testing. The other direct result is that increasing costs of first-like infections decreases the value247

of testing. This outcome can be understood by thinking about what the vaccine does in practice, namely preventing248

one of F or S, and what testing does, namely shifting prevention from F to S. As F and S become closer, the value249

to preventing S instead of F decreases, and thus so does value to testing. As explained in the Context Economics250

section, we consider a pessimistic F
S
= 0.5.251

In general, we see that including testing makes the intervention more beneficial in lower transmission settings, while252

it is wasted in high transmission settings. In high transmission settings, we already have a lot of information about253

serostatus, so testing provides little benefit.254
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FIG. S10. Vaccination Benefit with and without Testing, F/S=0.5.

FIG. S11. Vaccination Benefit with and without Testing, F/S=0.2.
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S3. EXPOSURE MODEL255

As stated earlier, we assume there is a constant force-of-exposure. However, we also divide individuals into low or256

high risk sub-populations, so there are three fundamental parameters in the model: the two exposure risks and the257

proportion in high versus low risk.258

For natural history of the infection, we assume that exposure to a serotype leads to infection if the individual259

has not been exposed to that serotype previously. We also assume that infection in one year precludes infection in260

the following year, consistent with empirical observations of temporary cross immunity. Finally, we assume only one261

dengue serotype is circulating in any given year. In the next section we consider relaxing these assumptions, and262

justify our decision to use these simpler assumptions.263

We can use age-seroprevalence data to fit this force-of-exposure model. These data allow us to estimate the264

probability that individuals have experienced at least one infection by a given age. If we define the constant exposure265

forces (and complementary avoidance probabilities) fX = 1−sX and probability of being in the high risk group as ρH ,266

the probability of being seropositive at age A is:267

P(+∣A) = ρH(1 − sAH) + (1 − ρH)(1 − sAL) (26)

Once we fit that model to specific age-seroprevalence data, we can then use simulation to estimate the relevant NPX268

terms for that context, and thus the τ -ν constraints for that setting. While analytical derivation of these is probably269

feasible for this set of assumptions, simulation affords us the ability to consider a broader range of assumptions in the270

future without having to re-derive outcomes.271

Recall that for the particulars of our cost model, we need the following probabilities:272

The proportion of individuals that273

• 0P∀: . . . are seronegative at a given age274

• P1+ : . . . have one or more lifetime infections275

• 0P2+ , 1P2+ : . . . have no or one infection, respectively, prior to consideration for vaccination, and have two or276

more infections over life277

• 2+P∀: . . . have two or more infections at the time of vaccination278

• 1P∀, 1+P∀: . . . have exactly one or at least one infection at the time of vaccination; and279

• C{A}, the conditional probability of seroconverting between age A and A + 1, given seronegativity at age A.280

A. Alternative Exposure Models281

If there were more readily available data, it might be worth considering models incorporating (1) maternally-derived282

temporary immunity and (2) multiple serotype circulation.283

To include maternal immunity, we would need to consider the probability of having a previously infected mother as284

part of the first exposure year. If an individual had an exposed mother, we would simply assume one the individuals285

was immune in that year, meaning one fewer exposure year in their life history. We could derive the probability of286

maternal exposure with maternal-age distribution and the age-seroprevalence from the fit, meaning we do not actually287

need an additional parameter, just more data.288

For multiple simultaneously circulating serotypes, we considered allowing up-to four exposures per year, probabilis-289

tically ordered by relative weights. Since all the fitting is by first exposure, we could fit any one parameter model of290

exposure (e.g. a four-trial binomial draw). This would tend to drive up second infection rates, perhaps more accu-291

rately representing high risk populations in hyper-endemic locales where all four dengue serotypes routinely circulate.292

This would in turn tend to drive the benefit curve towards earlier consideration for routine vaccination. However, the293

data to correctly parametrise and constrain such a model (for example, age sero-ordinality surveys) is more detailed294

and does not appear to be commonly available.295
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FIG. S12. Trends by Age of Relevant Population States. Assorted NPX trend lines, faceted by seroprevalence in 9-year-
olds (a surrogate for overall force of exposure) and disparity level (a representation of population heterogeneity in exposure
risk).

B. Fitting Force of Exposure Model296

To fit the force of exposure model, we change parameters to break the parameter symmetry (i.e., that either297

risk category could be higher or lower) and express them parameters so that they have infinite domain, which is298

preferable for most numerical solvers. The detailed code can be found in the denvax package source repository,299

https://gitlab.com/cabp_LSHTM/denvax, particularly the serofit function and utility functions earlier in the300

R/main.R script.301



16

C. Serosurvey Fits302

Using this model, we fit to two data sets, Table S1 from the CYD14 trial [2] (reference Table 4; there is a discrepancy303

for Indonesia in 13-16 year-olds category when compared to reference Table 1; we have assumed Table 4 is correct) and304

Table S2 from work in Peru [3] (sample numbers read from reference Fig. 2 and percentiles extracted from reference305

Fig. 3 using a webtool [4]):306

Country Age N S+

Indonesia

2-4 87 50
5-8 90 76
9-12 116 101
13-16 57 56

Malaysia

2-4 68 22
5-8 82 28
9-12 102 59
13-16 48 32

Philippines

2-4 150 87
5-8 167 125
9-12 157 139
13-16 128 119

Thailand

2-4 68 33
5-8 118 73
9-12 117 93
13-16 38 32

Vietnam

2-4 97 43
5-8 142 70
9-12 145 90
13-16 22 17

TABLE S1. Data from L’Azou (2016).

Country Age N S+

Peru

5 261 146
6 307 209
7 340 244
8 368 269
9 353 273
10 340 273
11 327 272
12 320 257
13 267 222
14 238 209
15 205 187
16 147 135
17 98 93

TABLE S2. Data from Morrison (2010).

For our practical examples, we use Peru, a Latin American setting, and Malaysia, a Southeast Asian setting. The307

Peru data is ideal for the maximum-likelihood style approach we used. The aggregated CYD-14 data, on the other308

hand, throws away information and complicates model fitting, whether using maximum likelihood or other approaches.309

While the data may “look better” after aggregation, this mode of reporting in fact impedes further study.310

D. Context Sensitivities311

For our parameter sensitivities, we considered three dimensions: high risk fraction, aggregate force of exposure, and312

disparity. In keeping with past analyses, we distinguish aggregate force of exposure by seroprevalence at a particular313

age. We define disparity by the seroprevalence odds ratio (OR) between the high and low risk groups. These values314

are governed by:315
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S+(A) = ρHS+H(A) + (1 − ρH)S+L(A)
= ρH(1 − (1 − fH)A) + (1 − ρH)(1 − (1 − fL)A)
= ρH(1 − sHA) + (1 − ρH)(1 − sLA) (27)

OR = S+H(A)(1 − S+L(A))
S+L(A)(1 − S+H(A))

= (1 − sH
A)sLA

(1 − sLA)sHA
(28)

Therefore, for a particular {ρH ,S+ = 1 − S−,OR}, where the dependence on A is implicit, we can identify α = sHA
316

and β = sLA:317

α = 1 − S+

ρH
+ 1 − ρH

ρH
− 1 − ρH

ρH
β

= 1 − S+

ρH
− 1 − ρH

ρH
β = S−

ρH
− 1 − ρH

ρH
β (29)

OR = (1 − α)β(1 − β)α
0 = ORα + (1 −OR)αβ − β
= OR(S− − (1 − ρH)β) + (1 −OR)(S− − (1 − ρH)β)β − ρHβ
= ORS− + ((1 −OR)(S− − ρH) −OR)β − (1 −OR)(1 − ρH)β2 (30)

where Eq. 30 can be solved with the quadratic equation, subject to β ∈ (0,1), and substituted into Eq. 29.318

We are being somewhat circular with the concept of disparity, in that we fit the serosurvey data assuming a two-319

group risk model, and then calculated the OR, rather than identifying mechanistically a useful distinguishing variable320

(e.g. living with air conditioning versus not) and measuring OR. More targeted deployments may require finding such321

a factor that predicts similar disparity as the serosurvey approach.322

For our practical examples, the model parameters are:323

Country S+ ρH log10(OR)
Indonesia 0.8806040 0.4668654 1.777455
Malaysia 0.5072371 0.1401441 31.251271
Philippines 0.8419634 0.3162632 26.265428
Thailand 0.7342112 0.2579016 28.575004
Vietnam 0.5870976 0.3116296 32.564970
Peru 0.7684385 0.2940011 1.566647

TABLE S3. Fits to seroprevalence data.

For our sensitivity study, we used the following three by three grid for force of exposure and combined high risk324

fraction and disparity:325

Force of Risk Fraction & Disparity
Exposure Low Medium High
Low {0.5,0.5,2} {0.5,0.3,17.5} {0.5,0.1,33}
Medium {0.7,0.5,2} {0.7,0.3,17.5} {0.7,0.1,33}
High {0.9,0.5,2} {0.9,0.3,17.5} {0.9,0.1,33}

TABLE S4. Sensitivity categories, S+, ρH , log10 OR.

S4. CONTEXT ECONOMICS326

For the two practical examples in the main text, Peru and Malaysia, we use previously assumed cost data for S,327

V , and T to set ν and τ [5].328

The generally assumed cost of a vaccine regimen is 78 USD (21 USD per dose, for a three dose course, plus 15 USD329

for additional logistical costs), and test costs have been suggested at approximately 5 USD.330
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For Malaysia, if we assume the public payer perspective, the benefit of preventing a second-like infection is roughly331

S = 86 USD, therefore ν ≈ .9 and τ ≈ .2. For Peru, if we assume the public payer perspective, S = 223, ν ≈ .3 and332

τ ≈ .1.333

In these two settings, we also estimated F
S

; in Malaysia, it is F
S
≈ 0.2 while in Peru F

S
≈ 0.4. For our comparison to334

vaccination without testing, we assumed F
S
= 0.5 as an upper limit.335
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[2] Mäına L’Azou, Annick Moureau, Elsa Sarti, Joshua Nealon, Betzana Zambrano, T Anh Wartel, Luis Villar, Maria RZ339

Capeding, and R Leon Ochiai. Symptomatic dengue in children in 10 Asian and Latin American countries. N Engl J Med,340

374(12):1155–1166, 2016. doi:10.1056/NEJMoa1503877.341

[3] Amy C. Morrison, Sharon L. Minnick, Claudio Rocha, Brett M. Forshey, Steven T. Stoddard, Arthur Getis, Dana A. Focks,342

Kevin L. Russell, James G. Olson, Patrick J. Blair, Douglas M. Watts, Moises Sihuincha, Thomas W. Scott, and Tadeusz J.343

Kochel. Epidemiology of dengue virus in Iquitos, Peru 1999 to 2005: Interepidemic and epidemic patterns of transmission.344

PLoS Negl Trop Dis, 4(5):1–17, May 2010. doi:10.1371/journal.pntd.0000670.345

[4] Ankit Rohatgi. Webplotdigitizer, 2011-2019. URL https://automeris.io/WebPlotDigitizer/.346
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