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Abstract

Background: Between August and December 2017, more than 625,000 Rohingya from Myanmar fled into
Bangladesh, settling in informal makeshift camps in Cox’s Bazar district and joining 212,000 Rohingya already
present. In early November, a diphtheria outbreak hit the camps, with 440 reported cases during the first month. A
rise in cases during early December led to a collaboration between teams from Médecins sans Frontières—who
were running a provisional diphtheria treatment centre—and the London School of Hygiene and Tropical Medicine
with the goal to use transmission dynamic models to forecast the potential scale of the outbreak and the resulting
resource needs.

Methods: We first adjusted for delays between symptom onset and case presentation using the observed
distribution of reporting delays from previously reported cases. We then fit a compartmental transmission model to
the adjusted incidence stratified by age group and location. Model forecasts with a lead time of 2 weeks were
issued on 12, 20, 26 and 30 December and communicated to decision-makers.

Results: The first forecast estimated that the outbreak would peak on 19 December in Balukhali camp with 303
(95% posterior predictive interval 122–599) cases and would continue to grow in Kutupalong camp, requiring a bed
capacity of 316 (95% posterior predictive interval (PPI) 197–499). On 19 December, a total of 54 cases were
reported, lower than forecasted. Subsequent forecasts were more accurate: on 20 December, we predicted a total
of 912 cases (95% PPI 367–2183) and 136 (95% PPI 55–327) hospitalizations until the end of the year, with 616 cases
actually reported during this period.

Conclusions: Real-time modelling enabled feedback of key information about the potential scale of the epidemic,
resource needs and mechanisms of transmission to decision-makers at a time when this information was largely
unknown. By 20 December, the model generated reliable forecasts and helped support decision-making on
operational aspects of the outbreak response, such as hospital bed and staff needs, and with advocacy for control
measures. Although modelling is only one component of the evidence base for decision-making in outbreak
situations, suitable analysis and forecasting techniques can be used to gain insights into an ongoing outbreak.
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Background
Between August and December 2017, more than 625,000
Rohingya fled into Bangladesh as a result of large-scale
operations conducted by the Myanmar military in Rakhine
state [1]. This resulted in one of the largest refugee crises
in recent history. The new refugees joined more than
212,000 Rohingya already present from past exoduses and
settled in mostly informal makeshift camps and amongst
the host community [2]. The poor living conditions typic-
ally seen in refugee settings—such as reduced access to
health care; low standards of water, sanitation and hygiene;
malnutrition and high population density—are often asso-
ciated with infectious disease outbreaks. Such settings can
enable transmission of infections associated with poor
water and sanitation, such as cholera and hepatitis E
[3, 4], as well as infections that in other settings are
prevented through routine childhood vaccination, such as
measles and diphtheria [5].
On 10 November, a case of diphtheria was reported to

a health care facility in Balukhali run by Médecins sans
Frontières (MSF). Diphtheria is caused by the diphtheria
toxin-producing bacterium Corynebacterium diphtheriae,
which is transmitted through droplets and close physical
contact, typically resulting in disease of the upper re-
spiratory tract. Symptoms can include the formation of
a pseudo-membrane obstructing airways or markedly
enlarged lymph nodes. Common complications include
difficulty breathing and swallowing and myocarditis.
The incubation period is typically between 2 and 5 days
(range 1–10) [6], with an estimated basic reproduction
number of 4–5 [7]. Due to its high transmissibility and

reported case fatality rates of over 10% [6], diphtheria
was a worldwide major public health concern with one
million cases and 50,000 to 60,000 deaths per year in
the 1970s, leading to the inclusion of diphtheria toxoid-
containing vaccines in the Expanded Programme on
Immunization by the World Health Organization (WHO).
As a result, the global diphtheria incidence has decreased
drastically in the second half of the last century (by over
90% between 1980 and 2000), but remains of significant
concern in areas with low vaccination coverage [6]. Re-
cently, outbreaks have occurred in Yemen, Venezuela,
Indonesia and Haiti [8, 9].
In the month after the first case was reported in Balu-

khali, there were 440 additional suspected cases reported
in nearby refugee settlements, 168 of which were re-
ported on 9 Dec 2017 alone. An initial temporary Diph-
theria Treatment Centre (DTC) in Balukhali run by MSF
opened in the week starting on 17 December (epidemio-
logical week 51). In the early stages of an infectious dis-
ease outbreak, it is crucial to understand the epidemiology
of the infection. By quantifying transmission dynamics,
it is possible to produce forecasts of future incidence
[10, 11] and evaluate the potential impact of control
measures [12, 13]. The significant rise in the number of
diphtheria cases in early December (Fig. 1) led to the
establishment of a collaboration between teams from
MSF and the London School of Hygiene and Tropical
Medicine (LSHTM) with the goal to forecast the poten-
tial scale of the outbreak and the resulting resource
needs using transmission dynamic models. The first
forecast was issued on 12 December, with three more

Fig. 1 Outbreak analysis timeline with respect to the epidemic curve (black line). Green lines show the timing of events relevant to analysis:
reporting of the first case, involvement of modellers at LSHTM, MSF decision on bed numbers required and MSF handover of the treatment
centre. Blue lines show the date on which each of the four LSHTM forecasts was communicated to MSF
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subsequently issued, before the DTC in Balukhali closed
on 8 January 2018 (handing over diphtheria activities to
several newly opened DTCs run by different organizations).
Such analysis can face multiple challenges in real time, in-
cluding delays and variability in available data streams, lim-
ited pre-existing epidemiology studies and knowledge gaps
about risk factors and immunity in the host population.
Besides describing the modelling methodology and
forecasts, we report on the practical implications of
the analysis, examining the role real-time modelling of
infectious disease dynamics can play in operations and
decision-making in a complex humanitarian crisis.

Methods
Data
Between 8 November and 31 December 2017, a total of
2624 cases (495 from Kutupalong (attack rate 0.12%),
1868 from Balukhali (attack rate 0.97%) and 261 from
other or unknown nearby locations) presented at the
Diphtheria Treatment Centre in Balukhali run by MSF.
The total refugee population had been estimated at
around 608,000 in early December (Additional file 1).
From 9 December 2017 to 12 January 2018, we received
daily anonymized line lists of suspected cases seen at
this centre (Additional file 2). Fields included the patient
identification number, sex, age, approximate address of
the patient, date of onset of symptoms, date of reporting
to the DTC, signs and symptoms, treatment and clinical
outcome. First, we checked the line list for objectively
erroneous values—such as dates that were in the future
or dates of reporting prior to the date of onset of symp-
toms—and corrected these where possible. We then
computed the daily crude incidence within three age
groups (0–4, 5–14 and ≥ 15 years) and two geographical
locations (Balukhali and Kutupalong, with other/un-
known locations omitted from the analysis).

Adjustment for delayed reporting
To adjust for delays between symptom onset and case
presentation and estimate the actual incidence at a given
point in time, we computed the cumulative distribution
of reporting delays of reported cases (defined as the
number of days between symptom onset and case pres-
entation). We then divided the crude daily incidence
values by the corresponding values in this distribution
(e.g. delay 0 for the current day, delay 1 for the previous
day etc.) to obtain the adjusted incidence. Initially, we
used all previously reported cases to compute the delay
distribution, but changed the analysis window as more
data became available. From 18 December onwards, we
used cases with symptom onset between 10 December
and 16 December to compute the delay distribution;
from 24 December, we used cases with symptom onset
between 17 December and 23 December, and starting

on 30 December, we used all cases with symptom onset
since 10 December.

Mathematical model and forecasting
We modelled diphtheria transmission dynamics using an
age- and location-stratified deterministic compartmental
model, which followed a susceptible-exposed-infective-re-
covered (SEIR) structure. Upon exposure to infection,
initially susceptible hosts (S) transitioned to a latent
compartment (E), then an infectious compartment (I)
and finally a recovered and immune compartment (R).
We included three age groups in the model (denoted by
subscript a): aged under 5 (denote by subscript 1), aged 5
to 14 (subscript 2) and aged over 14 (subscript 3). We also
modelled two locations (denoted by subscript L): Balukhali
and Kutupalong. We assumed that proportion rL of cases
were reported and a proportion h of reported cases would
require inpatient treatment. We further assumed the time
taken to seek treatment,T1, as well as the average duration
of hospital stay, T2. We did not include births and deaths
in the model as the average human lifespan was much
longer than the duration of the outbreak.

dSa;L
dt

¼ −ΛSa;L

dEa;L

dt
¼ ΛLSa;L−vEa;L

dIa;L
dt

¼ vEa;L−γIa;L

dRa;L

dt
¼ γIa;L

dΛL

dt
¼

X

a

Ia;L

dCa;L

dt
¼ γIa;L

dHL

dt
¼ τ1hrL

X

a

Ia;L−τ2HL

Here, ΛL denotes the force of infection for camp L and
Ca,L the cumulative number of cases. We fixed the mean
latent period, 1/v, and infectious period, 1/γ, and esti-
mated the camp-specific transmission rate, βL. We also
estimated the initial number of infective individuals,
I0a;L , for each age group and location. We assumed the
initial proportion susceptible in the 5–14 age
group, S02;L , with susceptibility in the other two age

groups relatively lower, i.e. S01;L ¼ α1;L S02;L , and where

S03;L ¼ α3;L S02;L were parameters to be fitted.
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The gaps in time between the onset dates of early re-
ported cases suggested the generation time of infection
may have been around 4–5 days (Additional file 3: Figure
S1). We therefore assumed an incubation period of 3
days and an infectious period of 3 days. Averaging over
hosts who have completed their infectious period, this
implied an expected generation time of 4.5 days. How-
ever, the generation time across everyone currently in-
fected early in an epidemic may be shorter, as most
hosts will have been infected by people early in their in-
fectious period, shrinking the generation time. Vaccin-
ation coverage for DPT3 in Myanmar was reported to
be 85% in 2012 [14], but coverage was likely to be lower
in the Rohingya population [15]. In November 2017, a
health survey performed by MSF estimated that measles
vaccination coverage in Rohingya children aged between
6 and 59months was 20–25%, following a vaccination
campaign in children between 9months and 14 years old
[16]. Vaccination data for diphtheria were not available,
but we assumed that 20% of the 5–14 age group were
initially immune to diphtheria.
Besides the fixed parameters, the model had seven pa-

rameters that were estimated independently for each
location: the proportion of cases reported, the transmis-
sion rate, the relative susceptibility in under 5 and over
14 age groups and the initial proportion of infectious in
each age group. When an outbreak is growing exponen-
tially and with the limited data available initially, it is
often not possible to estimate the initial number of
infectious cases and the proportion of cases reported
separately with non-informative priors. Generally,
these two parameters are inversely correlated; the
same issue occurs for the initial level of susceptibility
and the transmission rate. We therefore assumed that
the initial proportion of susceptibles in the middle
age group was 80% (equivalent to a Dirac delta prior).
To obtain a prior distribution for the proportion of
reported cases, we performed a rough calculation
using data from the pre-vaccination era. Prior to
widespread DTP3 vaccination coverage in the UK,
there were around 55,000 cases of diphtheria per year
[17] and 750,000 live births each year [18]. Given that
diphtheria has a relatively high basic reproduction
number, R0, of 4–5, almost all initially susceptible in-
dividuals would be expected to eventually become in-
fected in the absence of vaccination [7]. Hence,
almost all newborns would become infected at some
point. Based on the data from the pre-vaccination
era, this would suggest that at least 7% (55,000/
750,000) of all diphtheria infections appear as cases.
We therefore imposed a strong gamma prior distribu-
tion on the proportion of cases reported, which had a
mean of 10% and a standard deviation of 2.2%. We
assumed uniform positive priors on all other

parameters, with range (0, 1) for the relative suscepti-
bility of the under 5 and over 14 age groups and the
proportion of cases reported.
The 14 free parameters in the model (seven for each

camp) were calibrated to the adjusted incidence at each
location using a Markov Chain Monte Carlo (MCMC)
model fitting procedure via a Metropolis-Hastings algo-
rithm. Incidence was adjusted for reporting delays (see
previous section), and the most recent date of reported
cases in each dataset was removed when fitting, as these
data were most likely to be biased by delays (Fig. 2b, c).
The case count in age group α in camp L for week t was
defined as ct, a, L =Ct, a, L −Ct − 1, a, L. We assumed that re-
ported weekly cases followed a negative binomial distribu-
tion with mean rLCt, a, L and a camp-specific dispersion
parameter ϕL to account for the potential for temporal
variability in reporting between weeks [19]. The statistical
and mathematical models were implemented in R version
3.4.3 [20] using the deSolve package [21].
As the forecasting analysis was developed from scratch

in real time, the modelling framework was continuously
refined to improve efficiency of mixing and integration
with data cleaning and processing pipelines. In real time,
we ran MCMC chains for between 20,000 and 100,000 it-
erations, with lengths chosen to ensure convergence of
model forecasts. In the analysis presented here, we show
results based on outputs from three chains of 100,000
iterations using the final version of the forecasting
model, with a burn-in period of 20,000 iterations. The
marginal distributions of posterior estimates are shown
in Additional file 3: Figures S2–S5, with MCMC trajectories
in Additional file 3: Figures S6–S9. Key parameters of inter-
est (R0, proportion reported, relative susceptibility) all had
an effective sample size of at least 100. A summary of all
parameters and their prior distributions is given in Table 1.
The model was used to generate forecasts of future inci-

dence on 12 December, 20 December, 26 December and 30
December. To produce a forecast, the model was calibrated
to the past adjusted incidence in each age group and loca-
tion and 1000 epidemics simulated up to 2 weeks into the
future. Median and uncertainty (95% posterior predictive
interval (PPI)) were communicated to partners. When fore-
casting bed requirements, we assumed that 15% of the
reported cases would require treatment as inpatients, and
an average hospital stay would be 5 days. These estimates
were informed by early patient data in the line list.

Results
Adjustment for delayed reporting
The delay between symptom onset and case presentation
was 2 and 6 days respectively for the first two reported
cases. This subsequently increased to 13 (range 5 to 21)
days before stabilizing around a median value of 2 (range
0 to 12) days from early December onwards (Fig. 2a).
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Comparing estimated incidence adjusted for reporting
delays with the final incidence subsequently reported, we
found that our method reduced the bias introduced by
delayed reporting, although results showed high variabil-
ity (Fig. 2b, c).
Between 8 November and 31 December, medians of

31% (95% PPI 4–48%) of cases were reported within
1 day of symptom onset (i.e. until the end of the first
day after onset), 61% (95% PPI 22–82%) within 2 days
and 84% (95% PPI 45–94%) within 3 days.

Adjusting for delayed reporting, we overestimated
the actual daily incidence by a median of 7% (95%
PPI − 61 to 46%) from the unadjusted incidence
known within 1 day after symptom onset, by 5%
(95% PPI − 27 to 52%) from the unadjusted
incidence known 2 days after onset and by 0% (95%
PPI − 17 to 40%) from the unadjusted incidence
known 3 days after onset. Note that negative per-
centages indicate an underestimation of the actual
incidence here.

Fig. 2 Adjustment for the delay between symptom onset and case presentation (reporting delay). Evolution of the reporting delay (vertical axis)
by week (horizontal axis) (a). Daily incidence of diphtheria cases in Balukhali (b) and Kutupalong (c) as reported within the first day after symptom
onset (blue dots), adjusted for reporting delays (red dots) and as seen retrospectively (black line, data from 12 January 2018)
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Forecasts
We generated four sequential forecasts of future inci-
dence, each stratified by age group and location. The ini-
tial forecast was produced and communicated to MSF
field staff on 12 December. Subsequent forecasts were
issued on 20, 26 and 30 December. Because model fit-
ting and data processing were continuously being refined
in real time, with a focus on outbreak response rather

than detailed evaluation, here, we present results from
the final version of the model to evaluate how well such
forecasting methods can work.
We re-simulated from the real-time model and

retrospectively compared these outputs to the final re-
corded data (Fig. 3). At the first forecast timepoint,
the model estimated that the epidemic would peak on
19 December in Balukhali with 303 (95% PPI 122–599)

Table 1 Parameters used in the model. Parameters that are camp-specific take independent values for Balukhali and Kutupalong,
and the initial proportion of infectious people is specific to each age group in each camp

Name Description Age or camp specific? Value Prior distribution

1/v Incubation period No 3 days

1/γ Infectious period No 3 days

βL Transmission rate Camp Fitted Uniform(0,∞)

rL Proportion of cases reported Camp Fitted Gamma(20,0.005)

ϕL Dispersion parameter for reporting Camp Fitted Uniform(0,∞)

α1, L Relative susceptibility in under 5 age group Camp Fitted Uniform(0,1)

α3, L Relative susceptibility in over 15 age group Camp Fitted Uniform(0,1)

S02;L Initial proportion susceptible in the age group 5–14 years No 0.80

I0a;L Initial proportion of infectious Camp and age Fitted Uniform(0,∞)

Fig. 3 Total incidence over all age groups and locations (a–d) and bed need as forecasted by the model. Black lines show data as reported by 12
January 2018, red dots the adjusted incidence and blue lines and shaded areas the median and 2.5% and 97.5% percentiles according to 1000
model runs forecasting from 12 December (a), 20 December (b), 26 December (c) and 30 December (d). Forecasts of bed need issued on the
same dates (e). The horizontal line shows the number of beds provided as of a decision taken on 14 December
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cases and would continue to grow beyond the 2-week
forecast horizon in Kutupalong (Fig. 4). The required
bed capacity at the end of the forecast horizon was es-
timated to be 316 (95% PPI 197–499). In reality, the
peak of the epidemic (131 reported cases, 94 of which
in Balukhali) had already occurred on 10 December,
although it was not possible to conclude this from the
data available in real time. On 19 December, a total of
54 cases were to be reported in Balukhali, lower than
forecasted.
Forecasts became more accurate later during the epi-

demic. On 20 December, the model predicted a total of
912 cases (95% PPI 367–2183, this corresponds to 136
hospitalized patients under our assumptions), and on 26
December, a total of 270 cases (95% PPI 124–583, this
corresponds to 41 hospitalized cases) up to the end of
the year. In reality, 616 and 252 cases were actually re-
ported during those respective periods. According to our
model, R0 was equal to 7.8 (95% PPI 6.2–9.4) in Balukhali
and 6.4 (95% PPI 4.4–8.9) in Kutupalong based on the ini-
tial forecast. Estimates later stabilized at lower values of
6.9 (95% PPI 6.1–7.7) and 2.8 (95% PPI 2.1–3.5) respect-
ively on 26 December. The proportion of cases reported
was estimated to be below the assumed prior median
value of 10%, significantly so in Balukhali (Fig. 5). In both

camps, susceptibility in the under 5 and over 15 age
groups was estimated to be at least 50% lower than sus-
ceptibility in the 5–14 age group (Fig. 5).
In the model used in real time, we imposed an inform-

ative prior on the proportion of cases reported. To
examine the sensitivity of our results to this assumption,
we recalibrated our model with flat priors on reporting
(Additional file 3: Figures S10–S16). Without the prior
on reporting proportion, the initial forecast estimated
that the epidemic had already peaked. However, this
model fit was highly dependent on the apparent turn-
over suggested by the most recent fitted data point
(Additional file 3: Figure S10). It also resulted in an
underestimate of the later portion of the epidemic. Sub-
sequent forecasts were better at capturing dynamics, but
still tended to underestimate incidence. The model with
a flat prior suggested that 3.0% (2.6–3.5%) of cases were
reported in Balukhali and 0.35% (95% CrI 0.29–0.43%)
in Kutupalong (Additional file 3: Figure S12).

Operations and decision-making
The forecasts contributed to an evidence base that helped
support operational aspects of the response, as well as ad-
vocacy for control measures. During December, staffing
was increased in response to the outbreak. MSF employed

Fig. 4 Incidence by location (rows) and age group (columns) as forecasted by the model. Black lines show data as reported by 12 January 2018,
and coloured lines and shaded areas the median and 2.5% and 97.5% percentiles according to 1000 model runs forecasting from 12 December
(blue), 20 December (red), 26 December (purple) and 30 December (green)
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a strategy of surge staffing for international staff and expe-
dited recruitment of national staff doctors and nurses. On
17 December, a conservative decision to make a total of
100 hospital beds available was taken by MSF, using the
high number of potential cases forecasted by the real-time
modelling to guide the decision (with a view to monitor
the modelling outputs over the coming weeks). It was also
decided to categorize beds into two severity levels depend-
ing on clinical signs [22] and to treat mild cases in the
community, which helped ensure that the available num-
ber of beds was never exceeded. Efforts to trace contacts
of patients were intensified. Stocks of diphtheria antitoxin,
which was in a global shortage due to other outbreaks in
Yemen, Venezuela, Indonesia and Haiti at the time, antibi-
otics and other supplies were increased.
Initial advocacy for vaccination had centred on a broad

age group. The modelling analysis highlighted that the
under 5 and over 14 age groups were less susceptible
relative to the 5–14 age group. As a result, the 5–
14-year-old group contributed most to disease transmis-
sion, likely as a result of lack of vaccination in the
displaced population before their arrival in Bangladesh.
The discussions around forecasting also contributed to
the advocacy to scale up outbreak response by other ac-
tors, such as the Global Outbreak Alert and Response
Network, Samaritan’s Purse and the UK’s Emergency

Medical Team, and helped lead to a closer collaboration
between key partners such as MSF and WHO.

Discussion
In this study, we have shown how transmission dynamic
models and forecasting techniques provided insights into
the epidemiological processes underlying the diphtheria
outbreak in forcibly displaced Myanmar nationals living
in camps and makeshift settlements in Cox’s Bazar dis-
trict, Bangladesh. This enabled real-time analysis to esti-
mate the course of the outbreak and corresponding
resource needs.
Although our model captured the overall dynamic of

the epidemic, there were several limitations to the mod-
elling analysis. A number of key epidemiological param-
eters were unknown and had to be assumed from the
literature or inferred from incidence data. In addition,
the adjustment for reporting delays was initially biased
upwards as delays between onset and case presentation
shortened significantly during the early epidemic. These
factors, combined with parameter uncertainty and a
rapid increase in cases, led to the first forecast overesti-
mating the number of future cases and made it difficult
to capture the dynamics in Kutupalong.
Another limitation in the early stages of the analysis

was that some key epidemiological unknowns could not

Fig. 5 Posterior parameter values. Posterior ranges (vertical lines) and median values taken by model parameters for forecasts done on 12
December, 20 December, 26 December, 30 December and 8 January. The horizontal dashed lines show the mean value of the prior used for the
proportion of reported. Uniform priors were used for other parameters
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be estimated individually from the data. During the ini-
tial exponential growth phase of an epidemic, it is gener-
ally not possible to estimate the marginal posteriors for
all key unknown transmission and reporting parameters
without imposing priors on at least some of them [23].
We therefore constrained prior susceptibility and the
proportion of cases reported. Such assumptions, com-
bined with remaining uncertainty about unknown pa-
rameters, can lead to substantial variability in forecast
trajectories and potential bias in model outputs. In
our real-time analysis, we fixed the proportion of
cases susceptible and natural history parameters—
equivalent for Dirac delta priors—and imposed a
strong prior on the proportion of cases reported. In
addition, our choice to impose an informative prior
on the reporting rate was driven by the uncertainty
surrounding the recent incidence data points in real
time. Owing to the initially very long reporting delays,
we were aware that the newest raw data could give a
false impression of a declining epidemic (Fig. 2), cre-
ating the risk of substantially underestimating epi-
demic magnitude in our forecasts.
To retrospectively assess the sensitivity of our results

to the prior assumptions, we recalibrated our model
with flat priors on reporting, leading to lower estimates
of the reporting rate (Additional file 3: Figure S12). The
posterior estimates from the model used in real time
reflected this lower reporting rate by 26 December for
Balukhali but remained close to the informative prior for
Kutupalong (Fig. 5). Although in retrospect the forecasts
using flat priors capture the outbreak dynamics well and
anticipate the epidemic peak, it would have been difficult
to confidently conclude the epidemic had peaked in real
time, given that such a conclusion would be heavily reli-
ant on very recent data points, which were known to be
less reliable (e.g. Fig. 3b). With more time available, it
would have been possible to explore the implications of
our prior assumptions by running multiple models with
different priors for different scenarios in real time, compar-
ing results and accompanying uncertainty. Note, however,
that it would still have been possible to conclude which
model performs best only a posteriori because of the
abovementioned uncertainty regarding the long reporting
delays and the data about the further course of the out-
break not yet being available.
Our model did not capture time variations in key

parameters such as the reproduction number (i.e. due to in-
terventions, such as contact tracing and active case finding
or the WHO-lead vaccination campaign initiated on 12
December 2017) or the reporting rate (e.g. due to changes
in health-seeking behaviour induced by health promotion
activities and circulating information about the outbreak it-
self). The introduction of vaccination is, however, unlikely
to have had an impact within the time frame analysed here

given the delay to protection, incubation period following
infection and the delay in reporting following onset.
Further, we assumed a fixed population size. In reality,

there can be a substantial influx of people into camps dur-
ing outbreaks, as well as movement within and between
camps; understanding how such movements might affect
outbreak dynamics in general would be worth investigat-
ing in future studies.
In addition to the limitations mentioned above, the deter-

ministic model we used attributed any uncertainty to the
fitted parameters and the reporting process, rather than
stochasticity in transmission. This study focuses on report-
ing the performance of our model used in real time. With
the benefits of hindsight, we could nevertheless have con-
sidered a number of adaptations to our model. A stochastic
model could have been used to include a more accurate
representation of uncertainty, in addition to capturing un-
explained time variations in parameters and transmission
rate and thus allowing for turnover due to other factors
than depletion of susceptibles [13, 24, 25]. A better repre-
sentation of the reporting process, for instance explicitly
taking account of under-reporting of mild cases seeking pri-
mary care with one of the numerous health facilities run by
various organizations [26] or correcting for a potential
spatial bias in reporting [27], could have been beneficial to
decrease uncertainties related to the case to infection ratio.
In addition, the correction for the reporting delay could
have been explicitly included within the model in order to
better capture the associated uncertainty. A more complex
model, however, would have been more time consuming to
set up and calibrate and would still have been reliant on im-
perfect data, responsible for large parts of the remaining
uncertainty about the epidemiological processes and the
model output. More generally, questions of which model-
ling approaches work best in which outbreak situations
and for which diseases should be addressed between out-
breaks, as part of routine research.
Our estimated values for the basic reproduction number

R0 were in agreement with values from the literature [7, 28]
and other estimates for the same epidemic [29], although
our assumed generation times were lower and estimates of
the reporting rate were higher compared to an analysis of
the early diphtheria outbreak dynamics by Matsuyama et al.
[29], who did not stratify by age or camp. Whereas we as-
sumed that the susceptibility was greatest in the age group
of 5–14 years, the proportion of cases in the age group of
15 years and above was higher before the epidemic peak
than after. This may indicate either that adults made a sub-
stantial contribution to transmission during the epidemic
growth phase [30] or that relative age-specific reporting
changed during the course of the outbreak.
Construction of mechanistic epidemic models makes it

possible to formalize assumptions about the epidemio-
logical processes underlying an outbreak, incorporating
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expert knowledge and context-specific analysis of the
local situation. When working in real time, the main
challenge lies in quickly consolidating all necessary in-
formation—in an often complex and variable emergency
situation—to be able to make appropriate assumptions
in a model. In our case, a better understanding of epi-
demiological processes, disease characteristics, case
reporting and prior vaccination status would have
allowed for more accurate assumptions and potentially
more accurate forecasts. Despite regular discussions be-
tween LSHTM and MSF during December, and as a re-
sult of the slow start of the epidemic, the first forecasts
were only delivered a month after the first case was
reported.
Our experiences of real-time modelling and analysis

during this outbreak highlighted the importance of ef-
fective ongoing communication with field staff. Besides
enabling access to real-time data (including incidence,
demography and geography), staff can also provide
additional context and information such as the general
epidemiological situation, likely vaccination status of the
population, nature and severity of symptoms, health-seeking
behaviour and access to health care, sanitary situation and
population movements. To maximize the future benefit of
real-time modelling, it would be advantageous to build
strong, long-term collaborations between organizations pro-
viding outbreak responses and epidemiological modellers
[31]. Such collaborations should focus on establishing
well-defined processes (i.e. analysis pipelines) on how to
collect, treat and share relevant data and other information
from the field with modellers, ideally embedding an ex-
perienced modeller or data manager in the outbreak
response team and enabling model results and model-
based recommendations to be fed back to field staff and
decision-makers, whose input can in turn inform subse-
quent analysis.

Conclusions
Although modelling is only one component of the evidence
base for decision-making in outbreak situations, we have
shown that suitable analysis and forecasting techniques can
be used to gain insights into an ongoing outbreak.
In the context of the diphtheria outbreak in Bangladesh,

real-time modelling made it possible to feedback key infor-
mation about the potential scale of the epidemic, likely re-
source needs and underlying mechanisms of transmission
to decision-makers at a time when this information was
largely unknown. By 20 December, our model was able to
generate reliable forecasts with a lead time of 2 weeks.
We propose that such analysis can be further devel-

oped in the future through strengthening collaborations
and setting up bi-directional data and information flow
pipelines linking modellers with decision-makers and

field staff, so that real-time modelling can rapidly and
routinely contribute to outbreak response.
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