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The majority of those who profess to be desirous of preventing and curing the disease called 

consumption must be either hypocrites or fools, for they ridicule the suggestion that it is necessary 

first to cure and prevent the poverty that compels badly clothed and half-starved human beings to 

sleep in such dens as this. 

- Robert Tressell, The Ragged Trousered Philanthropists (1914) 
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Abstract 

Background: In January 2015, Public Health England and NHS England published a collaborative TB 

strategy for the years 2015-20; this strategy highlighted contact tracing as a key element. In January 

2016, the National Institute of Health and Care Excellence (NICE) made changes to the UK TB 

guidance, including no longer recommending that contacts of non-pulmonary TB cases be screened. 

This thesis attempts to address several issues arising from these policy documents. 

Methods: I utilized a range of quantitative approaches. I undertook a cohort analysis of TB cases in 

London between 2012-15 (inclusive), including logistic regression, to understand contact tracing 

outcomes in London, and how these differed between population subgroups. To understand the 

impact of changes to NICE guidance I carried out an economic analysis using a simple static model. I 

then utilized a pairwise transmission model to understand how transmission differs between those 

with primary and reactivation disease. 

Results: In London from 2012-15, 91% of pulmonary index cases had at least one contact identified 

(a median of four per case), and 86% of these identified contacts were evaluated. In this period, 80% 

of those contacts determined to have TB had an isolate that was indistinguishable from their index 

case, implying probable transmission. Assuming each contact with PTB infects 1 person/month, 

screening contacts of ETB cases costs £78000/QALY (95% CI: 39000 to 140000). Pairwise modelling 

suggests that the number of infections generated by those with a reactivation disease is only slightly 

greater than those with disease following recent infection. 

Conclusions: While contact tracing outcomes in London were good relative to similar countries and 

previous UK studies, our results highlight several groups for whom outcomes are worse. Our results 

also show that the impact of contact tracing is not limited to those occasions where transmission 

between index cases and contact has occurred. Our results also show that screening contacts of non-

pulmonary index cases is almost certainly not cost-effective at a £30000/QALY threshold. More work 

is required if pairwise modelling is to be used effectively to model M. Tb transmission. 
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Outline of thesis 

Aim and objectives 

The aim of this PhD is to describe TB contact tracing outcomes in London since 2010 and explore 

ways to improve it, using a combination of data analysis and mathematical modelling.  

In order to achieve this aim, the thesis will address four objectives: 

1. Quantify the status of contact tracing outcomes in London since 2012, and explore how 

these differ between population subgroups. 

2. Quantify the proportion of cases found through contact tracing that are due to transmission 

between index case and contact. 

3. Use a simple analytic model to evaluate the cost-effectiveness of screening contacts of non-

pulmonary, non-laryngeal cases. 

4. Explore the relative intensity of transmission from cases found through contact tracing 

compared to those found through other routes. 

Rationale  

In recent decades, England has had one of the highest notification rates of tuberculosis in Western 

Europe, and almost 40% of England’s cases occurred in London throughout this period. Within this 

context, in 2015 NHS England and Public Health England published a 5-year collaborative TB 

strategy1, with the overall aim of reducing TB incidence and eliminating TB as a public health 

problem. The strategy highlighted contact tracing as one of ten key approaches to reducing TB 

incidence, and focuses on areas in which incidence is highest, such as London. The strategy proposes 

two indicators (the proportion of cases with pulmonary disease that have at least one contact 

identified; and the proportion of identified contacts of pulmonary cases that are evaluated)  for 

monitoring progress of contact tracing, but data for these indicators are not collected routinely 

country-wide; the first objective of this thesis is to estimate these indicators for London. It is also not 
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known the extent to which contact tracing identifies recent transmission, and estimating this 

constitutes the second objective. 

In 2016, national guidance for tuberculosis care and prevention was changed. One change was to 

recommend only screening contacts of cases with pulmonary or laryngeal TB, whereas previously 

contacts of all cases were traced. However, there is evidence from analysis of the contact tracing 

data in London (see chapter 2) and elsewhere2 that contacts of non-pulmonary, non-laryngeal cases 

were more likely to have TB than the general population. The third aim of this thesis is therefore to 

quantify the cost-effectiveness of screening these contacts to understand the potential impact of 

this change to guidance. An important unknown parameter determining this cost-effectiveness 

proved to be the relative number of new infections generated by those found through household 

contact tracing compared to those found through other routes. Estimation of this quantity forms the 

final objective of the thesis. 

Layout of thesis 

This thesis is a ‘research paper style’ thesis, meaning several of the chapters are publications in peer-

reviewed academic journals. I have published one first-author paper, with two more currently in 

review – these constitute chapters 2-4. Chapter 5 is not currently written as a paper, but may be 

written up at a later date. There are six chapters in total, comprising the following: 

1. Background and literature review: This chapter contains the following subsections: Natural 

history of tuberculosis; Tuberculosis epidemiology in London and the UK; Tuberculosis care 

and prevention in the UK; Tuberculosis Modelling. 

2. An evaluation of tuberculosis contact investigations against national standards (first paper): 

This paper estimated the contact tracing indicators from the national strategy, and contact 

tracing yield, in London in 2012-15. It also estimated which population groups were 

associated with improved indicators or higher yield. 
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3. Description of secondary TB cases found through contact tracing in London (second paper): 

This paper estimated the proportion of contacts that were diagnosed with TB for whom 

probable transmission had occurred between index cases and contact between 2012-15. It 

also estimated the average timespan between when the index case was diagnosed and 

when the contact was diagnosed. It evaluated which population subgroups were associated 

with greater proportions due to recent transmission, or longer timespans. 

4. Cost-effectiveness of screening contacts (third paper): This paper evaluated incremental 

cost-effectiveness ratios for the screening of contacts, separately for index cases with 

pulmonary/laryngeal disease and those without disease at these sites. 

5. Estimating the rate of transmission from contacts using pairwise equations: The aims of this 

chapter are two-fold: firstly, to understand whether or not a pairwise modelling approach is 

feasible for tuberculosis; and secondly, to understand whether cases with reactivation 

disease generate more transmissions than those with disease following recent infection, due 

to their contacts being less likely to have been recently infected. 

6. Discussion and conclusions. 
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1. Background and Literature Review 

1.1 Natural history 

Tuberculosis (TB) is an infectious disease most commonly caused by Mycobacterium tuberculosis (M. 

tuberculosis). When this bacterium establishes in the lungs, the disease is known as pulmonary TB 

(PTB), and infection can then be transmitted through the air via exhalation of M. tuberculosis, for 

example, through coughing. TB in other organs is known as extrapulmonary TB (EPTB), and is 

generally not infectious3 when not accompanied by PTB, although EPTB may be a sign of subclinical 

PTB disease. An exception is laryngeal disease, which is often assumed to be infectious, although 

even this is debated4,5. In some countries, including England and Canada, extrapulmonary TB is 

typically more common in those born in the Indian subcontinent6–8 compared to other countries of 

birth, and in Europe, is associated with being aged <15 years9. The relationship of site of disease and 

sex is less clear, with extrapulmonary TB is positively associated with male sex in some studies10, but 

in others with female sex9. 

The incubation period for TB is highly variable and is not well-defined. People who have been 

infected but who have not yet developed disease are sometimes referred to as having “latent M. 

tuberculosis infection” (LTBI). However, recent work has suggested this binary distinction is a false 

one, and instead describes tuberculosis as a spectrum from infection through subclinical to 

infectious stages, with patients moving both forwards and backwards along this spectrum during the 

course of their illness11. In the absence of HIV infection or prior preventive therapy, around 10% of 

those infected will develop disease at some point in their life, with the greatest risk in the first years 

after infection12,13. TB disease is often defined as “primary”, “reactivation” or “reinfection”14. Primary 

disease refers to disease soon after initial infection. Reinfection disease is when an infected person 

becomes infected again subsequent to the previous infection before developing disease. In this case 

development of disease is thought to occur at a rate much greater than reactivation and lower than 

following primary infection due to some protection provided by existing infection14,15. An exception 



24 
 

to this is if the patient had developed disease prior to reinfection; in that case the risk of disease 

following reinfection may be higher than the average risk following primary infection16. Reactivation 

is defined as disease many years after infection or reinfection, possibly due to the patient becoming 

immunocompromised17, or due to immunosenescence18, and the rate of disease onset is much lower 

than for reinfection disease or primary disease14. The lifetime risk of developing disease   following 

infection is non-linearly dependent on age: those in the 0-5 and 16-25 year age groups have the 

greatest risk, whereas those in the 6-15 year age group have the smallest (Figure 1)19. The test for 

infection used in figure 1 is the tuberculin skin test (TST), discussed in more detail in section 1.3. The 

lower risk in the oldest age-groups is in part due to the fact that those that are TST+ in this age-

group will have been infected longer ago on average, and in part that they have less long to live after 

the skin test, so the lifetime risk is lower. 

Pulmonary TB can be diagnosed using smear microscopy, during which the number of bacilli in 

sputum isolated from the case is counted. Whilst smear-microscopy is not very sensitive, it is highly 

specific20 and is also useful as a correlate of infectiousness: smear-positive patients are typically 

around five times more infectious than smear negative ones21. This was determined by grouping 

tuberculosis cases into clusters whose isolates had indistinguishable DNA, and defining the first case 

in the cluster as the source case. The probable number of secondary case generated by smear 

positive source cases was then compared to that for smear negative source cases, after further 

assuming that for clusters with a smear negative source case, only those cases up-to and including 

the first smear-positive case were classed as secondary cases. 
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Figure 1: Lifetime risk of active tuberculosis among people with a non-conversion positive tuberculosis skin test (that is, 

the person did not have a negative TST in the last 2 years, and was not a household contact of someone with TB) (taken 

from Horsburgh19) 

1.2 TB epidemiology in the UK and London 

1.2.1 UK 

Excepting the years affected by the World Wars, the notification rate of TB in England and Wales declined almost 

continually from over 300/100,000/year in 1913 to around 11/100,000/year in 1995 (

 

Figure 2). After that there was a slow increase, reaching 15/100,000/year in 2011, and prompting 

London to be described in national media as Europe’s TB capital. In response to this situation, in 

2015 PHE and NHS England released a collaborative national TB strategy for the period 2015-20201. 

Since that peak, there has been a further decline; the case notification rate in England in 2015 was 
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10.5/100,000, the lowest it has ever been22. Over this period the proportion of tuberculosis cases 

with non-pulmonary disease has increased (Figure 3), perhaps due to an increasing proportion of 

non-UK born cases (see below). 

These historical reductions in TB notification rates have been attributed to many factors, including 

reductions in the number of effective contacts made by infectious patients, resulting from reduced 

crowding in living conditions, shortened duration of contact due to cases being admitted to 

sanatoria, improvements in hygiene, the advent of antibacterial drugs for TB and other factors23.  

England has a very heterogeneous geographic distribution of TB, with the disease largely 

concentrated in large urban centres such as London, Birmingham, Leicester and Manchester (Figure 

4)22. There are also large inequalities in the demographic distribution of TB in England, and, as in 

other high-income countries, the incidence is largely influenced by cases in the foreign born 

population (in 2015, 72.5% of cases in England were non-UK born22). In particular, many cases are 

amongst immigrants from high-TB burden countries, especially the Indian subcontinent (47.4% of 

cases were amongst people born in India, Bangladesh and Pakistan in 2015) and sub-Saharan Africa, 

as these have much higher risk of infection in the birth- country than they would in the UK (Figure 5). 

In 2015, TB notification rates for those born abroad were 18 times higher than for those born in the 

UK22. This could be due to either reactivation of infection acquired abroad, greater local transmission 

than within the non-UK born group, or a combination of these two24. Between 2011 and 2015, the 

notification rate amongst those born outside the UK fell by over 30% (partly due to a decline in the 

proportion of migration from high-burden countries, such as India and Pakistan), whereas 

notification rates have remained lower, but relatively unchanged, amongst the UK-born22. This 

decline may also be linked to institution of pre-entry screening for active disease in the UK in 2012, 

and of LTBI screening for new entrants (both discussed in the next session). 

Those with social risk factors (a history of homelessness, imprisonment or drug use) are also at 

heightened risk of disease8, and are typically a group which has more ongoing transmission than the 
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general population25,26. These risk factors are particularly important amongst the UK born 

population. 

Since 2010, the UK has used 24 loci mycobacterial interspersed repetitive units, variable number of 

tandem repeats (MIRU-VNTR) strain typing to determine genetic relatedness of TB strains. When 

typed isolates are indistinguishable, the cases are said to be clustered, and if cases are clustered and 

epidemiological links are present, then it is typically considered that transmission between the cases 

has likely occurred. In England between 2010-12, 75% of pairs of cases from the same household 

shared a strain, and hence were due to probable recent transmission27. 
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Figure 2: Annual mortality rate and case notification rate of all forms of TB in England and Wales since 1913. Figure (b) 

shows the same data on a logarithmic scale, highlighting that there have been some continued declines in mortality rates 

in the late 20th and early 21st centuries, but not in notification rates.28 

 

Figure 3: Proportions of cases in England and Wales with non-respiratory disease (1913-1981), or non-pulmonary disease 

(1982-2015)28. 
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Figure 4: Geographic distribution of TB in England in 2013-2015. The inset shows London, over the same period1. 
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Figure 5: Numbers of TB cases (of all forms) by year in England from the five most common countries of birth, from the 

Tuberculosis in England, 2015 report22. The countries of birth with the highest rates were not provided in the report. 

1.2.2 London 

The trend in case notification rate in London in recent years has been similar to that seen 

nationwide: a decline since 2010 (Figure 6). However, the rate is much higher in London compared 

to the rest of England combined; in 2015 London accounted for 38% of TB cases in England, the 

notification rate was 26/100000, and one of its boroughs, Newham had a notification rate of 

75/100,000 (Figure 4). 

The proportion of TB cases with non-pulmonary disease is greater in the foreign born than the UK-

born in London, particularly those from the Indian subcontinent (Figure 7), perhaps because of 

higher rates of reactivation in this group and the association between reactivation and non-

pulmonary disease10. For example, whilst 36% of the UK born had non-pulmonary TB in this period, 

of those born in India and Bangladesh 66% and 69% respectively were non-pulmonary.  
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In London from 2010-2012, 46% of cases where clustered according to typing using 24-loci MIRU-

VNTR, which means about 34% of cases are due to likely recent transmission25. This second value 

was calculated using the “n-1” method29, that is, one case in each cluster is assumed to be a 

remotely acquired infection or reactivation, and the rest are attributed to recent transmission. Due 

to the resolution of MIRU-VNTR, matching isolates are only a proxy for recent transmission and 

ideally would be combined with epidemiological data for a deeper understanding of transmission30, 

though this was not done in the London study. These estimates are also sensitive to the sampling 

fraction (a larger sample will give higher proportion clustered estimates31), the timespan of the 

study, and the variability of circulating strains32.  

 

Figure 6: The number of cases of all forms of TB and case notification rate in London from 2000, taken from the London 

TB report 20158 
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Figure 7: The proportion of cases with pulmonary or non-pulmonary disease by country of birth in London 2010-2015. 

Only countries with more than 300 cases in this period are included8. 

1.3 TB care and prevention 

1.3.1 Vaccine and treatment 

From the latter part of the 19th Century until the 1980s, tuberculosis incidence rates declined in 

developed countries, including the UK. The first part of this decline has been largely attributed to 

improvements in living conditions and nutrition, and the subsequent decline followed the discovery 

of anti-TB drugs, starting with Streptomycin in 194333. Prior to this, in 1921, the Bacillus Calmette-

Guerin (BCG) vaccine was discovered, and has played a key role in UK TB care and prevention since 

1953 when the UK began vaccinating schoolchildren at around age 13 years34. The efficacy of BCG 

varies across the globe35,36, and was never introduced in certain countries, including the Netherlands 

and the United States37. Reasons for this variation include prior M. tuberculosis infection, 

sensitisation to environmental mycobacteria, and latitude (the efficacy is higher at higher 

latitudes)38,39. Consequently, not all countries have used the vaccine. Perhaps related to the first two 

of these reasons, the vaccine is also typically more efficacious in infants than older individuals40.  It 

has also been observed that protection provided by BCG wanes over time, with protection typically 

lasting up to 10 years, although some studies have seen protection up to 20 years for school-age 
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vaccination40. This waning is faster in lower latitudes than higher latitudes. A study started in the 

1950s showed BCG to have around 80% efficacy in schoolchildren in the UK41, and it has been shown 

to be efficacious in preventing severe childhood disease36. This led to the policy of vaccinating 

schoolchildren at age 13 years in the UK, but declining prevalence and incidence have reduced the 

benefit of BCG amongst schoolchildren42. This resulted in the current policy of offering BCG to 

neonates living in high-incidence (>40/100,000/year) parts of the UK or with relatives from high 

incidence parts of the world43.  

In the UK, treatment of active disease is with the standard regimen of 2 months of Isoniazid, 

Rifampicin, Pyrazinamide and Ethambutol, followed by 4 months of Isoniazid and Rifampicin43. This 

period is longer if the patient has central nervous system involvement or drug-resistant TB, 

particularly if they have Rifampicin-resistant TB. Latent TB infection (LTBI) is treated with 3 months 

of Isoniazid and Rifampicin or 6 months of Isoniazid, and is offered to contacts of drug-sensitive TB 

cases aged under 65 years and for whom hepatotoxicity is less of a concern43. 

1.3.2 Contact tracing 

Contact tracing (the screening of people exposed to a case of active case of TB for signs of active 

disease and M. tuberculosis infection) has been highlighted as a key element of TB care and 

prevention in the PHE/NHS England collaborative national TB strategy1, and is the focus of this 

thesis. Contact tracing aims to: 

1. Reduce morbidity and mortality by finding active TB cases earlier; 

2. Arrest further transmission, by finding secondary cases more quickly; 

3. Prevent future cases by finding and treating those with latent infection15. 

Contact tracing practice for TB differs between high-income and low/middle-income countries, 

because of differences in the availability of resources and the prevalence of TB and LTBI. 

Additionally, high incidence countries may have different aims from the UK (e.g. reduced focus on 
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finding latent infection). For these reasons, this review focuses on high-income, low-incidence 

countries44. 

In the UK, a contact investigation (CI) is triggered once a case of laryngeal or pulmonary TB, known 

as the index case, is diagnosed. At this point the index case is interviewed and asked to name all of 

their close contacts (defined as those sharing a bedroom, kitchen, bathroom or sitting room, and 

other people with whom they share contact equivalent to this)43. Additionally, sometimes the 

interview is followed up with a home visit, when a TB nurse visits the home of the index case. The 

named contacts are invited to screening, which varies by clinic and by age of the contact: contacts 

aged >65 years are typically given a chest X-ray (to diagnose active disease), and contacts aged <65 

years either a TST or an interferon-γ release assay (IGRA), both of which test for infection. This 

difference between age groups is due to the fact that those >65 years are not eligible for preventive 

therapy as it is contraindicated in this group. Until recently, the age cut-off for whether infection was 

tested for was 35 years, but this changed at the start of 201643. Within London, whilst all clinics 

follow the same guidance, there are some small differences in practice: for instance, some clinics use 

the T-SPOT.TB test for latent infection, whereas others use QuantiFERON-TB Gold, and some clinics 

undertake home visits to index cases, whilst others don’t. 

In many countries, including the UK, variants of the ‘stone-in-the-pond’ principle is used45, in which 

contact investigations are extended if the prevalence of infection is higher than expected amongst 

close contacts. The exact implementation differs by country. In the UK, household and other close 

contacts are investigated first and then the investigation is extended to casual (e.g. workplace) 

contacts if: there is evidence of infection (greater than 10% of contacts infected); the index case is 

young and the source of infection has not been found; or, there are particularly susceptible casual 

contacts of a smear positive index case46. 
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Policies on screening contacts of non-pulmonary, non-laryngeal cases vary between countries44,47. 

The UK has recently made a change to screen contacts of pulmonary or laryngeal cases only; 

previously contacts of all cases were screened43. An exception to this is if the index is still at school.   

There is disagreement amongst UK based epidemiological studies over whether screening contacts 

of extrapulmonary patients is worthwhile or not, with Rubilar et al. finding a lower yield from EPTB 

index cases (0.029 cases of active disease or contacts with LTBI per index case, in Edinburgh) than 

Saunders et al. (0.096, same units, in Birmingham – see Table 1), and Mandal et al. finding higher 

yield (0.26 same units, also in Edinburgh)2,48,49. This is in part due to differences in classifying LTBI 

between the studies, with Rubilar et al. only reporting contacts who began chemoprophylaxis, and 

the other two studies reporting all those with positive TST or IGRA, without reporting the number of 

contacts given these tests (in the Rubilar et al. study, all contacts were offered Heaf tests, but the 

number who declined is not stated. The Heaf test is a form of tuberculin skin test used in the UK 

until 2005, when it was replaced by the Mantoux test). 

In 2010 London introduced “cohort review” into its TB program. This process was first implemented 

in New York City in 1993, where it was considered to be a key driver of huge reductions in TB 

notification rates50. Cohort review involves a quarterly appraisal of both case management and 

contact investigation of each TB case, in which representatives of TB clinics meet to discuss specific 

outcomes. In London it was associated with an increase in the proportion of cases who had contacts 

being identified (77% of cases had at least one contact identified prior to cohort review, versus 86% 

thereafter) and contacts assessed (74% prior to cohort review versus 81% thereafter), and cohort 

review has subsequently been implemented across England51. As a direct consequence of the 

recording of cohort review, detailed data on contacts in London has been routinely collected since 

2012/13 (the exact date varies by clinic) in the London TB register (LTBR). Cohort review has now 

been expanded to the rest of the U.K., and so data on contact tracing outcomes is improving, 

although this data is not routinely reported. 
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Table 1 (calculated from Saunders et al.2) Summary of outcomes and yield (new infections & cases per index case) 

of contact investigations by site of disease and smear status, from a twenty-one-year retrospective cohort 

study in Birmingham, 1990-2010. Here LTBI is defined as either a positive TST or IGRA, and no diagnosis of 

active disease. Number needed to screen (NNS) is the number of contacts screened divided by the number of 

new cases (equivalently, the reciprocal of the proportion screened positively). Both first- and second-ring 

contacts are included. It is not clear what the background prevalence of LTBI is. It is also unclear what 

proportion of contacts were tested for latent infection, although 11% of contacts were screened using IGRA. 

 Number of 

index 

cases 

Total 

Number 

of 

contacts 

Number 

(%) of 

contacts 

with LTBI  

Number 

(%) of 

contacts 

with TB  

Contact tracing 

yield (contacts 

with TB or LTBI 

per index case) 

NNS to find 

one case of 

TB 

NNS to find 

one case of  

either TB or 

LTBI 

Smear-

positive 

PTB 

1542 16034 1044 

(6.51%) 

532 

(3.32%) 

1.02 30 10 

Smear-

negative 

PTB 

3514 15335 440 

(2.87%) 

181 

(1.18%) 

0.177 85 25 

EPTB 2309 9875 165 

(1.67%) 

57 

(0.58%) 

0.0961 173 44 

 

1.3.3 Other forms of screening and case finding 

Since 2012, the UK has also operated a pre-entry screening system, screening immigrants from 

countries with an incidence of >40/100,000/year as part of visa applications52. Prior to this, a 

combination of pre-, post- and at entry screening had been used53. In the period since 2012, the 

incidence of TB amongst the non-UK born population has declined, although there is not yet 

evidence that this is caused by the pre-entry screening programme. In addition to the pre-entry 

programme, the UK has begun to operate a system of latent TB screening for new migrants from 

very high burden (>150/100000/year) nations54. This was introduced after it was shown to be cost-

effective in a trial period, costing £20819 per case averted55. Additionally, since 2005 in London, an 

active case finding operation known as Find & Treat has operated, seeking to find cases of active TB 

amongst the homeless and other marginalised populations of the capital. This operation has also 

been shown to be highly cost-effective, costing less than £10000/QALY (Quality adjusted life year) 

gained56. 
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1.4 Modelling 

1.4.1 M. tuberculosis transmission models 

Mathematical models of infectious disease have been used for over a century, since Ronald Ross 

used a simple model to understand Malaria transmission in 191057. In that period, models have been 

used for many types of questions, which can broadly be grouped into at least three categories 

(adapted from Knight et al58): 

1. Projecting impact: both predicting the trajectory of an epidemic59,60, and predicting the 

possible impact of control strategies61,62; 

2. Elucidating the natural history and epidemiology of infectious diseases14,63; 

3. Driving empirical research by revealing gaps in data. 

In each of these cases mathematical models are useful as they allow exploration of counterfactuals 

and different scenarios, which may have been expensive, unethical or impossible to do empirically, 

and synthesis of different data sources.  

The first published tuberculosis model may have been that of Waaler et al. in 196264. This paper 

made forecasts of future prevalence trends in India in order to make the argument for greater use of 

mathematical models in epidemiology. Since then tuberculosis models have been used to 

understand TB natural history14,65, to examine the impact of vaccination66,67, to explore the 

interaction between TB and HIV68–70 and the emergence of drug-resistant TB71,72, and to understand 

the impact of contact tracing (see below), amongst other things. 

Many different structures have been used to model the transmission dynamics of M. tuberculosis, 

and there are at least two reviews detailing these73,74. Many of these are variants of the susceptible 

(or uninfected) – exposed (or latent) – infectious – recovered (SEIR) model, which have been 

modified to describe TB’s complex natural history. Most compartmental models include at least the 

following compartments: Uninfected, Latently infected, Infectious, and Recovered74. Due to the fact 
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that a majority of those who will progress to disease will do so in the first 2 years after being 

infected15, most models incorporate both an early and a late latent stage. Due to the increased 

infectiousness of smear positive cases, models also often split the Infectious category into smear 

positive and smear negative groups14,75. Decisions about these and other factors depend on what the 

model will be used for. 

As an example, figures 8, 9 & 10 show model structures of two older tuberculosis modelling papers 

and one more recent study, those of Vynnycky and Fine14, Dye et al76 and Lin et al75 respectively. 

These papers represent a range of different approaches to TB modelling, for a range of different 

purposes. The first of these was designed with the objective of estimating the age-specific 

contributions of primary disease, disease resulting from reinfection and disease resulting from 

reactivation, and hence contains compartments for each of these disease states. The second aimed 

to investigate the effect of directly observed therapy on TB control, and how this interacts with the 

HIV/AIDS epidemic. The third model aimed to assess the impact of a new diagnostic tool, and so 

includes a more detailed sub-model of the diagnostic pathway to elucidate the effect of the new tool 

on different stages of the pathway. 

It should be noted that TB models often do not explicitly include EPTB; of those shown here, only the 

one by Dye et al. does.  

1.4.2 Previous TB contact tracing modelling studies 

To date, nine modelling papers have studied contact tracing of TB, none of which considered a UK 

setting (see table 2). The first 5 of these were included in a systematic review77; since then, four 

more papers have been published. Four of these studies focus on a USA setting (two of which have 

the same authors), three in Canada (two with the same authors), one in Africa and one purely 

theoretical. Apart from Guzzetta et al. (2011)78 they have each tried to quantify the 

potential/observed impact of contact tracing or preventive therapy, with varying degrees of detail. 

Only three of the studies explicitly incorporated extrapulmonary TB: Tuite et al.79, Guzzetta et al. 
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(2014)80 and Aparicio and Hernandez81. Tian et al82 considered issues and settings which were most 

similar to those in this project. The study was based on a region in northern Saskatchewan (Canada), 

in which 90% of the population are First Nations (an ethnic grouping amongst whom the burden of 

TB is the greatest in Saskatchewan). This is a high incidence region (notification rate of >100 

cases/100,000 per year) in a low incidence country, with notification rates similar to those in the 

London boroughs of Brent or Newham, though over a much greater area and smaller population. 

They investigated several different scenarios, for example varying how contacts are prioritized and 

the speed of the contact tracing process. They did this using an elaborate age- and ethnicity-

structured individual-based model (see below). They found that tracing younger contacts (those 

aged younger than 10 years) first brought significant decreases in incidence, but increasing the 

speed of contact tracing did not. 

The model structures used in these papers varies from a simple SEIR model83, to a very complex 

structure82. All of the most recent of these studies use individual-based models (IBMs)78–80,82,84. The 

latter type of model explicitly models each individual in the population, by determining stochastically 

at each time-step whether or not that individual moves to a new disease state. This means that the 

models are intuitively closer to reality than simple deterministic models, and can give an indication 

of the uncertainty in model output due to the chance nature of transmission. However, due to their 

stochastic nature, they must be run multiple times leading to longer run times and results which can 

be harder to interpret than those of simpler models85. Both simpler models and IBMs can represent 

uncertainty in parameters by running the model with a range of parameter values. The Guzzetta 

model is the most complex of these models and includes a complex geography in order to explicitly 

model community and workplace transmission. The Mellor paper uses a discrete-event simulation 

model, meaning transmission events are generated from a Poisson distribution86. 
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1.4.3 Approaches to modelling contact networks 

If we imagine M. tuberculosis transmission occurring in a network of contacts, and that contact 

tracing follows the chain of transmission across this network, then the most intuitive way to model 

contact tracing would be to create a contact structure which mimics typical contact patterns in 

London. An IBM would then operate on this contact structure, similar to that seen in the Guzzetta et 

al papers78. Modelling of other diseases has also taken this approach, such as Lum et al.87, which 

models incarceration rates as a disease using a synthetic social network based on US demographic 

data. One difficulty with this approach arises when trying to create a realistic contact structure, 

including the level of clustering (in a social network context, taken to mean the proportion of all sets 

of three contacts which are mutually connected), or equivalently, the proportion of people who 

share the same contacts. Data from two studies, namely the POLYMOD study and a study by Danon 

et al, may help with reproducing a realistic model of contact structure88,89. The first of these tried to 

describe contact patterns in a range of European countries, and the other just in the UK. Both 

studies asked participants to create diaries of their daily contacts. However, these two studies give 

very different results; for instance, Danon et al. reports approximately 27 contacts per day, and the 

Polymod study 12 per day. Also, as the relationship between the amount of contact and M. 

tuberculosis transmission risk is not well understood, the interpretation of these data in the context 

of TB is not straightforward. At least one previous TB model was based on a synthetic contact 

network90, and whilst it did not explore contact tracing, it is possible the approach could be 

extended. 

Instead of explicitly modelling the network structure, some theoretical studies of diseases, other 

than TB, have used pairwise equation models91–93. These types of models use an equation set which 

describes how the numbers of pairs of contacts in different disease states changes with time. Eames 

(2008)92 adapted this approach in order to incorporate clustering and also used the model to look at 

contact tracing. Due to TB’s complex natural history, the size of the equation set is greater than for 
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simpler diseases (e.g. measles), due to the larger number of disease states typically used in the 

model. 

Another way to model elements of contact structure using a deterministic or partially stochastic 

model is through household, or meta-population, modelling. These involve dividing the population 

into subunits in which the contact rate is different from that in the population overall. These 

subunits are typically households, but any subunit, for instance workplaces, is possible. Transmission 

within subunits is then described separately from transmission outside subunits. Meta-population 

models provide a balance between relevant details, and ease of computation and interpretation94–96.  

1.4.4 Economic evaluations 

Cost-effectiveness analyses enable comparison of public health interventions to inform decision 

making. This is often defined in terms of an incremental cost-effectiveness ratio (ICER), which 

describes the ratio of change in cost to change in effectiveness (ICER =
𝐶1−𝐶0

𝐸1−𝐸0
), with  effectiveness 

often defined in terms of cases averted, lives saved or Quality Adjusted Life Years(QALYs) 

gained/Disability Adjusted Life Years (DALYs) averted. One QALY is equivalent to a year lived in 

perfect health, and they are calculated by multiplying the time spent in a given health state by the 

utility of that health state (which is always <1 except for perfect health). DALYs measure the burden 

of a disease and are defined as the sum of the years of life lost (YLL) and the years live with disability 

(YLD). The YLL is the number of deaths cause by the disease multiplied by the difference between 

the maximum expected life-expectancy (i.e. life-expectancy in the country with the longest life-

expectancy) and the life-expectancy of someone with the disease. YLD is the product of the number 

of incident cases, the average time spent with the disease, and a utility weight. DALYs and QALYs are 

based on similar ideas, but the where the latter is an individualised measure of the effect of an 

intervention, the former provides a population-level measure of the burden of disease. Another 

difference is that higher QALY values equate to a healthier individual, whereas for DALYs, smaller 

values equate to a healthier population. In the UK, the National Institute for Health and Care 
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Excellence (NICE) produces guidance on clinical practice, much of which is underpinned by economic 

analyses. In NICE guidance, interventions which cost less than £20000-£30000/QALY gained are 

taken to be cost-effective43. In the UK, the NHS provides a list of reference costs which can be used 

when considering healthcare costs from the perspective of the NHS97, and the British National 

Formulary produces a list of medicine costs98.  

As aforementioned, in recent years two important case-finding strategies in the UK have been 

informed by cost-effectiveness analysis: Pre-entry screening of migrants55, and the Find and Treat 

service in London56. The first of these was informed by a multi-centre cohort study and used a simple 

decision tree model to explore the cost-effectiveness of different incidence thresholds for screening, 

and expressed results in terms of costs per case averted. The second used a simple compartmental 

model informed by data collected by the Find and Treat team. Neither included a transmission effect 

(i.e. they did not calculate the cases prevented, QALYs gained or costs saved by reducing 

transmission). Some economic evaluations are informed by transmission models where the 

transmission effect is likely to be an important part of the overall impact99. At least one previous 

study has attempted to evaluate the cost-effectiveness of contact tracing100. This study found that 

close contact screening of pulmonary TB patients in Montreal was actually cost-saving, i.e. costs 

were lower with contact tracing than without, and so determined contact tracing to be highly cost-

effective in that setting. No studies have estimated the cost-effectiveness of contact tracing in the 

UK as a whole or any parts of the UK. 
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Figure 8: M tuberculosis transmission model structure from Vynnycky and Fine14. Note that infectious cases are stratified 

by smear status, although this is not included in the model diagram. 
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Figure 9: M tuberculosis transmission model structure from Dye et al.76  
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Figure 10: M. tuberculosis transmission model structure from Lin et al.75  
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Table 2 Summary of some features of all of the previous TB modelling studies that have either incorporated contact tracing, or discussed doing so (adapted from Begun et al.77, with 

additional papers identified since review): 

Author 

Tuite et al.79 Guzzetta et 

al.80 Kasaie et al.84 Tian et al.82  

Guzzetta et 

al.78  Mellor et al.86  Tian et al.101 

Aparicio and 

Hernandez81  Ziv et al.83  

Year 2017 2015 2014 2013 2011 2011 2011 2006 2001 

Type of model 

Individual 

based 

 

Individual 

based 

Individual 

based 

Individual 

based 

Individual 

based Discrete event 

Systems 

Dynamic 

Compartment

al 

Compartment

al 

Stochastic/ 

deterministic 

Stochastic  

Stochastic Stochastic Stochastic Stochastic Stochastic Deterministic Deterministic Deterministic 

Region Canada USA USA Canada USA Africa Canada USA Theoretical 

Low/high 

prevalence? 

Medium – 

High Low 

 

Medium Medium Low High Low Low N/a 

Age-structured Yes Yes No Yes Yes Yes No No No 

Explicit extra-

pulmonary TB 

Yes Yes No 

No 

No No No Yes 

No 

Population 

groups 

considered 

Inuit 

population of 

the territory 

of Nunavut 

Different 

work places 

and 

education 

settings 

incorporated. 

Homogeneo

us, but with 

household 

structure 

incorporated. 

90% First 

Nation, 10% 

other 

aboriginal. 

Different 

work places 

and 

education 

settings 

incorporated. 

Age- and 

Household 

structure 

incorporated. 

Homogenous 

population. 

N/a 

 

 

 

N/a 

 

 

 

Background 

incidence 

~200/ 

100,000 per 

year. 

~5/ 100,000 

per year. 

~120/ 

100,000 per 

year. 

unknown - 

but northern 

Saskatchewa

n incidence is 

high ~150/ 

~5/ 100,000 

per year. 

~400/100,00

0 

per year at 

start 

of 

experiment, 

Unknown. 

 

Decreasing 

exponentially 

from 54 

/100,000 in 

1950 to 

250/100,000 
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100,000 per 

year. 

declining 

over time. 

4.4/100,000 

in 2000. 

Key questions 

explored 

To evaluate 

which 

interventions 

(including 

contact 

tracing) 

would benefit 

TB control in 

Nunavut 

To use a 

previously 

developed 

model to 

assess 

contact 

tracing 

success in 

Arkansas, 

USA. 

To derive 

maximum 

contact 

tracing 

impact in 

both 

household 

and 

community 

scenarios. 

Examine a 

range of 

modifications 

to contact 

tracing 

protocol: 

age- and 

ethnicity- 

prioritization; 

increased 

speed; 

reduced loss 

to follow up; 

greater 

tracing 

extent. 

To describe 

an age-

structured 

IBM, with 

evolving 

contact 

structure and 

spatial map. 

To compare 

CT 

with other 

Active Case 

Finding 

(ACF) 

approaches 

in 

high-risk 

groups, 

in this case 

HIV+ 

individuals. 

Impact of 

tracing a. 

more 

contacts and 

b. tracing 

more quickly. 

To develop a 

model which 

examines the 

effect of 

preventive 

therapy on 

TB 

incidence. 

- What is the 

effect on 

incidence of 

treating early 

latent 

infection? 

- How effective 

does this 

treatment 

have to be to 

eliminate TB? 

Contact 

tracing 

implementatio

n 

Direct 

simulation. 

Only 

household 

contacts 

screened. 

Those with 

LTBI offered 

preventive 

therapy. 

Direct 

simulation. 

Screening of 

both smear 

negative and 

positive 

index cases, 

include non-

household 

contacts. 

All household 

contacts 

traced, but 

no others. 

Direct 

simulation. 

Individuals 

have 

on average 

60 

contacts, and 

tracing 

fraction is 

varied. 

No contact 

tracing 

implemented

. 

Direct 

Simulation. 

CT 

represented 

as transition 

rate 

between 

un-

investigated 

and 

investigated 

states. 

CT 

represented 

as increased 

rate of LTBI 

treatment. 

CT 

represented 

as increased 

rate of LTBI 

treatment. 

Key findings 

Incidence 

projections 

CT prevents 

20% of TB 

CT effective 

if 

CT suffers 

from 

The model 

could 

Targeting TB 

control at 

Increasing 

the number 

Significant 

reductions in 

This sort of 

treatment 
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were variable 

in absence of 

interventions

. Rapid 

contact 

tracing and 

school-

based 

screening 

had limited 

effectiveness

. 

cases and 

deaths. It’s 

important to 

trace 

contacts of 

smear 

negatives in 

this context. 

achieves 

large 

population 

coverage. CT 

effects on 

incidence 

lagged by ~3 

years. 

Diminishing 

returns. 

Prioritizing 

based on 

ethnicity and 

age of 

contact 

led to 

particularly 

strong 

incidence 

reductions. 

feasibly be 

extended to 

include 

contact 

tracing; more 

data required 

to estimate 

household 

transmission 

accurately. 

HIV+ could 

be cost-

effective; 

more work 

needed on 

social 

network 

modelling. 

of contacts 

traced had a 

larger effect 

than 

increasing 

speed but 

both suffered 

from 

diminishing 

returns. 

incidence, 

even with 

interventions 

treating as 

few as 5% of 

recent 

infections. 

can have a 

large effect. 
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1.5 Summary 

The national TB strategy, published by Public Health England in 2015 in response to relatively high 

incidence rates for a high-income country, forms the focus of the first part of this thesis1. The 

strategy highlighted contact tracing as one of ten key areas for action, and proposed two indicators 

for monitoring progress on contact tracing. In chapter two we aim to quantify these indicators for 

London. We focus on London because 40% of TB cases in England are in London8, and because 

cohort review was initiated in London before other parts of the country51, a corollary of which is that 

there is good data on contact tracing in the capital. 

In chapter three, we aim to estimate the proportion of cases found through contact tracing that are 

due to transmission, and also to estimate the typical time which contact investigations take in 

London between index case and contact accessing care. A similar figure to the former of these was 

recently estimated at 75% in the UK27, though this study was based on postcodes rather than contact 

investigations. Contact investigation times have not previously been estimated in the UK.  As TB 

incidence in London is largely amongst the non-UK born and those with social risk factors8, these 

things are potential important risk factors for differential contact tracing outcomes and heightened 

transmission, which we examine in chapters two and three. 

The third chapter focusses on the question of whether we should screen contacts of non-pulmonary 

cases, and was precipitated by a change in national guidance to no longer recommend screening 

these contacts43. Whilst we have seen that these contacts are generally not infectious, various 

studies have found that the proportion of screened contacts of non-pulmonary cases that have TB is 

quite high relative to the prevalence of tuberculosis in the population, including chapter two of this 

thesis2,102,103. We undertook a cost-effectiveness analysis to understand whether the change in policy 

was justified. This was the first cost-effectiveness analysis of contact tracing in the UK.  
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The fifth chapter describes the design of a pairwise TB model. The primary aim of this chapter was to 

understand the feasibility of this modelling approach for modelling TB, a disease which has not been 

specifically addressed by a pairwise approach previously. A secondary aim was to quantify whether 

cases with reactivation disease generate more new infections than those with disease following a 

recent infection, a question arising out of chapter 4 of the thesis.  
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2 First paper: An evaluation of tuberculosis contact investigations 

against national standards 

Preamble 

As aforementioned, Public Health England and NHS England published a Collaborative TB Strategy in 

20151, that highlighted contact tracing as an area for action and proposed two indicators to monitor 

progress in this area. These were:  

1. The proportion of pulmonary TB cases that have at least one contact identified; 

2. The proportion of identified contacts of pulmonary TB cases that are evaluated. 

Currently, data are not collected at a national level to monitor these indicators, but the intention is 

that ultimately they will be. No target level was set for any of the indicators in the strategy; rather, 

the aim is that regions should aim to improve upon their own baseline.  

Whilst not included as a formal indicator, a statistic that is commonly used in contact investigations 

is the average yield per contact. This is defined as the proportion of evaluated contacts with active 

disease or LTBI (note that yield can also be defined per index case, rather than per contact). There 

are typically large differences between the yields of smear-positive pulmonary TB (PTB), smear-

negative PTB and non-pulmonary index cases (EPTB). Smear positive cases are usually the most 

infectious and so are likely to have highest yields104, whereas EPTB cases are typically not infectious, 

so have lower yield2. In this case, contact investigations would be undertaken to find the source of 

infection of the EPTB case2,105. One reason for not including yield as a contact tracing indicator, is 

that it is not clear whether the aim should be for it to increase or decrease; for instance, screening 

fewer contacts overall may lead to higher yield as a proportion of the number screened (because 

closer contacts might be screened and/or total TB incidence may rise), but reducing the amount of 

TB in the population might lead to lower yield.  
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Whilst the strategy indicators and contact tracing yield are not calculated at national level, some 

studies have calculated them for parts of the UK2,48,49,105,106; for instance, Saunders et al calculated 

the yield of active TB amongst contacts of PTB cases to be 2.3%2 in Birmingham (see Table 1 for 

more details), Underwood et al. calculated it to be 3.5% in Tower Hamlets105, a borough of London. 

In low- and middle-income countries, a systematic review in 2008 calculated the yield to be 4.5%107, 

whereas a more recent (2013) systematic review calculated 3.1%108. Both reviews observed 

substantial heterogeneity in yield between studies. The latter review also calculated the yield in 

high-income countries to be 1.4%. 

In addition to between-study heterogeneity, some studies have observed within-study 

heterogeneity in contact tracing screening outcomes. For example, contacts of Indian/Pakistani 

ethnicity were less likely to complete screening than were white contacts2 in Birmingham, and those 

contacts of Caucasian ethnicity less likely to be TST positive than were non-Caucasian ones in south 

Glamorgan, Wales106. Rubilar et al. found higher notification rates of EPTB amongst Asian cases than 

non-Asian in Edinburgh49. 

The aim of the first paper in this thesis was to calculate the strategy monitoring indicators, yield of 

TB and yield of LTBI in London, and also to find out which population subgroups were associated 

with improved indicators, or with higher yields. I focussed on London as it is the location of 38% of 

TB cases in England, and also because it has good data on contact tracing due to cohort review. This 

paper provided the first quantification of the England collaborative strategy for tuberculosis contact 

tracing monitoring indicators. In so doing, it provides an important basis for monitoring future 

trends in tuberculosis contact tracing outcomes in London. The paper also describes groups who 

may be underserved by current contact tracing practices, thereby highlighting areas of potential 

improvement or in need of further action.
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Addendum 

Clarifications 

 On page 54 in the first paragraph of the results, we state that there were 2716 pulmonary 

cases, and also that there were 971 pulmonary smear positive cases, 1095 pulmonary smear 

negative cases and 478 pulmonary cases with unknown smear, which totals 2548 pulmonary 

cases. The reason for this discrepancy is that we applied the exclusion criteria separately for 

pulmonary cases and for all cases combined. The former figure (2716) refers to the number 

of pulmonary cases included in the pulmonary-only dataset, whereas the latter (2548) refers 

to the number of pulmonary cases included in the all-cases dataset. 

 Similarly, in figure one more cases are excluded from the pulmonary-only dataset for being 

probable incidents than were excluded in the all-cases dataset for that reason. This is again a 

consequence of applying the exclusion criteria separately, meaning that these two figures 

represent slightly different time periods. 

 The reason for the separate pulmonary-only and all-cases datasets was so that indicators 1 

and 2, which refer only to pulmonary index cases, and indicators 3 and 4, which refer to all 

cases, could be estimated using the maximum amount of available data. Several other 

apparent discrepancies between the text and the tables occur for similar reasons. 

Corrections 

 There is a discrepancy between the exclusion criteria shown in figure 1 and the methods: the 

figure states that sectors are included if they reported 90% or more of their cases, whereas 

the text states 80%. The figure given in the text (80%) is correct. 

 In the fourth row of figure 4, the entry in the second column should read “index cases found 

through previous contact investigations” rather than “not report to cohort review”.  
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3. Second paper: Transmission events revealed in tuberculosis 

contact investigations in London 

Preamble 

The first paper of this thesis showed that at a practical level (i.e. the things within clinics’ control), 

contact tracing in London is being undertaken well when compared to other countries, as measured 

by both indicator 1 (the proportion of pulmonary cases with at least one contact identified) and 

indicator 2 (the proportion of identified contacts of pulmonary cases that are evaluated), as both of 

these indicators are typically as high or higher than values found in other locations. It also showed 

that the proportion of cases found to have either active TB or LTBI during contact investigations in 

London is high relative to other high-income, low-incidence nations or regions of the UK. For 

instance, 2.9% of all evaluated contacts of pulmonary cases had active TB, more than double the 

average yield of contact investigations amongst high-income countries (1.4%108). However, this says 

little about the impact of contact tracing as in the UK approximately 95% of cases are notified, so 

cases would probably be found anyway if they had not been found through contact tracing109. 

Additionally, part of the potential impact of contact tracing is derived from preventing cases, i.e. 

those which would have been infected by contacts found to have active TB had they been infectious 

for longer. In order to get a better understanding of the impact, it would help to know how many of 

the cases found are involved in chains of ongoing transmission, and also whether contact tracing 

found them sooner and by how much. This is what the second paper of this thesis sought to do for 

London. This paper is in review at Scientific Reports. 

To do this I used the same dataset as that used in the first paper (i.e. the LTBR, a web-based register 

of cases diagnosed in London which includes some contact tracing outcomes), but focus on pairs of 

cases and contacts diagnosed with TB, and supplement the dataset with mycobacterial-interspersed-

repetitive-units variable-number-tandem-repeats (MIRU-VNTR) typing data to look at transmission. 

When two cases have indistinguishable isolates and are known to have epidemiological links (e.g. 
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they know each other, or work in the same place), then transmission between them is usually 

described as confirmed27. In our study, all case-contact pairs had epidemiological links by definition, 

and so when they shared isolates this was probably due to recent transmission.  

Two studies in the US (2002, 2004) calculated the proportion of cases found through contact tracing 

which had an indistinguishable isolate from their index110,111, and a recent study in England (2017) 

attempted to estimate the proportion of pairs which had indistinguishable isolates  and shared an 

address27; all three of these studies are discussed in the paper. They calculated that 71%, 70% and 

75% of pairs shared isolates respectively. Additionally, a study in Cape Town (2004) calculated that in 

households with more than one case, 46% of cases had an isolate that was indistinguishable from 

that of at least one other member of their household112. This implies that less than or equal to 46% 

of household case-contact pairs would have indistinguishable isolates in this setting. We would 

expect the proportion to be lower in high incidence settings than low incidence settings, as this 

study found, because the risk of community transmission is likely to be increased as the proportion 

of those encountered in the community that have TB will be greater. A study in Poland (2012) found 

an intermediate figure of 63% of cases due to intra-household transmission113. However, to our 

knowledge, no study has attempted to estimate the proportion of those cases found through 

contact tracing that are due to recent transmission in a UK setting, nor has any study attempted to 

estimate how long contact investigations typically take in a UK setting. This study provides the first 

estimates of both of these things in a UK setting, and describes groups for whom contact 

investigations are longer and for whom cases found through contact investigations are more likely to 

be due to transmission. The results contain the important finding that a large minority (20%) of cases 

found through contact tracing had an isolate which did not match their index case, implying that 

cases of TB are found through contact tracing irrespective of whether transmission has taken place. 
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Addendum 

Clarifications 

 When we refer to ‘contact investigation length’, we mean the typical timescale associated 

with contact investigation. Ideally this would be the time between when the contact is 

elicited and when they are screened, though in this paper we use the time between index 

case and contact diagnosis as a proxy for this timespan. 

Corrections 

 There are some discrepancies between the figure 1 and the first paragraph of the results; 

the figures given in the text are correct.  
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4. Third paper: Should NICE reconsider the 2016 UK guidelines on 

tuberculosis contact tracing? A cost-effectiveness analysis of 

contact investigations in London 

Preamble 

As mentioned in the discussion for both papers one and two, in 2016 the NICE guidelines changed to 

no longer recommend screening of contacts of non-pulmonary, non-laryngeal (ETB) index cases 

(unless the index was under 15 years old)43. These cases are typically not infectious3, and this is the 

reason given for this change to guidance43. However, it is possible these ETB cases have infectious 

contacts, and that they were infected recently. Analysis of the yield of contact tracing (paper one102, 

chapter 2) found that the proportion of contacts of non-pulmonary cases that had active disease was 

quite high (0.7%), relative to the prevalence of TB in the population (0.027%), and comparable to 

other risk groups (e.g. homeless, 0.79%)114. In addition, analysis of strain typing data (paper two, 

chapter 3) found that 20% of contacts who had active disease were infected by a source other than 

the index case that triggered the contact investigation. Both of these findings imply that there may 

be some benefit to screening contacts of ETB cases, even though they’re not infectious, as they show 

that the risk of TB amongst contacts is high irrespective of whether transmission from the index case 

has occurred. It is also possible that ETB cases form an outer node of a transmission cluster, and in 

the contact tracing may uncover, and potentially avert, transmission related to this cluster. 

Furthermore, while the WHO does not recommend the screening of ETB cases in low- and middle-

income countries115, a number of countries in Europe did screen contacts of ETB cases in 200844; 

these ranged from very low incidence countries like Cyprus and Israel (4.4/100000 and 6.0/100000 

respectively at the time of the survey) to high incidence countries like Kazakhstan (210/100000 at 

the time of the survey). 
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Cost-effectiveness analyses have become an important part of informing tuberculosis care and 

prevention policy, and are used by NICE to inform their guidelines43,116. They have been used in the 

UK to evaluate the screening of migrants55 and the homeless56; both of these studies are discussed in 

more detail in the following paper. Over the years at least nine studies have evaluated the cost-

effectiveness of screening for LTBI amongst migrants117, typically finding it to be effective. However, 

while a number of studies have evaluated the effectiveness of giving preventive therapy to 

contacts118–120, or the effectiveness of case finding121,122, only one study has attempted to evaluate 

the cost-effectiveness of contact tracing as a whole100. That study, by Dasgupta et al. (2000), was 

based on just six cases found, did not evaluate contact tracing as its main aim (which was migrant 

screening), and did not include the effect of reduced transmission from contacts by finding them 

sooner. As aforementioned, no studies have previously estimated the cost-effectiveness of contact 

tracing in the UK or London. 

The third paper, which is in review at Thorax, evaluates the cost-effectiveness of contact 

investigations in London in the period 2012-15, and in so doing, improves understanding of the 

impact of the aforementioned change to NICE guidance. This paper is the first cost-effectiveness 

analysis of contact tracing to incorporate all of the potential impacts of contact tracing (reduced 

morbidity in contacts, prevented cases, reduced transmission from contacts, and reduced mortality), 

the second overall, and the first in the UK. It addresses an area of direct relevance to national policy 

guidelines, following recent, potentially controversial, changes to guidance43. It also provides a novel 

framework for delineating and quantifying the effect of contact tracing. 
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Addendum 

Clarifications 

In the methods section, we state that ‘infected contacts are given a 3 month course of 

rifampicin and isoniazid’. To clarify: this is the current standard of care in the UK43. 

 In section 3 of the appendix (‘Equations’), the equation for 𝑁later generations, 𝜎  will only 

converge if 𝐹 ≤ 1, and also neglects overlapping contacts. As 𝐹 ≪ 1 with parameters used 

in the model, both of these assumptions are valid.  

Corrections 

 The last subsection in the methods section should read ‘role of funding source’.  
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5. Estimating the relative transmission intensity from tuberculosis 

cases with reactivation disease compared to those with primary 

disease using a pairwise model 

Introduction 

The results presented in chapter four suggest that it is very unlikely that screening contacts of non-

pulmonary, non-laryngeal cases is cost effective in London, and hence in the UK. However, it was 

uncertain whether screening contacts of pulmonary or laryngeal cases was cost-effective at either of 

the cost-effectiveness thresholds used in the UK (i.e. £20000 and £30000). This uncertainty was 

largely derived from uncertainty in the symptomatic period of cases found through contact tracing, 

and in the number of infections generated by cases per day (see Table 4 and Figure 1 in chapter 4). It 

is plausible that recently infected cases (as those found through contact tracing often are – see 

chapter 3) will generate fewer new infections, on average, than cases with reactivation disease, due 

to the likelihood of the recently infected cases sharing contacts with their index case (a ‘saturation 

effect’). In this final section, we aim to explore this saturation effect. 

In order to do so it is necessary to consider the local network structure of the population around 

each case, in order to estimate how many of their contacts are exposed. Often, this has been 

incorporated into TB models by using an individual based model with an explicit network structure78–

80,84. A significant drawback of this type of model is that it can be difficult to parametrize and 

computationally expensive85. An approach which has been used for a range of other diseases, 

although never for TB, is that of pairwise equations. As discussed in chapter 1, this approach, rather 

than having equations which describe the number of individuals at each stage of the natural history 

of a given disease, instead has equations which describe the number of pairs across which 

transmission can occur91–93,123. This is particularly intuitive for sexually transmitted diseases, for 

which the pair is the natural unit, and has been used in theoretical contact tracing studies before93. 
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Previous studies have extended the pairwise equation system to include a random, ‘mass action’ 

transmission term to the equations92. If we consider pairs to represent close (e.g. household) 

contacts, and the random transmission term to represent casual contacts, then a pairwise system 

may plausibly describe M. Tb transmission. However, as a pairwise equation system needs one 

differential equation for each possible pair of disease states, the complexity of TB’s natural history 

(e.g. compared to gonorrhoea) will cause the resultant system of equations to be correspondingly 

complex. 

Our primary aim in this study was to understand the extent to which a pairwise model is useful for 

modelling M. Tb transmission. Our secondary aim was to use the pairwise model to understand the 

extent of the saturation effect when considering the amount of transmission from cases that have 

been recently infected or reinfected (for simplicity, taken to be within a year), relative to those with 

reactivation disease. This has relevance for contact tracing, as cases found through contact tracing 

are likely to have been infected in the past year (see chapter 3). We believe this is the first study to 

quantify whether the number of infections attributable to cases that have themselves been recently 

infected differs from that from cases experiencing reactivation disease, and the first pairwise model 

applied specifically to tuberculosis. 
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 Methods 

Model structure: As the number of differential equations required for a pairwise model increases 

quadratically with the number of compartments used to describe the natural history of the disease, 

it is beneficial to keep the number of compartments as small as possible, at least for this exploratory 

study. Consequently, we used a simplified model of tuberculosis natural history which doesn’t 

account for age structure (Figure 11), parameterized using values from the literature and from 

surveillance data for London (Table 3). In the model, everyone is born uninfected. People can be 

infected either by a close (pairwise) contact (represented by 𝜏 in Figure 11 and the equations) or by 

a casual contact (represented by 𝛽). Infected people are stratified into those that are recently 

infected or reinfected (𝐿𝑓) and those that have latent infection (𝐿𝑠) – people stay in the recently 

(re)infected compartment for one year on average before moving to the latent compartment12. 

People with a recent infection (𝐿𝑓  compartment) progress to disease at a rate, 𝑝𝑓, and those with 

latent infection (𝐿𝑠 compartment) develop reactivation disease at a rate 𝑝𝑠. As the recently infected 

develop disease at a faster rate than those with latent infection, 𝑝𝑠 < 𝑝𝑓.  

Those in the 𝐿𝑠 compartment can also be reinfected, upon which there is a transition to the 𝐿𝑓 

compartment, but the chance of reinfection is reduced by a factor 𝜎 compared to initial infection, 

due to a protective effect of previous disease or infection. There are two infectious compartments, 

but this is merely to record from which infected compartment disease was developed; there are no 

differences in the recovery or mortality rates, nor in infectiousness. Both infectious compartments 

recover to the latent compartment, implying a life-long risk of relapse/reinfection. Both infected and 

both infectious compartments have a constant rate of mortality, with a higher rate in the infectious 

compartments. To maintain a constant population size, the birth rate (into the susceptible 

compartment) is equal to the mortality rate.  
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Figure 11: Model diagram. S refers to susceptible (previously uninfected) people, 𝑳𝒔 refers to latently infected, or 

recovered people, 𝑳𝒇 refers to recently infected people, 𝑰𝒔 refers cases who developed reactivation disease, 𝑰𝒇 refers to 

cases who developed disease after a recent infection or reinfection. The two rates of infection, 𝝉 and 𝜷, represent pairwise 

and mass-action transmission rates respectively  
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Table 3: Parameter values, or prior distributions of parameters that were fitted. *The ranges for 𝒑𝒇 and 𝒑𝒔 were chosen so that their geometric mean value approximately matched the 

rates of progression to disease following infection given in Sloot et al.12 

Parameter Value, or prior distribution Units Source 

Contacts per person, 𝑛 5 Contacts London TB register 

Pairwise contact parameter, 𝜏 Log-Uniform(4x10-5, 4x10-1) Number of effective pairwise 

contacts made per day 

Plausible range 

Random contact parameter, 𝛽 Uniform(0, 1) Number of effective casual contacts 

made per day 

Plausible range 

Mortality rate, 𝜇 0.01/365. Deaths per day per capita To give an average life 

expectancy of 100 years, in 

absence of TB. 

TB mortality rate, 𝜇𝑇 0.07/365. Deaths per day per capita PHE surveillance database, 

via  Mears et al.124 

Recovery rate, 𝜌 Log-Uniform(5x10-4, 5x10-1) Cases per day per capita Plausible range. Implies an 

average duration of 

infectiousness of between 2 and 

2000 days (in the absence of 

death). 

Protection against reinfection by 

being latently infected, 𝜎 

0.79  Andrews et al125 

Rate recently (re)infected move to 

latent, 𝑙 

1/365. Cases per day per capita Calculated so that people remain 

for an average of 1 year in 𝐿𝑓  

Rate that latent progress to disease, 

𝑝𝑠 

Log-Uniform(2x10-6, min(𝑝𝑓, 2x10-3)) Cases per day per capita Plausible range*, with 𝑝𝑠 < 𝑝𝑓.  

Rate that recently (re)infected 

progress to disease, 𝑝𝑓  

Log-Uniform(6x10-5, 6x10-2) Cases per day per capita Plausible range*, geometric mean 

1.9 cases per day per 1000 

people 

Population size, 𝑁 8640000 People Office for National Statistics126 
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Clustering coefficient, 𝜙 Uniform(0,1) The proportion of sets of pairs 

connected by a central contact that 

form triples 

Uninformative prior 
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Pairwise equation system: We wish to understand whether cases who have developed TB following 

recent (re)infection (i.e. the 𝐼𝑓  compartment) generate fewer infections than those with reactivation 

disease due to a saturation effect amongst their contacts. That is, in our pairwise system, do those 

who have disease following a recent (re)infection have fewer uninfected contacts, and so cause 

fewer infections than do those with reactivation disease?  

The pairwise system is a deterministic set of differential equations for which each equation describes 

the number of each type of pair. Terms of the form [AB] represent a pair of people, one of whom is 

in the A compartment, and the other in the B compartment. Similarly, a term of the form [ABC] 

represents a triple in which A is paired with B and B with C. The transitions shown in Figure 11  can 

be found in the equations by locating the corresponding parameter. In order to simplify the 

equations, the number of like pairs (e.g. S-S pairs) are counted twice in each direction, whereas 

unlike pairs are counted once in each direction. This results in the appearance of a factor of 2 in 

some of the equations. In this system, each infectious-susceptible pair and each infectious-latent 

pair results in transmission at a rate 𝜏 or 𝜎𝜏 respectively. There is also a random contact term, 

highlighted in these equations in red, which acts on the susceptible and latent compartments at a 

rate proportional to the total number in the infectious compartment. These terms can be thought of 

as representing transmission between close contacts (𝜏) and casual contacts (𝛽) respectively. The 

number of close contacts is fixed throughout a model run at 5, and each person in the model has the 

same number of close contacts. The equations for this system are as follows: 

0. 
𝑑[𝑆𝑆]

𝑑𝑡
= 2 (𝜇([𝑆𝐿𝑠] + [𝑆𝐿𝑓]) + 𝜇𝑇([𝑆𝐼𝑠] + [𝑆𝐼𝑓]) − 𝜏([𝑆𝑆𝐼𝑠] + [𝑆𝑆𝐼𝑓]) −

𝛽[𝑆𝑆]([𝐼𝑠]+[𝐼𝑓])

𝑁
) 

1. 
𝑑[𝑆𝐿𝑠]

𝑑𝑡
= 𝜇([𝐿𝑠𝐿𝑠] + [𝐿𝑠𝐿𝑓]) + 𝜇𝑇([𝐿𝑠𝐼𝑠] + [𝐿𝑠𝐼𝑓]) − 𝜏 ([𝐿𝑠𝑆𝐼𝑠] + [𝐿𝑠𝑆𝐼𝑓] +

𝜎([𝑆𝐿𝑠𝐼𝑠] + [𝑆𝐿𝑠𝐼𝑓])) + 𝑙[𝑆𝐿𝑓] + 𝜌([𝑆𝐼𝑠] + [𝑆𝐼𝑓]) − (𝑝𝑠 + 𝜇)[𝑆𝐿𝑠] −
(1+𝜎)𝛽[𝑆𝐿𝑠]([𝐼𝑠]+[𝐼𝑓])

𝑁
 

2. 
𝑑[𝑆𝐿𝑓]

𝑑𝑡
= 𝜇([𝐿𝑓𝐿𝑠] + [𝐿𝑓𝐿𝑓]) + 𝜇𝑇([𝐿𝑓𝐼𝑠] + [𝐿𝑓𝐼𝑓]) + 𝜏 ([𝑆𝑆𝐼𝑠] + [𝑆𝑆𝐼𝑓] +

𝜎([𝑆𝐿𝑠𝐼𝑠] + [𝑆𝐿𝑠𝐼𝑓]) − ([𝐿𝑓𝑆𝐼𝑠] + [𝐿𝑓𝑆𝐼𝑓])) − (𝑙 + 𝑝𝑓 + 𝜇)[𝑆𝐿𝑓] +

𝛽([𝐼𝑠]+[𝐼𝑓])([𝑆𝑆]+𝜎[𝑆𝐿𝑠]−[𝑆𝐿𝑓])

𝑁
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3. 
𝑑[𝑆𝐼𝑠]

𝑑𝑡
= 𝜇([𝐼𝑠𝐿𝑠] + [𝐼𝑠𝐿𝑓]) + 𝜇𝑇([𝐼𝑠𝐼𝑠] + [𝐼𝑠𝐼𝑓]) − 𝜏([𝑆𝐼𝑠] + [𝐼𝑠𝑆𝐼𝑠] + [𝐼𝑠𝑆𝐼𝑓]) + 𝑝𝑠[𝑆𝐿𝑠] −

(𝜌 + 𝜇𝑇)[𝑆𝐼𝑠] −
𝛽[𝑆𝐼𝑠]([𝐼𝑠]+[𝐼𝑓])

𝑁
 

4. 
𝑑[𝑆𝐼𝑓]

𝑑𝑡
= 𝜇([𝐼𝑓𝐿𝑠] + [𝐼𝑓𝐿𝑓]) + 𝜇𝑇([𝐼𝑓𝐼𝑠] + [𝐼𝑓𝐼𝑓]) − 𝜏([𝑆𝐼𝑓] + [𝐼𝑓𝑆𝐼𝑓] + [𝐼𝑠𝑆𝐼𝑓]) + 𝑝𝑓[𝑆𝐿𝑓] −

(𝜌 + 𝜇𝑇)[𝑆𝐼𝑓] −
𝛽[𝑆𝐼𝑓]([𝐼𝑠]+[𝐼𝑓])

𝑁
 

5. 
𝑑[𝐿𝑠𝐿𝑠]

𝑑𝑡
= 2 (𝑙[𝐿𝑠𝐿𝑓] + 𝜌([𝐿𝑠𝐼𝑠] + [𝐿𝑠𝐼𝑓]) − 𝜎𝜏([𝐿𝑠𝐿𝑠𝐼𝑠] + [𝐿𝑠𝐿𝑠𝐼𝑓]) − (𝑝𝑠 + 𝜇)[𝐿𝑠𝐿𝑠] −

𝜎𝛽[𝐿𝑠𝐿𝑠]([𝐼𝑠]+[𝐼𝑓])

𝑁
) 

6. 
𝑑[𝐿𝑠𝐿𝑓]

𝑑𝑡
= 𝑙[𝐿𝑓𝐿𝑓] + 𝜌([𝐿𝑓𝐼𝑠] + [𝐿𝑓𝐼𝑓]) + 𝜏 ([𝐿𝑠𝑆𝐼𝑠] + [𝐿𝑠𝑆𝐼𝑓] + 𝜎 ([𝐿𝑠𝐿𝑠𝐼𝑠] + [𝐿𝑠𝐿𝑠𝐼𝑓] −

([𝐿𝑓𝐿𝑠𝐼𝑠] + [𝐿𝑓𝐿𝑠𝐼𝑓]))) − (𝑙 + 𝑝𝑓 + 2𝜇 + 𝑝𝑠)[𝐿𝑓𝐿𝑠] +
𝛽([𝐼𝑠]+[𝐼𝑓])([𝑆𝐿𝑠]+𝜎[𝐿𝑠𝐿𝑠]−𝜎[𝐿𝑠𝐿𝑓])

𝑁
 

7. 
𝑑[𝐿𝑠𝐼𝑠]

𝑑𝑡
= 𝑙[𝐼𝑠𝐿𝑓] + 𝜌([𝐼𝑠𝐼𝑠] + [𝐼𝑠𝐼𝑓]) − 𝜎𝜏([𝐿𝑠𝐼𝑠] + [𝐼𝑠𝐿𝑠𝐼𝑠] + [𝐼𝑠𝐿𝑠𝐼𝑓]) + 𝑝𝑠[𝐿𝑠𝐿𝑠] −

(𝜌 + 𝜇𝑇 + 𝑝𝑠 + 𝜇)[𝐼𝑠𝐿𝑠] −
𝜎𝛽[𝐿𝑠𝐼𝑠]([𝐼𝑠]+[𝐼𝑓])

𝑁
 

8. 
𝑑[𝐿𝑠𝐼𝑓]

𝑑𝑡
= 𝑙[𝐼𝑓𝐿𝑓] + 𝜌([𝐼𝑠𝐼𝑓] + [𝐼𝑓𝐼𝑓]) − 𝜎𝜏([𝐿𝑠𝐼𝑓] + [𝐼𝑓𝐿𝑠𝐼𝑓] + [𝐼𝑠𝐿𝑠𝐼𝑓]) + 𝑝𝑓[𝐿𝑠𝐿𝑓] −

(𝑝𝑠 + 𝜇 + 𝜌 + 𝜇𝑇)[𝐿𝑠𝐼𝑓] −
𝜎𝛽[𝐿𝑠𝐼𝑓]([𝐼𝑠]+[𝐼𝑓])

𝑁
 

9. 
𝑑[𝐿𝑓𝐿𝑓]

𝑑𝑡
= 2 (𝜏 ([𝐿𝑓𝑆𝐼𝑠] + [𝐿𝑓𝑆𝐼𝑓] + 𝜎([𝐿𝑓𝐿𝑠𝐼𝑠] + [𝐿𝑓𝐿𝑠𝐼𝑓])) − (𝑙 + 𝑝𝑓 + 𝜇)[𝐿𝑓𝐿𝑓] +

𝛽([𝐿𝑓𝑆]+𝜎[𝐿𝑓𝐿𝑠])([𝐼𝑠]+[𝐼𝑓])

𝑁
) 

10. 
𝑑[𝐿𝑓𝐼𝑠]

𝑑𝑡
= 𝜏 ([𝑆𝐼𝑠] + [𝐼𝑠𝑆𝐼𝑠] + [𝐼𝑠𝑆𝐼𝑓] + 𝜎([𝐿𝑠𝐼𝑠] + [𝐼𝑠𝐿𝑠𝐼𝑠] + [𝐼𝑠𝐿𝑠𝐼𝑓])) + 𝑝𝑠[𝐿𝑓𝐿𝑠] −

(𝜌 + 𝜇𝑇 + 𝑙 + 𝑝𝑓 + 𝜇)[𝐿𝑓𝐼𝑠] +
𝛽([𝐼𝑠𝑆]+𝜎[𝐼𝑠𝐿𝑠])([𝐼𝑠]+[𝐼𝑓])

𝑁
 

11. 
𝑑[𝐿𝑓𝐼𝑓]

𝑑𝑡
= 𝜏 ([𝑆𝐼𝑓] + [𝐼𝑓𝑆𝐼𝑓] + [𝐼𝑠𝑆𝐼𝑓] + 𝜎([𝐿𝑠𝐼𝑓] + [𝐼𝑓𝐿𝑠𝐼𝑓] + [𝐼𝑠𝐿𝑠𝐼𝑓])) + 𝑝𝑓[𝐿𝑓𝐿𝑓] −

(𝑙 + 𝑝𝑓 + 𝜇 + 𝜌 + 𝜇𝑇)[𝐿𝑓𝐼𝑓] +
𝛽([𝐼𝑓𝑆]+𝜎[𝐼𝑓𝐿𝑠])([𝐼𝑠]+[𝐼𝑓])

𝑁
 

12. 
𝑑[𝐼𝑠𝐼𝑠]

𝑑𝑡
= 2(𝑝𝑠[𝐼𝑠𝐿𝑠] − (𝜌 + 𝜇𝑇)[𝐼𝑠𝐼𝑠]) 

13. 
𝑑[𝐼𝑠𝐼𝑓]

𝑑𝑡
= 𝑝𝑠[𝐼𝑓𝐿𝑠] + 𝑝𝑓[𝐼𝑠𝐿𝑓] − 2(𝜌 + 𝜇𝑇)[𝐼𝑠𝐼𝑓] 

14. 
𝑑[𝐼𝑓𝐼𝑓]

𝑑𝑡
= 2(𝑝𝑓[𝐼𝑓𝐿𝑓] − (𝜌 + 𝜇𝑇)[𝐼𝑓𝐼𝑓]) 

We can calculate exactly the number of singles from these terms: 

15. [𝐴] =
1

𝑛
∑ [𝐴𝐵]𝐵  

As transmission can occur within a pair, or from outside the pair, triple terms appear in the above 

equations. This is approximated using the closure equation: 

16. [𝐴𝐵𝐶] =
[𝐴𝐵][𝐵𝐶](𝑛−1)

𝑛[𝐵]
[(1 − 𝜙) +

𝜙𝑁[𝐴𝐶]

𝑛[𝐴][𝐶]
] 
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Where n is the average number of contacts, and ϕ is the clustering coefficient (the proportion of 

triples that form triangles, or in other words, for what proportion of triples in which A is a contact of 

B and B is a contact of C, is A also a contact of C?). When 𝜙 = 0, the term in the square brackets is 1 

and none of the triples form triangles, i.e. if A is connected to B, and B to C, then is never connected 

to C. Similarly, if 𝜙 ≪ 1, a negligible proportion of the triangles will form triples. If 𝜙 = 1, then every 

triangle forms a triple, i.e. if A is connected to B and B to C, then A is always connected to C 

In order to separately quantify the total number of transmissions which take place from the 𝐼𝑠and 𝐼𝑓  

compartments, we use the following eight equations. In these equations, 𝑇𝑠 terms represent 

transmission from those who developed disease following reactivation of latent infection, 𝑇𝑓  terms 

represent transmission from those who developed disease following recent (re)infection, the 

superscript 𝑝 represents pairwise transmission, 𝑟 represents transmission from casual contacts, and 

the even numbered equations each represent transmission to previously infected contacts: 

17. 
𝑑𝑇𝑠,𝑝

𝑑𝑡
= 𝜏([𝑆𝐼𝑠] + [𝐼𝑠𝑆𝐼𝑓] + [𝐼𝑠𝑆𝐼𝑠]) 

18. 
𝑑𝑇𝑠,𝑝, reinfection

𝑑𝑡
= 𝜎𝜏([𝐿𝑠𝐼𝑠] + [𝐼𝑠𝐿𝑠𝐼𝑓] + [𝐼𝑠𝐿𝑠𝐼𝑠]) 

19. 
𝑑𝑇𝑠,𝑟

𝑑𝑡
=

𝛽[𝑆][𝐼𝑠]

𝑁
 

20. 
𝑑𝑇𝑠,𝑟, reinfection

𝑑𝑡
=

𝛽𝜎[𝐿𝑠][𝐼𝑠]

𝑁
 

21. 
𝑑𝑇𝑓,𝑝

𝑑𝑡
= 𝜏([𝑆𝐼𝑓] + [𝐼𝑠𝑆𝐼𝑓] + [𝐼𝑓𝑆𝐼𝑓]) 

22. 
𝑑𝑇𝑓,𝑝,reinfection

𝑑𝑡
= 𝜎𝜏([𝐿𝑠𝐼𝑓] + [𝐼𝑠𝐿𝑠𝐼𝑓] + [𝐼𝑓𝐿𝑠𝐼𝑓]) 

23. 
𝑑𝑇𝑓,𝑟

𝑑𝑡
=

𝛽[𝑆][𝐼𝑓]

𝑁
 

24. 
𝑑𝑇𝑓,𝑟, reinfection

𝑑𝑡
=

𝛽𝜎[𝐿𝑠][𝐼𝑓]

𝑁
 

We also estimate the incidence using the following equations: 

25. 
𝑑Inc𝑠

𝑑𝑡
= 𝑝𝑠𝐿𝑠 

26. 
𝑑Inc𝑓

𝑑𝑡
= 𝑝𝑓𝐿𝑓  

Model fitting: We aimed to reproduce the incidence and prevalence of pulmonary disease in 

London, and to then identify values for the ratio of infections generated by cases with reactivation 

disease to infections generated by cases with disease following recent (re)infection that are 
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consistent with the observed data. We fitted to an annual incidence of pulmonary disease of 

12.3/1000008 and a prevalence of pulmonary disease of 13.3/100000 persons114. This latter figure is 

over ten years old (from 2003), and is an approximation, as no prevalence survey was undertaken, so 

it was calculated using a point prevalence of cases who were or should have been on treatment. It is 

also further approximated, as the data were not stratified by site of disease; to arrive at the value of 

13.3/100,000 we assumed 49% of cases had pulmonary disease, which is the proportion of incident 

cases in the most recent year with pulmonary disease. 

We varied: the clustering coefficient, 𝜙; the recovery rate, 𝜌; the progression rate following recent 

(re)infection, 𝑝𝑓; the reactivation rate, 𝑝𝑠; the pairwise contact parameter, 𝜏, and the casual contact 

parameter, 𝛽. We fit the model using the sampling-importance-resampling algorithm, sometimes 

known as Bayesian melding. This consists of the following steps: 

1. Sample each parameter from its prior distribution. In our case we take M = 1500000 

parameter sets from the prior distribution. 

2. Obtain the model output for each of these M parameter sets. In our case, the model output 

is the equilibrium prevalence and incidence of disease. This was obtained by running the 

model for 1000 simulated years, using a time-step of 1 day.. 

3. Estimate the likelihood of each of these model outputs with respect to the data point we are 

fitting to. In our case this means estimating the likelihood of the model predicted 

equilibrium prevalence or incidence, to the prevalence or incidence (respectively) in London 

in 2016. 

4. Compute the weights of each input parameter set which are proportion to the overall 

likelihood, calculated by multiplying the estimated likelihoods with respect to each data 

point. As initial attempts to use the combined likelihood of the incidence and prevalence 

yielded few posterior parameter sets, possibly due to inaccuracies in the estimate of 
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prevalence, we separately use either the likelihood with respect to prevalence or with 

respect to incidence. 

5. Generate the posterior distribution of the model output, by resampling from the original 

output sets with weights proportional to the likelihood. In our case we resample m=12000 

sets. 

To estimate the likelihood of the prevalence data for a given model run we used the binomial 

distribution, with 𝑘 =
13.3𝑁

100000
 (i.e. the number of prevalent cases in the data), 𝑛 = 𝑁 (the population 

size), and 𝑝 equal to the model predicted prevalence. We calculate the likelihood of the incidence 

data using the Poisson distribution, with 𝑘 =
12.3𝑁

100000
 (i.e. the number of incident cases in one year in 

the data) and 𝜆 equal to the model predicted number of incident cases in one year. 

For model fitting, we calculate the incidence, prevalence and prevalence of infection, using the 

following equations, where superscripts represent time-steps and T is the final time-step 

25. Prevalence =
𝐼𝑠

(𝑇)
+𝐼𝑓

(𝑇)

N
 

26. Incidence =
Inc𝑠

(𝑇)
+Inc𝑓

(𝑇)
−Inc𝑠

(𝑇−1)
−Inc𝑓

(𝑇−1)

NΔ𝑡
 

27. Prevalence of infection =
𝐿𝑠

(𝑇)
+𝐿𝑓

(𝑇)

N
 

If the region of parameter space which maximises the likelihood is sharply ‘ridge-like’, it may be 

difficult for a Bayesian melding algorithm to effectively explore the optimum region of parameter 

space. For this reason, alongside the fact that the Bayesian melding model fit did not prove 

satisfactory, we also fitted the model using the Metropolis-Hastings Markov Chain - Monte Carlo 

(MCMC) algorithm. We used uniform prior distributions for each of the six parameters and 

calibrated to: the incidence of disease, the prevalence of disease, the prevalence of infection (5%, 

taken from a US study as no recent estimate exists in the UK), and the proportion of all pairs 

containing at least one infectious person that contain two infectious people (2.6%, chapter three). 
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We estimated the likelihood of each model output using the Poisson distribution for the incidence, 

and the binomial distribution for the other three outputs. We adapted the size and standard 

deviation of the proposal distribution during the Metropolis-Hastings algorithm and ran the 

algorithm for 5000 iterations. We selected the initial parameter sets sing Latin Hypercube Sampling 

in the pyDOE package in Python, implemented the MCMC algorithm in Python, and analysed the 

results using the fitR and coda packages in R. 

Main analysis: We first estimate the distribution of each of the six free parameters (the clustering 

coefficient, 𝜙; the recovery rate, 𝜌; the progression rate following recent (re)infection, 𝑝𝑓; the 

reactivation rate, 𝑝𝑠; the pairwise contact parameter, 𝜏, and the casual contact parameter, 𝛽) when 

fitted to prevalence and to incidence, and look at the corresponding estimated incidence or 

prevalence distributions for plausibility. We use the Kolmogorov-Smirnov test to test for a difference 

between the parameter distributions when fitted to prevalence compared to when fitted to 

incidence. We then estimate the ratio of infections generated by those with reactivation disease to 

those with disease following recent (re)infection, or 
𝑇𝑠

𝑚−𝑇𝑠
𝑚−1

𝑇𝑓
𝑚−𝑇𝑓

𝑚−1 (where 𝑚 represents the final time-

step of the model run). We also estimate this per infectious case, or (
𝑇𝑠

𝑚−𝑇𝑠
𝑚−1

𝑇𝑓
𝑚−𝑇𝑓

𝑚−1) (
𝐼𝑓

𝑚+𝐼𝑓
𝑚−1

𝐼𝑠
𝑚+𝐼𝑠

𝑚−1). Finally, 

we calculate the correlation of each free parameter with the per case ratio to understand which 

parameter most strongly determines the outcome. 

Additional analyses: We undertook a number of additional analyses to explore the results: 

 Stratify the results based on values of 𝛽 into nine equal width bands, in order to understand 

the impact of 𝛽 on the model predicted value of 𝜏 and on the ratio. 

 Include other things into the model fit: An estimate of infection prevalence (5%, taken from 

a US study as no recent estimate exists in the UK127); and the proportion of all pairs 

containing at least one infectious person that contain two infectious people (2.6%, taken 

from chapter 2). Both are calculated using the binomial distribution. 



160 
 

 Stratify the results by values of the per case ratio, to understand how the distributions for 

parameters change with the output of interest. We stratify the ratio into three bands: <1 

(slightly more transmission per case from those with disease following recent (re)infection), 

between 1 and 1.05 (slightly more transmission per case from those with reactivation 

disease), and >1.05 

 Fit to incidence and prevalence just among the UK-born, 4.5/100000/year and 4.6/100000 

respectively8,114, to account in a simple way for the lack of inclusion of immigration. 

 Fit to the incidence from 2003, when the prevalence estimate was made. This value is 

20.4/10000028, assuming the proportion of cases with pulmonary TB has not changed 

significantly. This analysis was not repeated for the UK born population because, while the 

overall incidence has changed a lot since 2003, the incidence amongst UK born has been 

fairly constant, with nearly all of the decline in incidence happening amongst the non-UK 

born22 
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Results 

Parameters 

Figure 12 and Figure 13 show the predicted prevalence and incidence when the model is fitted to 

prevalence alone. Figure 14 and Figure 15 show the predicted prevalence and incidence when the 

model is fitted to incidence alone. When we fit to prevalence, the predicted incidence is too high (on 

average), whereas when we fit to incidence the prevalence is too low. When fitting to prevalence of 

disease, the prevalence of infection (latent and recent) is much too high (Figure 16), but when we fit 

to incidence, the prevalence of infection is more reasonable, though in this case is too low (Figure 

17).  

Posterior distributions of each parameter when fitting to prevalence are shown in Figure 18, and 

when fitting to incidence are shown in Figure 19. In both cases 𝜏 and 𝜙 have uniform posterior 

distributions which match their prior distributions. Whilst, according to the Kolmogorov-Smirnov 

test, the parameter distributions are different for each parameter when fitted to incidence as 

compared to prevalence (Table 4), the most stark difference occurs for 𝛽. While when we fit to 

prevalence the posterior distribution of 𝛽 is uniform, matching its prior distribution, when we fit to 

incidence the posterior is positively skewed, and hence the median value is lower (Table 5).  

When fitting to prevalence the annual risk of infection (ARI) is 5.0% (95% CI: 0.51%, 16%), whereas 

when fitting to incidence it is 0.027% (95% CI: 0.0020%, 0.12%). Whilst the ARI is not well known for 

the UK128 it is likely to be between these two estimates. 
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Figure 12: Distribution of prevalence when fitted to prevalence. The vertical dashed line is the target value. There are no 

values beyond the scale shown here. 
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Figure 13: Distribution of incidence when fitted to prevalence. The vertical dashed line is the target value. There are no 

values beyond the scale shown here. 
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Figure 14: Distribution of prevalence when fitted to incidence. The vertical dashed line is the target value. There are no 

values beyond the scale shown here. 
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Figure 15: Distribution of incidence when fitted to incidence. The vertical dashed line is the target value. There are no 

values beyond the scale shown here. 
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Figure 16: Prevalence of M. Tb infection when model is fitted to prevalence of disease. The red vertical line indicates 5% 
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Figure 17: Prevalence of M. Tb infection when model is fitted to incidence of disease. The red vertical line indicates 5% 
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Figure 18: Posterior parameter distributions when fitted to prevalence 
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Figure 19: Posterior parameter distributions when fitted to incidence. This figure can be contrasted with figure 18, which 

showed the posterior distributions when the model was fitted to disease prevalence. In particular, there are large 

differences in 𝜷, 𝒑𝒇 and 𝒑𝒔. 

Table 4: Probability of no difference between the parameter distributions, according to the Kolmogorov-Smirnov test. 

parameter p-value that there is no 

difference in distributions 

N 8.83x10-15 

𝒑𝒇 7.06x10-108 

𝒑𝒔 7.73x10-286 

𝝉 1.76x10-11 

𝝆 4.95x10-10 

𝜷 0 

Ratio of transmission from cases with reactivation disease to 

transmission from cases with disease following recent infection 4.10x10-106 

Ratio of transmission from cases with reactivation disease to 

transmission from cases with disease following recent infection, per 

case 6.14x10-61 
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Table 5: Median and 95% confidence intervals for the posterior distribution of each parameter, when fitted to incidence 

or prevalence. 

variable Fitted to prevalence Fitted to incidence 

median Lower 

95% CI 

Upper 

95% CI 

median Lower 

95% CI 

Upper 

95% CI 

𝝓 0.499 0.0248 0.979 0.540 0.0239 0.975 

𝒑𝒇 0.000489 6.54x10-5 0.0421 0.00025 6.46x10-5 0.0335 

𝒑𝒔 1.42x10-5 2.22x10-6 8.18x10-5 7.54x10-6 2.14x10-6 0.000114 

𝝉 0.00383 4.99x10-5 0.301 0.00274 5.23x10-5 0.287 

𝝆 0.166 0.0196 0.470 0.175 0.0107 0.478 

𝜷 0.518 0.0534 0.973 0.257 0.00658 0.953 

Transmission ratios 

When we fit to either prevalence or incidence (Figure 20 and Figure 21 respectively, Table 6), we see 

that the number of infections per case is greater for those with reactivation disease than it is for 

those with disease following recent (re)infection in almost all cases. This is true whether we include 

reinfection when estimating the ratio or not (i.e. the 𝑇𝑖,𝑗,reinfection terms), and whether we include 

transmission to casual contacts when estimating the ratio or not (i.e. the 𝑇𝑖,𝑟and 𝑇𝑖,𝑟,reinfection terms. 

The distribution of the ratio of the total number of infections varies whether we fit to incidence or 

prevalence, with the average value of the ratio higher when fitting to the incidence. This is likely to 

be, at least in part, because the prevalence of infection is lower when we fit to incidence, meaning 

that the proportion of contacts infected will be high irrespective of whether the index case had 

disease following recent infection. However, when we look at the per case ratio, the results are 

similar whether fitting to incidence or prevalence. Both the lower 95% confidence interval and the 

median of the ratio is 1.00 to 3 significant figures, when fitted to incidence or when fitted to 

prevalence. This implies that while those with reactivation disease do generate more infections per 

case, it is, for most of the posterior, an extremely small effect. The value of the per case ratio is most 

strongly correlated with 𝜏 whether we fit to incidence or prevalence, whether we include or exclude 

reinfection and whether we include or exclude casual contacts in the estimate of the ratio (Table 7). 
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However, if we exclude reinfection and fit to incidence, the value of the ratio is not particularly well 

correlated with any of the parameters. 

 

Figure 20: Posterior distribution when fitted to prevalence of the log ratio of the number of infections from those with 

reactivation disease to the number from those with disease following recent (re)infection (top panel), and the log ratio of 

the number of infections from those with reactivation disease per case to the number from those with disease following 

recent (re)infection  per case(bottom panel). When these ratios are below zero, those with disease following recent 

(re)infection are generating more infections than those with reactivation disease 
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Figure 21: Posterior distribution when fitted to the incidence of the log ratio of the number of infections from those with 

reactivation disease to the number from those with disease following recent (re)infection (top panel), and the log ratio of 

the number of infections from those with reactivation disease per case to the number from those with disease following 

recent (re)infection per case(bottom panel). When these ratios are below zero, those with disease following recent 

(re)infection are generating more infections than those with reactivation disease 

Table 6: Summary of results of the ratio of the total number of infections generated by those with reactivation disease to 

the number generated by those with disease following recent (re)infection, and of the ratio of the number of infections 

from those with reactivation disease per case to the number from those with disease following recent (re)infection per 

case. Posterior results are shown for when fitted to incidence and when fitted to prevalence. Note that while the figures 

used a log scale on the x-axis, to make the results more easily visible, this table uses the actual values 

variable Fitted to prevalence Fitted to incidence 

Median Lower 95% 

CI 

Upper 

95% CI 

Median Lower 

95% CI 

Upper 

95% CI 

ratio 1.94 0.0841 42.0 3.04 0.135 56.4 

ratio, per 

case 1.00 1.00 1.11 1.00 1.00 1.80 

ratio, per 

case, 

excluding 

reinfection 1.00 1.00 1.23 1.00 1.00 2.85 

ratio, per 

case, only 1.00 1.00 1.18 1.00 1.00 2.21 
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pairwise 

transmission 

ratio, per 

case, only 

pairwise 

transmission 

and no 

reinfection 1.00 1.00 1.49 1.00 1.00 3.93 

 

Table 7: Correlation of each parameter with the per case ratio, when fitted to either the prevalence or the incidence. 

 𝜙 𝑝𝑓  𝑝𝑠 𝜏 𝜌 𝛽 

prevalence 0.02 0 0 0.3 0 0.06 

incidence 0.02 0 0 0.14 0 0.03 

prevalence, no reinfection 0.01 0 0 0.16 0 0.03 

incidence, no reinfection 0.02 0 0 0.05 0 0.03 

prevalence, only pairwise transmission 0.04 0.01 0 0.44 0 0.05 

incidence, only pairwise transmission 0.03 0 0 0.18 0 0.04 
prevalence, no reinfection and only 
pairwise transmission 0.03 0 0 0.34 0 0.02 
incidence, no reinfection and only 
pairwise transmission 0.02 0 0 0.05 0.01 0.03 
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Additional analyses 

Stratified by 𝜷: Stratifying the results by values of 𝛽 makes little difference to the estimates of 𝜏 

(Table 8, 1st row), but makes a slight difference to the distribution of the estimates of the ratio (Table 

8, 2nd row).  However, the median value of the ratio stays roughly constant, even as the distribution 

changes as 𝛽 increases. 

Table 8: Results stratified by values of𝜷. 𝜷 was divided into nine equal width bands; in each figure, starting in the top left 

and reading horizontally first, in the nth image only values of beta between (n-1)/9 and n/9 were used. 

Value Fitted to prevalence Fitted to incidence 

𝝉 

  
Ratio of transmission 

from those with 

reactivation disease to 

those with disease 

following recent 

(re)infection. 

  
 

Including both prevalence and incidence of disease into the model fit:  Including both the 

prevalence and the incidence in the model fit means that only two parameter sets are chosen, 

insufficient to generate a reliable spread of results. The two parameter sets that are chosen are 

shown in Table 9; one of the two parameter sets is much less likely than the other two. The two 

chosen parameter sets show consistency in the value of the recovery rate 𝜌, giving values around 

0.0023 cases per day, and both choose relative small values of the casual contact rate 𝛽 and above 

average values of the pairwise contact parameter 𝜏, which has an expected value of 0.004. The most 

likely parameter set gives a value of the per case ratio of 1.05, suggesting a small saturation effect 

for this parameter set, and the other suggests no saturation effect. 
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Including infection prevalence into the model fit:  Including the infection prevalence in the model fit 

alongside either prevalence or incidence means that only one or nine parameter sets (respectively) 

are chosen, insufficient to generate reliable results. In the former case (Table 10), the value of 

incidence of disease chosen is a factor of ten too great, and the parameter set chosen has a strong 

saturation effect, giving a per case ratio of 1.81. In the case of fitting to incidence of disease and 

prevalence of infection (Table 11), one parameter set dominates. This parameter set gives a per case 

ratio of 1.01, suggesting little or no saturation effect.
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Table 9: Parameter sets chosen when fitting to both incidence and prevalence together, with associated values of incidence, prevalence and the per case ratio. The count column refers to 

the total number of times that parameter set was chosen, and is proportional to the likelihood. 

Count Prevalence Incidence 𝝓 𝒑𝒇  𝒑𝒔 𝜷 𝝆 𝝉 Ratio per case 

6302 0.000146 0.000132 0.193 7.38E-05 5.31E-06 0.00843 0.00229 0.00421 1.05 
5402 0.000124 0.000111 0.0892 0.000274 3.18E-06 0.000502 0.00227 0.0107 1.00 

 

Table 10: Parameter sets chosen when fitting to both prevalence of disease and of infection together, with associated values of incidence, prevalence and the per case ratio. The count 

column refers to the total number of times that parameter set was chosen, and is proportional to the likelihood. 

Count Prevalence Incidence 𝝓 𝒑𝒇  𝒑𝒔 𝜷 𝝆 𝝉 Ratio per case 

11704 0.000115 0.00128 0.906 0.000848 3.67E-05 0.0162 0.0303 0.00116 1.81 

 

Table 11: Parameter sets chosen when fitting to both incidence of disease and prevalence of infection together, with associated values of incidence, prevalence and the per case ratio. The 

count column refers to the total number of times that parameter set was chosen, and is proportional to the likelihood. 

Count Prevalence Incidence 𝝓 𝒑𝒇  𝒑𝒔 𝜷 𝝆 𝝉 Ratio per case 

1 1.45E-06 0.000141 0.823056 0.000423 4.09E-06 0.003492 0.265196 0.970228 1.000002 
11490 1.69E-06 0.000129 0.123072 0.000315 4.24E-06 0.120084 0.208552 0.505556 1.006928 
57 2.66E-06 0.000137 0.048741 0.000167 5.95E-06 0.00013 0.140149 0.540094 0.999999 
15 2.69E-06 0.000134 0.30826 0.000321 4.49E-06 0.000116 0.136163 0.534846 0.999999 
4 1.88E-06 0.000112 0.467815 0.000403 2.61E-06 0.002132 0.162508 0.755808 1.000001 
45 1.31E-06 0.000111 0.225446 6.70E-05 5.47E-06 0.188476 0.231942 0.641107 1.015996 
1 4.22E-05 0.000141 0.724851 0.000427 4.02E-06 0.000867 0.008969 0.03054 0.999742 
43 1.11E-05 0.000124 0.36487 0.000167 5.23E-06 0.002876 0.030495 0.117992 1.000145 
37 1.61E-06 0.000111 0.164554 9.80E-05 5.22E-06 0.000323 0.188993 0.887149 1 
11 1.16E-05 0.00011 0.990033 0.000138 3.92E-06 0.094977 0.02586 0.083185 1.243284 
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Including the proportion of all pairs containing at least one infectious case that are I-I into the 

model fit: Including this in the model fit alongside prevalence means that only 12 parameter sets are 

chosen, insufficient to generate reliable results. Including it alongside the incidence of disease 

means 267 parameter sets are chosen, no single one of which is chosen more than 683 times (out of 

11704 parameter sets chosen overall). Whilst the parameter distributions are quite non-smooth 

(Figure 22), clearly higher values of 𝑝𝑓  and 𝜌, values of 𝜏 centred on 10−
3

2, around 0.03 transmissions 

per pair per day, are preferred, and low values of 𝛽 and 𝑝𝑠. In this case, however, neither the 

prevalence of infection, nor the prevalence of disease, fit particularly well (Figure 23, Figure 24). The 

per case ratio is marginally above one in this case (Figure 25) 

 

Figure 22: Posterior parameter distributions when fitted to incidence and the proportion of pairs containing at least one 

infectious case that are I-I. 
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Figure 23: Distribution of prevalence when fitted to incidence and the proportion of pairs containing at least one 

infectious case that are I-I. The vertical dashed line is the target value. There are no values beyond the scale shown here. 
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Figure 24: Prevalence of M. Tb infection when model is fitted to incidence of disease and the proportion of pairs 

containing at least one infectious case that are I-I. The red vertical line indicates 5% 
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Figure 25: Posterior distribution of the log ratio of the number of infections from those with reactivation disease to the 

number from those with disease following recent (re)infection (top panel), and the log ratio of the number of infections 

from those with reactivation disease per case to the number from those with disease following recent (re)infection  per 

case(bottom panel), when fitted to incidence of disease and the proportion of pairs containing at least one infectious 

case that are I-I. When these ratios are below zero, those with disease following recent (re)infection are generating 

more infections 

Stratifying by values of the per case ratio: Whether fitting to incidence or prevalence, the per case 

ratio is higher, on average, for higher values of 𝜏 and lower values of 𝛽, and it is lower for lower 

values of 𝜏 and higher values of 𝛽 (Table 12).  

Table 12: How the parameter distributions vary with different values of the ratio of transmission per case from those with 

reactivation disease to transmission per case from those with disease following recent (re)infection.  

 Fitted to Prevalence Fitted to incidence 

Ratio of transmission per 

case from those with 

reactivation disease to 

transmission per case 

from those with disease 

following recent 

(re)infection <1.0 
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1.05> Ratio of 

transmission per case 

from those with 

reactivation disease to 

transmission per case 

from those with disease 

following recent 

(re)infection >1.0   

Ratio of transmission per 

case from those with 

reactivation disease to 

transmission per case 

from those with disease 

following recent 

(re)infection >1.05 
  

 

Fitting to the incidence and prevalence amongst the UK-born only does not really improve the 

combined fit: instead of two, eight parameter sets are chosen, of which one is chosen 10322 times 

(out of 11704), insufficient for a decent spread of results. The results when fitting to these 

separately do not improve the fit of infection prevalence when we fit to either incidence or 

prevalence, of incidence when we fit to prevalence or of prevalence when we fit to incidence. It also 

does not qualitatively affect the distribution of the ratio. 

Fitting to the incidence in 2003 and the prevalence also does not really improve the combined fit; in 

this case only three parameter sets are chosen, of which two are chose more >1000 times (out of 

11704). 

MCMC fitting results. We started two separate MCMC chains from different regions of parameter 

space. The two chains seemed to converge to different regions of parameter space, selecting notably 

different parameter values, particularly for 𝛽 and 𝜌 (Figure 26). The model output from these 

parameter sets were also consequently different. The first chain estimated the prevalence of 

infection and the proportion of pairs with at least one infectious individual that had two infectious 

individuals (Figure 27). The second chain produced a good estimate disease prevalence, but por 
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estimates of the other three parameters (Figure 28). It should be noted that the log posterior density 

for the first chain (-6920) was much greater than for the second chain (-11084506), implying the first 

chain may be closer to the true parameter values.  As we saw using the Bayesian melding algorithm, 

both chains were unable to produce values of incidence and prevalence that were close together. 

Using just the first chain, due to its higher posterior density, it appear that there is both much less 

transmission from those with disease following reactivation, and also slightly more transmission per 

case from that group, compare to those with disease following a recent (re-)infection (Figure 29). 

 

Figure 26: Density plots of parameter values for each parameter, using two chains started from different points in 

parameter space. 
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Figure 27: Distribution of model outputs using parameter distributions generated from the Markov chain Monte Carlo 

fitting procedure, using two chains started from different starting points. The targets for prevalence and incidence of 

disease were around 4/100000, the target for prevalence of infection was 5% and the target for the proportion of 

infectious-infectious pairs (of those with at least one infectious person) was 2.6% 
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Figure 28: Distribution of model outputs using parameter distributions generated from the Markov chain Monte Carlo 

fitting procedure, using two chains started from different starting points. The targets for prevalence and incidence of 

disease were around 4/100000, the target for prevalence of infection was 5% and the target for the proportion of 

infectious-infectious pairs (of those with at least one infectious person) was 2.6% 
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Figure 29: The ratio of transmission from those with disease following reactivation to from those with disease following 

recent (re-)infection, both overall (left) and per case (right) 
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Discussion 

Primary findings: the primary finding of this work is that, while it appears to be possible to build a 

pairwise TB model, some, perhaps substantial, additions must be made in order to improve the 

realism of the model. The model is unable to fit to both prevalence and incidence of disease at the 

same time. Some of the issues with and potential improvements to the model are discussed below in 

further detail. A secondary finding is that less transmission occurs per case from those who 

developed disease following a recent (within one year) infection or reinfection than from those who 

developed reactivation disease. However, this ratio was, for most of the parameter distribution, very 

close to one. This implies that whilst there is a saturation effect upon transmission from cases who 

have been recently infected it is rather insignificant compared to other factors that may determine 

the probability of infection within a pair, such as whether one has smear positive or cavitary disease, 

or the pair live in the same room. However, caution should be employed in interpretation of this 

secondary finding, due to the poor fit of the model. 

Strengths and weaknesses: This is the first study to employ a pairwise equation model to the study 

of TB. This enabled us to incorporate a rudimentary network structure within a model which is 

computationally efficient. The use of the SIR algorithm allows us to fit this model to surveillance 

data, similarly without too much computational cost.  

A weakness of this study is the relatively poor model fit when trying to fit to more than one data 

point. It was difficult to fit to both the prevalence and incidence of disease simultaneously: the 

model typically underestimated the prevalence (compared to the level of prevalence observed in the 

data) when the model incidence matched the level observed in the data. This was not alleviated by 

using the prevalence and incidence amongst the UK born only, nor by using incidence from 2003, 

when the prevalence estimate was made. For similar reasons, as well as a lack of quality data, it was 

difficult to fit to the prevalence of latent infection – in this case, and when fitting to prevalence, the 

model predicted infection prevalence was much too high (Figure 16). This high prevalence of 
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infection when fitting to prevalence may reduce the size of the saturation effect, as contacts may be 

likely to be infected irrespective of whether or not the index case had disease following recent 

infection. On the other hand, when fitting to the incidence the prevalence of infection was too low, 

but the saturation effect was similar, and when fitting to the prevalence, infection prevalence and 

the size of the per case ratio are only weakly negatively correlated (R2=0.027). Whilst we attempted 

to mitigate these by fitting separately to incidence and to prevalence, this then generated its own 

problem; in that fitting to one data point may not be sufficiently informative for each model 

parameter.  For example, it was difficult to estimate both 𝜏 and 𝛽 at the same time, as a low value of 

one can be to some extent compensated by a higher value of the other (Table 12). An exception was 

that we were able to fit to both the incidence of disease and the proportion of pairs containing at 

least one infectious case that were of the form I-I. In this case, we found smaller values of 𝛽 and 

larger values of 𝜏, centred on 0.03 transmissions per pair per day. However, even in this case, the fit 

to prevalence of disease and infection was very poor.  

Using an MCMC algorithm also led to a poor, albeit slightly improved fit. However, this procedure 

was inconclusive as different starting points converged to different parameter sets. Both fitting 

procedures (MCMC and Bayesian melding) were unable to produce values of incidence and 

prevalence which were close together, as suggested by data. This result implies that model 

assumptions may be inconsistent with values of incidence and prevalence similar in value. However, 

for the first chain, the model was able to accurately reproduce the proportion of pairs with an 

infectious person in which both were infectious, and the prevalence of infection.  In this scenario, it 

appeared that there was slightly more onward transmission from cases with disease following 

reactivation than from those with disease following a recent infection, commensurate with the idea 

of a small contact saturation effect. However, there was overall much less transmission from cases 

with disease following reactivation, suggesting that there are many more cases with disease 

following recent infection – an unrealistic prediction in the context of UK TB epidemiology. 
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A second limitation was that our model lacked a number of elements which would have made it 

more realistic, for instance an age structure. Part of the reason for this is the lack of data on age-

structured TB contact patterns, although contact surveys that are non-specific to TB exist88,89. A 

second reason is that the number of model equations required grows with 𝑂(𝑛2) for 𝑛 the number 

of compartments in the model. Hence, including age-structure, or other model compartments, 

rapidly increases the complexity of the model. The consequence of this is that the model, as 

currently structured, is not really suitable for applied research questions, but rather is suited to a 

theoretical question as posed here. Another important facet of TB epidemiology in London that we 

excluded is immigration. Whilst attempting to fit to incidence and prevalence of disease in the UK 

born alone did not really improve the model fit, this approach ignores transmission from the non-UK 

born to the UK born. Incorporating immigration in a more realistic fashion, in terms of inflows into 

the model compartments may improve the ability of the model to match the data. It may also help 

to stratify the infectious population in terms of infectiousness (i.e. smear positive and smear 

negative), with the same caveat about the increase in complexity of the equation set. 

Relation to other studies: As aforementioned, no previous studies have utilized a pairwise model of 

M. tuberculosis transmission. Previous pairwise models have examined measles91 and sexually 

transmitted infections93 and have used SI, SIR or SEIR model structures. These simpler model 

structures can greatly simplify the system of equations. Some of these studies have incorporated 

additional complexity in the form of an age-structured model91 and heterogeneity in the number of 

contacts92, both of which could feasibly be incorporated into this model. Many of the previous 

pairwise equation models have been used in theoretical contexts, and few attempt to fit their model 

to real data, although the Keeling et al model predicts quite well the number of fade-outs (3 or more 

consecutive weeks without infection) for measles epidemics in the UK, particularly for small 

population sizes. Eames et al. parametrize their STI model using detailed data on pairs, but don’t 

compare their results to real data. 
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Previous M. tuberculosis transmission models have often been deterministic or individual based. 

Compared to deterministic models, the pairwise model has the advantage of enabling the 

examination of network features without sacrificing computational efficiency. However, a 

deterministic model is simpler to understand and to parameterize, and the complexity of the 

equation set is not as high. Individual based models have the advantage of directly incorporating 

stochastic elements, and may be more intuitive to understand, compared to pairwise models. 

However, they may be harder to set up and to interpret results, and would certainly be more 

computationally expensive to run. In theory, pairwise models should be easier to parametrize129, 

although we encountered difficulties in this area. 

As aforementioned, pairwise models are perhaps most suitable for STIs, due to the availability of 

data on network connections, and the fact that a pair forms the natural unit for transmission for 

these diseases91. However, a difficulty encountered when studying STIs with a pairwise model is the 

susceptible-infectious-susceptible dynamics these disease often exhibit129. Whilst moment closure 

approximations for pairwise models of unclustered susceptible-infectious-recovered dynamics have 

been shown to be exact, the situation for diseases which exhibit reinfection is complicated by local 

build-up of correlations between disease states that are poorly accounted for in a pairwise model129. 

Tuberculosis, then, suffers from a double difficulty of being an airborne disease, which hence allows 

chance transmission events between non-close contacts, and from exhibiting reinfection. 

Interpretation of results: One of the difficulties we encountered when fitting the model were 

accurately reproducing prevalence of disease, incidence of disease and prevalence of infection 

simultaneously (Figure 13, Figure 14, Figure 16, Figure 17). In particular, the average values of the 

rate of progression following recent infection, 𝑝𝑓, the pairwise effective contact rate, 𝜏, and the 

casual effective contact rate, 𝛽 are higher when fitted to prevalence compared to incidence, 

whereas the reactivation rate, 𝑝𝑠, is lower (Table 5). This implies that when we fit to prevalence, 

more transmission occurs per capita and a greater proportion of cases are due to recent infection, 
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whereas when we fit to incidence a greater proportion of cases are due to reactivation. Values of the 

recovery rate, 𝜌, and the clustering proportion, 𝜙, were similar whether fitting to incidence or 

prevalence, but the median recovery rate of around 0.17 cases per day in both cases, implying an 

average duration of infectiousness of 6 days, is much too high. In London, people are typically ill with 

TB for 3-4 months before they access care. The consequence of this is that, when we fit to 

prevalence, the predicted incidence is too high (Figure 13), whereas when we fit to incidence the 

prevalence is too low (Figure 14). In the former case, it may be that the greater amount of 

transmission, and the subsequent high risk following recent infection, means that too many incident 

cases are generated.  

Whether fitting to incidence or prevalence, we saw more transmission from those with reactivation 

disease, compared to those with disease following recent (re)infection, when  𝜏 is higher and 𝛽 is 

lower. This seems to make sense: we need a high 𝛽with a low 𝜏 (and vice versa) in order to obtain 

the required level of prevalence, but when 𝜏 is lower, the saturation effect is lessened as a greater 

proportion of transmissions are from random contacts. On the other hand, when 𝜏 is higher, a 

greater proportion of the transmissions are to close contacts, increasing the impact of the saturation 

effect and increasing the relative number of transmissions generated by those with reactivation 

disease. If we include reinfection when calculating the ratio, the number of parameter sets for which 

the ratio is below one increases (Figure 21), perhaps because of the very high prevalence of infection 

for many parameter sets (Figure 13, Figure 14) meaning that most pairs contain someone with latent 

infection, irrespective of whether recent transmission has taken place. 

Throughout the experiments we keep the protection provided by recent infection fixed. Varying this 

may have an effect on the distributions of some of the other parameters (for instance, if more 

people are reinfected, then the progression rate following recent (re)infection may be smaller), and 

may also affect the  prevalence of infection the model needs to fit to the incidence. This latter effect 

may serve to reduce the ratio of infections generated by those with reactivation disease to those 
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with disease following recent reinfection towards one, as contacts may be more likely to be infected 

irrespective of how recently the index case was infected. 

Further research: Our initial feasibility study suggests that it is possible to use a pairwise model to 

study M. Tb transmission, but that significant work is needed to improve the realism of the model. 

One possible extension would be to incorporate immigration in the model. As transmission of M. Tb 

in London is driven by cases amongst immigrants, with 81% of cases amongst the non-UK born in 

20168, not including immigration is probably a major reason why our model struggles to match the 

data. Whilst our rudimentary treatment of immigration, by fitting to the incidence of prevalence 

amongst UK born only, did not affect the results qualitatively, this approach does not account for 

transmission from non-UK born to the UK born. Good data exists in the UK on the prevalence of 

latent infection amongst new migrants, so it should not be too difficult to incorporate an additional 

inflow into the model to represent immigration. It may be more difficult to accurately allocate these 

immigrants to pairs, although a simplification could be to allocate them to pairs in the same 

proportion as the current distribution of pairs. Other possible extensions include heterogeneity in 

the number of contacts and age structure91,93. Improved data to help us calculate either 𝜏 or 𝛽 might 

help us to disentangle the relative importance of each of these terms, although we could also 

separately calculate the amount of transmission generated by each term to get an insight into this. 

Data to inform the number of pairs of each type in London (rather than just those involving an 

infectious case) would likely improve parameterization of the model. Each of these additions should 

make the model more realistic, and allow it to be used to answer questions of more direct policy-

relevance.   
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Supplementary material – additional details on MCMC 

The MCMC algorithm for both chains seemed to get stuck in a small region of parameter space and 

did not effectively sample the whole space (Figures 29-30). The effective sample size of each 

parameter peaked after burning the first 100 iterations for the first chain and 150 for the second 

(Figure 31-32), so we burned this many iterations from the start of each chain.  

 

Figure 30: trace of first chain 
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Figure 31: trace of second chain 
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Figure 32: the effective sample size of the first chain after burning the number of elements shown on the x-axis at the 

start of the chain. 

 

Figure 33: the effective sample size of the first chain after burning the number of elements shown on the x-axis at the 

start of the chain. 
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6. Discussion 

6.1 Principal findings 

The first paper of this thesis (chapter 2) determined that contact investigations in London were 

doing a good job of identifying contacts of pulmonary TB cases, and evaluating those contacts: 91% 

of pulmonary cases had at least one contact identified, and 86% of those identified were evaluated. 

These figures compare favourably with prior results in London, and results from other locations. That 

paper also showed that the proportion of evaluated contacts that are diagnosed with active TB or 

LTBI was approximately five times lower for contacts of non-pulmonary, non-laryngeal cases than it 

is for contacts of pulmonary cases. However, the proportion of contacts of non-pulmonary, non-

laryngeal cases with active disease (0.70%) is still higher than the prevalence of active disease in the 

population (0.027%114). In the second paper (chapter 3), I found that 20% of contacts with TB found 

in contact investigations had a discordant isolate from their index case, suggesting they had 

reactivation disease or were infected by another source. This finding, combined with the high 

prevalence amongst contacts of ETB cases, suggests that there is a benefit to screening contacts, 

irrespective of whether or not the index case is infectious, and led to my questioning the decision in 

early 2016 to stop screening contacts of non-pulmonary, non-laryngeal cases. This in turn led to the 

analysis presented in the third paper (chapter 4), which showed that, whilst it is true that contact 

tracing of non-pulmonary, non-laryngeal cases reduces morbidity in contacts by about 2.6 years/year 

and prevents 5.5 cases/year, this was insufficient to make screening these contacts cost-effective at 

a £30000/QALY threshold. Hence, these results supported the changes to the NICE guidelines. 

6.2 Strengths and limitations 

This thesis addresses an area of great public health relevance, as contact tracing has been a core 

element of tuberculosis care and prevention for many years, is practised in most of the countries of 

the world47, and is a key part of the national tuberculosis strategy in England1. A major strength is 

that it answers questions relating to contact tracing using a range of methodologies, including 
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statistical and economic analysis. A second strength is that it makes extensive use of the data 

available in London on contact tracing, giving the results practical relevance. Thirdly, it proposes a 

novel way to quantify the different impacts which contact tracing can have, by delineating the 

overall impact into reduced morbidity in contacts, prevented cases due to preventive therapy, 

reduced transmission from contacts, and reduced morbidity. 

One limitation of this and many quantitative analyses is that it risks neglecting qualitative features 

that are not easily quantified. In this case, this could mean the impact that contact tracing activities 

might have on increasing awareness and reducing stigma of TB. A related issue for this study is our 

necessary neglect of elements for which little data was available. An example of this is the potential 

impact of visits to the home of index cases upon the engagement of contacts in the process, and the 

subsequent effect this may have on the number of contacts evaluated and on contact tracing yield. 

Whilst I included home visits as an explanatory variable in the first paper (chapter 2) this was done in 

a rudimentary fashion as no individual level data was available on home visits. Similarly, HIV status 

of cases was not available, and so was excluded from all analyses.  

A difficulty encountered was the difficulty of obtaining a representative synthetic network on which 

to model tuberculosis contact tracing. Due to the endemic and chronic nature of the disease, 

tuberculosis dynamics evolve on a timescale which makes the changing household and community 

demographics important. This is heightened in the UK context for which immigration plays a key role 

in the dynamics. However, there is a lack of data on both the changing demographics of households 

in London and on non-household contact patterns. I avoided this issue in paper 3 (chapter 4) by not 

explicitly including a population-level transmission effect or a network structure. I examined 

pairwise equations as a way to introduce a network structure in chapter 5. 

The second paper (chapter 3) relied on using MIRU-VNTR sequencing methods to understand 

transmission between index cases and contacts; it is possible that some cases were misattributed as 

transmission due to the resolution of this typing method. The recent rollout of whole genome 
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sequencing should improve the confidence in studies such as this one in the future. Both the second 

and third papers (chapters 3-4) made extensive use of the self-reported date of symptom onset of 

cases. Due to recall bias, it is likely that this underestimates the true length of time cases are 

symptomatic for. Finally, our analyses rely heavily on data from London, which, whilst having the 

aforementioned benefit of making results relevant to reality, also means that there are some 

settings to which our results are not easily transferred. This is particularly true of papers one and 

two (chapters 2-3), though the higher incidence of TB in London than other parts of the UK mean the 

qualitative results of paper three (chapter 4) probably hold in lower-incidence parts of the country. 

That is, it is probably not cost-effective to screen contacts of non-pulmonary, non-laryngeal cases 

anywhere in the country. However, national level data on contact tracing outcomes would certainly 

be useful for future research. 

6.3 Relation to other studies and interpretation of results 

The first paper (chapter 2) showed that contact tracing in London is being done well compared to 

that found in international studies130,131 and a previous London-based study51, when measured by 

the proportion of pulmonary cases with at least one contact identified and the proportion of 

identified contacts of pulmonary cases that are evaluated. The proportion of contacts of pulmonary 

cases with active TB in London (2.6%) was higher than Birmingham2, another high incidence part of 

the UK, and higher than that in other high-income countries (1.4%) according to a systematic 

review108 (in fact yield in London was closer to the yield of low- and middle-income countries in that 

review (3.1%)). The high yield in London could be due to the relatively high-prevalence of disease in 

London compared with other high-income countries, or because cases in London are infectious for 

longer on average than other high-income places (as they would then infect more of their contacts). 

Additionally, the second paper (chapter 3) showed that the proportion of contacts in London who 

have an isolate indistinguishable from their index cases’ (80%) was higher than figures seen in the 

US110,111 (70-71%), and higher than those in a study which calculated a similar figure for the whole of 
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the UK27 (75%). So, in London, it seems that contact investigations find that a greater proportion of 

contacts have disease, and that for a greater proportion of those with TB, either transmission has 

occurred between case and contact, or case and contact share a common source. This may seem to 

imply that more transmission is occurring from index cases to their household contacts in London, as 

if the higher yield was solely due to the higher background prevalence, we would expect the 

proportion of pairs with matching isolates to be lower than other high-income countries, which does 

not appear to be the case. Cases may be transmitting to a greater number of their contacts if they 

are infectious for longer on average, or there is a greater proportion of smear positive cases, than in 

other high-income countries. I calculated the first of these figures, the mean symptomatic period in 

London in the third paper (chapter 4), and found that on average pulmonary cases in London are 

symptomatic for 110 days, as measured by self-reported date of symptom onset. Comparing this to a 

systematic review of diagnostic delay for tuberculosis132 supports the hypothesis that index cases in 

London may be infectious for longer than in other high-incidence regions, as the London figure is 

higher than that found in the majority of studies in the review, and higher than all other high-income 

countries included.  

In the first paper (chapter 2), I found that the prevalence of TB amongst contacts of non-pulmonary, 

non-laryngeal cases (0.70%) was high relative to the population prevalence in London114 (0.027%), 

whilst paper two (chapter 3) showed that for 20% of contacts with TB no transmission had occurred. 

These observations led to the hypothesis that it may be worthwhile screening contacts of non-

pulmonary, non-laryngeal cases, but this was refuted in the third paper (chapter 4), which showed 

that screening these contacts was probably not cost-effective. These cost-effectiveness estimates 

contained a large amount of uncertainty, but the result for non-pulmonary, non-laryngeal cases was 

clear in spite of this. The uncertainty did mean that I could not say anything very conclusive about 

the effectiveness of screening pulmonary or laryngeal cases. This uncertainty was largely driven by 

uncertainty in the estimates of the symptomatic period of non-pulmonary, non-laryngeal cases 

found through contact tracing. 
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All three papers (chapters 2-4) highlighted in different ways those TB cases with social risk factors (a 

history of imprisonment, homelessness, or drug or alcohol problems). The  first paper (chapter 2) 

showed that former prisoners were more likely to have no contacts identified; the second paper 

(chapter 3) showed that 100% of case-contact pairs with a social risk factor had a likely transmission 

event, implying that more transmission is occurring between close contacts in this group than other 

groups; and the third paper (chapter 4) showed that when transmission from contacts is high, as 

may occur in a homeless shelter, or when the yield of non-pulmonary cases is high, as is the case for 

those with social risk factors in London, screening contacts of non-pulmonary cases may be 

worthwhile. Taken together, these things highlight the importance of additional screening beyond 

contact investigations in this group. In London, this is provided in part by the Find and Treat service, 

which effectively finds and treats those in the homeless population56. 

6.4 Further research and data requirements 

In order to continue to monitor and to deepen our understanding of contact tracing in the United 

Kingdom, it is essential that the type of data available in London is collected and made available to 

researchers at a national level. It would also be extremely desirable to have some additional fields, 

whilst obviously bearing in mind that a larger number of fields may lead to poorer data completion. 

In particular, data on home visits and HIV status, improved linkage between cases and contacts (i.e. 

records for contacts found to have TB are accurately and consistently linked to their index case), and 

more data on those contacts identified but who don’t have TB. In this latter case, only whether 

contacts are children or adults is recorded currently, unless they are found to have TB. Improving 

data on contacts, and/or improving linkage between contacts would enable an improved 

understanding of the transmission networks in London. This may also be complemented by whole-

genome sequencing, which will be available nationwide in the coming years.  If more data on home 

visits were available, it would be very useful to understand the potential for this intervention to 

increase the number of contacts identified and contact tracing yields. 
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The first paper (chapter 2) in this thesis quantified the indicators which are being used to monitor 

contact investigations in London. However, it did not look at whether these indicators correlated 

well with more fundamental goals, such as reduced transmission, and ultimately, perhaps, reduced 

incidence. Once a longer time-series of these, and other, indicators are available, it would be 

interesting to understand which ones best predict the desired population level outcomes. 

Research to understand how better to engage with certain underserved groups would be of interest. 

In particular, whilst those with a history of homelessness are currently served by the Find and Treat 

service, results in this thesis also highlight that those with a prison history are not well-served by 

contact tracing. Research, which may be qualitative in nature, to understand why this group has 

poorer outcomes even after controlling for other social risk factors, and how better to engage with 

them, would have a positive public health impact. Qualitative research to understand some other 

aspects of contact tracing, such as addressing stigma, would also help. 

This thesis has focussed almost exclusively on household contact investigations. However, there is a 

lack of understanding of the extent to which transmission in London, or the UK, is driven by 

household transmission or by community transmission. Whilst studies in high-income settings 

suggest that household contacts are significantly more likely to be infected than community 

contacts, these studies are from 1952 or earlier133, and much has changed in the meantime, 

including the wide-spread availability of drugs and the influence of immigration on transmission. 

Research to understand where transmission takes place, could provide an upper limit on the 

effectiveness of contact tracing, and perhaps point the way for other screening interventions. We 

should also try to understand how the different types of screening currently in place in the UK 

(contact, pre-entry, find and treat) impact upon each other. For instance, pre-entry screening may 

mean that contact tracing becomes more focussed on the UK-born population in years to come. 

Whilst I addressed one change to the NICE guidelines in paper three (chapter 4), that of whose 

contacts to screen, another change remains unaddressed: that of increasing the age-limit below 
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which people are offered LTBI therapy to 65 years. Research is needed to quantify how this will 

affect the number of cases prevented and rates of side-effects such as hepatotoxicity.  

Finally, as discussed in the previous section, long diagnostic delays have a potential impact on the 

yield of contact investigations in the UK, as well as on the morbidity of cases. Uncertainty in 

diagnostic delays also causes much of the uncertainty in our estimates of cost-effectiveness in paper 

three (chapter 4). However, the estimation of diagnostic delay often relies upon the duration of the 

self-reported symptomatic period, which is likely to be underestimated due to recall bias. 

Development of a better methodology for estimating diagnostic delay would help greatly, perhaps 

by using the ratio of prevalence to incidence in the population. This in turn would require an 

improved estimate of prevalence in London, as the best current estimate dates from 2006 and uses 

a small sample. If a more robust analysis still shows that diagnostic delays in London or the UK are 

longer than average, then research to understand the reasons for the long delays, and how to 

improve them, would be very helpful. 

6.5 Conclusions  

Contact tracing is a key part of tuberculosis control in London and the UK, and effectively identifies 

and evaluates contacts of pulmonary cases in London, compared with past performance. It will be 

interesting, as the England TB strategy reaches the end of its implementation period in 2020, to 

compare progress to the indicator values presented here. However, while it appears to be cost-

effective for contacts of pulmonary TB cases, my results suggest it is not so for non-pulmonary cases, 

supporting changes to NICE guidance.  
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