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BACKGROUND

Salmonella enterica is one of the most important causes of gastrointestinal infection in humans,
being the great majority of infections related to the consumption of poultry meat and eggs (Foley
and Lynne, 2008; EFSA/ECDC, 2015).

In animals, infections caused by serotype Enteritidis are rarely responsible for severe disease with
animals frequently becoming asymptomatic carriers, except in the case of young chicks and poults,
where outbreaks exhibiting clinical disease are often accompanied by high mortality rates (Foley
et al., 2008, 2013). Indeed, S. enterica subsp. enterica serovar Enteritidis (S. Enteritidis) has been
responsible for severe disease in industrial poultry farming facilities worldwide, posing a potential
hazard for public health (Lutful Kabir, 2010).

In order to be infectious, Salmonella needs to adapt to different niches and conditions, where
virulence and heavy-metal-tolerance factors play an important role, through co-selection events
and the formation of pathogenicity islands, respectively (Hensel, 2004; Medardus et al., 2014).
Furthermore, antibiotic resistance determinants can also facilitate their survival, with ubiquitous
chromosomally encoded efflux mechanisms, playing an important role in both intrinsic, and
acquired multidrug resistance. Other resistance mechanisms, such as changes in the membrane
permeability, enzymatic modification, and target alterations may increase the levels of bacterial
resistance, contributing to the success of the infection (Poole, 2004; Delmar et al., 2014; Li et al.,
2015).

Both antibiotic susceptibility determination and serotyping constitute very useful tools for
the epidemiologic classification of S. enterica isolates. Indeed, in S. enterica, the resistance rates
fluctuate according to the serotype and with the antibiotic (Clemente et al., 2015). Classically,
serotyping is based on the antigenic reactivity of lipolysaccharide (O antigen) and flagellar proteins
(H antigen), followed by a designation using names or formulas (Grimont andWeill, 2007). In this
study, we aimed to analyze the genome of a S. Enteritidis isolate responsible for omphalitis in chicks,
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exploring the molecular features associated with antibiotic
resistance and pathogenicity, as well as the ability to spread the
respective determinants.

METHODS

Bacterial Isolate, Antibiotic Susceptibility
Testing, and Serotyping
The isolate (LV60) was recovered from a sample collected
from the yolk sac of a chick with omphalitis, under the
scope of the “Salmonella National Control Programme in food-
producing animals and food of animal origin for bacteriological
diagnosis, serotype identification and antibiotic susceptibility
testing.” The guidelines of the Commission Decision (CD),

TABLE 1 | Single nucleotide variants that represent amino acid substitutions in S. Enteritidis LV60 using S. Enteritidis strain p125109 as the reference

genome.

Reference Position Reference Allele Gene (Product) Amino acid change Coverage

40158 C T SEN_RS00180 (arylsulfatase) Pro92Ser 155

55278 C A ileS (isoleucine-tRNA ligase) Ala557Glu 144

93979 G A SEN_RS00415 (hypothetical protein) Ala96Thr 127

156264 G A SEN_RS00685 (peptidase M23) Gly299Asp 123

353437 T C SEN_RS01600 (isopropylmalate isomerase) Val454Ala 119

357149 A T SEN_RS01625 (hypothetical protein) Leu1Met 177

401018 C A prpE (acetyl-CoA synthetase) Arg9Ser 132

411602 T G SEN_RS01845 (hypothetical protein) Trp209Gly 58

561577 T C SEN_RS02560 (MFS transporter) Ser333Pro 68

659902 T G dpiB (sensor histidine kinase) Tyr3Asp 52

988620 G C SEN_RS04610 (hypothetical protein) Ala89Pro 130

1044895 G T helD (DNA helicase IV)/Mobile element Ala204Ser 75

1156702 G C sirA (virulence gene transcriptional regulator) Val181Leu 112

1325689 A G SEN_RS06450 (hydrogenase-1 operon protein HyaF) Tyr209His 93

1427037 T A SEN_RS06930 (diguanylate phosphodiesterase) Asp16Glu 92

1787654 A G SEN_RS08735 (transporter) Arg348Gly 79

1807289 G A SEN_RS08820 (lipoprotein) Ala14Val 79

1931818 C T SEN_RS09505 (NAD-dependent deacetylase) Met37Ile 82

2115337 C T SEN_RS10585 (cobalamin biosynthesis protein CbiB) Gly167Ser 104

2419980 G A SEN_RS11950 (NADH:ubiquinone oxidoreductase subunit M) Leu474Phe 130

2426844 A G SEN_RS11980 (NADH dehydrogenase subunit G) Val610Ala 125

2463887 T C SEN_RS12170 (amino acid transporter) Ile452Val 34

2647060 G A SEN_RS12985 (outer membrane protein RatA) Pro459Ser 108

2647626 G T SEN_RS12985 (outer membrane protein RatA) Ala270Glu 111

2672592 A C SEN_RS13070 (hypothetical protein) Ile313Ser 61

2956057 C A SEN_RS14420 (2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase) Arg53Leu 123

3185834 C A SEN_RS15495 (D-mannonate oxidoreductase) Asn151Lys 81

3659470 G T SEN_RS17815 (membrane protein) Gln71Lys 122

3802073 G A coaD (phosphopantetheine adenylyltransferase) Val116Ile 127

4051393 T C SEN_RS19620 (DNase TatD) Ser141Pro 150

4059155 G A fadB (3-ketoacyl-CoA thiolase) Ala395Val 84

4348398 A G SEN_RS20980 (membrane protein)/ Salmonella Pathogenicity Island 4 Asn2902Asp 158

4402123 C T SEN_RS21190 (sugar:sodium symporter) Ala350Val 77

4476625 T C SEN_RS21580 (hypothetical protein) Lys76Glu 170

4555382 C T SEN_RS21985 (DNA polymerase III subunit chi) Asp10Asn 110

2007/407/EC were followed. LV60 was tested for its antimicrobial

resistance through the determination of minimum inhibitory

concentrations (MICs) using the agar dilution method, as

previously described (Clemente et al., 2013) and according

to the European Committee on Antimicrobial Susceptibility

Testing (EUCAST) guidelines (http://www.eucast.org/). Briefly,

a panel of 11 antibiotic compounds was tested in a 2-fold

concentration series over the following ranges: ampicillin and

tetracycline (0.5–64 µg/mL), gentamicin and trimethoprim

(0.25–32 µg/mL), ciprofloxacin (0.008–8 µg/mL), cefotaxime

(0.06–8µg/mL), nalidixic acid and streptomycin (2–512µg/mL),
chloramphenicol (2–256 µg/mL), florfenicol (1–128 µg/mL) and
sulphamethoxazole (8–1024 µg/mL). The epidemiological cut-
off values recommended by EUCAST to Salmonella spp. were
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used for the interpretation of susceptibility testing results. Quality
control was performed using the Escherichia coli ATCC 25922
strain. LV60 isolate was then serotyped by the slide agglutination
method for its O and H antigens using the method of Kauffman-
White scheme (Grimont and Weill, 2007).

Whole Genome Sequencing (WGS),
Assembly, and Annotation
Genomic DNA was extracted using DNeasy Blood and Tissue
Kit (Qiagen), and DNA quantification was performed by Qubit
Fluorometric Quantitation (Life Technologies), according to
with the manufacturer’s instructions. The genome was sequenced
using a double strategy of 454 (Roche) and MiSeq (Illumina)
sequencing.

Five hundred nanograms of bacterial DNA were fragmented
by nebulization, followed by adaptor ligation to create double
stranded DNA libraries and sequenced on a 454 GS FLX
Titanium according to the standard manufacturer’s instructions
(Roche-454 Life Sciences). The second genome library was
prepared from 1 ng of genomic DNA using the Nextera XT
DNA Sample Preparation Kit (Illumina) and sequenced on the
Illumina MiSeq sequencer (Illumina) using paired-end 2 × 150
bp reads.

First quality evaluation of raw read sequences and their
corresponding quality values were assigned by the FastQC
software. Reads were then trimmed and filtered according
to quality criteria, and de novo assembled with Ray, version
2.3.1 (Boisvert et al., 2010). Contigs were searched for identity
through blastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi) against
the nr/nt NCBI database to identify the closest bacterial genome
and/or plasmid. Therefore, LV60 genome was mapped against
the bacterial genome of S. Enteritidis strain p125109 and its
plasmid (NC_011294 and HG970000, respectively) using GS
Mapper version 2.9 (Roche). Additionally SNV (single nucleotide
variants) and structural variants were also detected with the GS
Mapper (Roche, version 2.9).

Structural and functional annotation was performed using
PGP (Prokaryotic Genome Prediction) (Egas et al., 2014),
an in-house developed pipeline. Taxonomy identification was
performed by BLASTP search against the NCBI GenBank non-
redundant (nr) database of the 16 s rRNA sequence gene,
identified in the previous step and confirmed using RNAmmer
v1.2 (Lagesen et al., 2007).

The final data was submitted in the DDBJ/EMBL/GenBank
databases, using the Sequin software tool (http://www.ncbi.
nlm.nih.gov/Sequin/). This dataset, which includes files in
Genbank (LIHI01.1.gbff.gz), Fasta (LIHI01.1.fsa_nt.gz), and
ASN.1 (LIHI01.1.bbs.gz) formats, can be accessed and/or reused
at http://www.ncbi.nlm.nih.gov/nuccore/LIHI00000000.

In silico Analyses
CLC genomics workbench 8.0 (QIAGEN, Aarhus),
PathogenFinder 1.1, ResFinder 2.1, PlasmidFinder 1.3, and
MLST 1.8 (MultiLocus Sequence Typing) were used to estimate
the number of pathogenicity determinants, acquired antibiotic
resistance genes, plasmids and the MLST using the S. Enteritidis
genome (Larsen et al., 2012; Zankari et al., 2012; Cosentino et al.,

2013; Carattoli et al., 2014). SeqSero tool was used for Salmonella
serotyping by whole genome sequencing (Zhang et al., 2015).

PHAST search web tool was applied to detect, identify and
annotate prophage sequences (Zhou et al., 2011). ISsaga was
used for the high throughput identification and semiautomatic
annotation of insertion sequences in the genome (Varani
et al., 2011). The presence of molecular determinants of
antimicrobial resistance was predicted based on homology and
SNP models using the Comprehensive Antibiotic Resistance
Database (CARD; https://card.mcmaster.ca/analyze/rgi),
through Resistance Gene Identifier software (RGI; McArthur
et al., 2013).

RESULTS

LV60 isolate was serotyped as S. Enteritidis, using the method
of Kauffman-White scheme, and found to be wild-type to all the
antibiotics tested, except tetracycline.

The de novo assembly yielded 4.977 Mbp distributed in 83
contigs (largest contig with 970,921 bp) with a N50 of 491,005
bp. Overall, the structural and functional annotation with PGP
detected 97 tRNA genes, 7 rRNA genes and identified 4656
mRNA genes.

From mapping against the bacterial genome of S. Enteritidis
strain p125109, the main difference between the two genomes
was the absence of the O-antigen polymerase gene wzy in the
LV60 isolate, which in S. Enteritidis is located outside the O
antigen gene cluster (Liu et al., 2014). The coding sequence ofwzy
gene was searched against the assembled genome using blastn,
confirming its absence. The flanking regions of wzy gene, which
coded for a disrupted membrane and a hypothetical protein,
were also absent. The wzy gene is involved in the Wzx/Wzy-
dependent pathway, which constitutes the predominant pathway
for O-antigen production in Gram-negative bacteria, specifically
in Salmonella (Hong et al., 2015).

However, in this study, the absence of the wzy gene did not
compromised the use of a high-throughput genome sequencing
serotype determination method (Zhang et al., 2015), which
corroborated the result obtained by the gold standard method.
Indeed, this method, based on the detection of O and H antigens
encoding genes, predicted an antigenic profile 9:g,m:- based
on the O-9,46 wbaV gene, which encodes to the O-antigen
tyvelosyl transferase. Furthermore, the S. Enteritidis serotype was
confirmed by the presence of sdf gene (Salmonella difference
fragment virulence gene), a characteristic marker of commonly
circulating S. enterica serovar Enteritidis (Agron et al., 2001).

Sixty-one SNVs were detected between LV60 and the
S. Enteritidis strain p125109. The SNVs that resulted in amino
acid substitutions are represented in Table 1. In silico analysis
with ResFinder tool did not reveal the presence of any acquired
antibiotic resistance genes (90% identity and 40% minimum
length) or plasmids (95% identity). However, the RGI analysis,
using the perfect algorithm, showed the presence of a Salmonella-
specific MerR-like gold (Au) sensor- GolS—involved in Au
resistance (Pontel et al., 2007). This constitutes a matter of
concern since antibacterial biocides and metals can contribute
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TABLE 2 | Perfect and strict best hit results, by predicted gene, obtained using the Resistance Gene Identifier (RGI).

Predicted

gene

e-value Identity

(%)

Contig Average

coverage

Start Stop RGI Cut-off RGI Protein

Model_type

Antibiotic Resistance Ontology (ARO)

category

golS 1.41E–108 100 4 147.97 80575 81039 Perfect homolog efflux pump conferring AR; chloramphenicol

RG; beta-lactam RG; gene modulating

antibiotic efflux

acrF 0 99 4 147.97 73608 76775 Strict homolog efflux pump conferring AR; beta-lactam RG;

fluoroquinolone RG

sdiA 0 99 2 127.7 1179091 1179813 Strict homolog chloramphenicol RG; gene modulating

antibiotic efflux; fluoroquinolone RG; efflux

pump conferring AR; tetracycline RG;

rifampin RG; beta-lactam RG

crp 1.30E–151 99 7 160.37 388833 389465 Strict homolog efflux pump conferring AR; macrolide RG;

beta-lactam RG; gene modulating antibiotic

efflux; fluoroquinolone RG

mdsA 0 98 4 147.97 76772 77977 Strict homolog efflux pump conferring AR; chloramphenicol

RG; beta-lactam RG

mdsC 0 98 4 147.97 72134 73624 Strict homolog efflux pump conferring AR; chloramphenicol

RG; beta-lactam RG

aac(6’)-Iy 2.36E–101 97 2 127.7 808040 808477 Strict homolog antibiotic inactivation enzyme;

aminoglycoside RG

cpxR 1.24E–160 97 3 152.34 67603 68301 Strict homolog efflux pump conferring AR; aminocoumarin

RG; aminoglycoside RG; gene modulating

antibiotic efflux

bacA 0 97 14 155.64 142061 142882 Strict homolog peptide AR gene; gene conferring AR via

molecular bypass

cpxA 0 96 3 152.34 66233 67606 Strict homolog efflux pump conferring AR; aminocoumarin

RG; aminoglycoside RG; gene modulating

antibiotic efflux

baeR 5.11E–165 96 2 127.7 107261 107983 Strict homolog efflux pump conferring AR; aminocoumarin

RG; aminoglycoside RG; gene modulating

antibiotic efflux

emrY 0 95 8 158.13 93935 95473 Strict homolog efflux pump conferring AR; tetracycline RG

marA 1.35E–82 95 2 127.7 702301 702690 Strict homolog chloramphenicol RG; gene modulating

antibiotic efflux; gene modulating permeability

to antibiotic; fluoroquinolone RG; efflux pump

conferring AR; tetracycline RG; rifampin RG;

beta-lactam RG

H-NS 9.89E–75 94 2 127.7 965098 965511 Strict homolog gene modulating antibiotic efflux; macrolide

RG; fluoroquinolone RG; efflux pump

conferring AR; tetracycline RG;

beta-lactam RG

mexD 0 94 5 135.43 37513 40626 Strict homolog chloramphenicol RG; trimethoprim RG;

macrolide RG; fluoroquinolone RG; efflux

pump conferring AR; beta-lactam RG

phoP 6.18E–151 93 2 127.7 417112 417786 Strict homolog efflux pump conferring AR; polymyxin RG;

macrolide RG; gene modulating antibiotic

efflux; gene altering cell wall charge

conferring AR

emrR 7.58E–115 93 8 158.13 92089 92619 Strict homolog efflux pump conferring AR; gene modulating

antibiotic efflux; fluoroquinolone RG

mexD 0 93 4 147.97 209028 212177 Strict homolog chloramphenicol RG; trimethoprim RG;

macrolide RG; fluoroquinolone RG; efflux

pump conferring AR; beta-lactam RG

mdtH 0 92 2 127.7 349496 350704 Strict homolog efflux pump conferring AR

mdtK 0 92 2 127.7 607306 608679 Strict homolog efflux pump conferring AR;

fluoroquinolone RG

mexN 0 92 2 127.7 113873 116995 Strict homolog efflux pump conferring AR;

chloramphenicol RG

(Continued)
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TABLE 2 | Continued

Predicted

gene

e-value Identity

(%)

Contig Average

coverage

Start Stop RGI Cut-off RGI Protein

Model_type

Antibiotic Resistance Ontology (ARO)

category

mexN 0 91 2 127.7 110792 113872 Strict homolog efflux pump conferring AR;

chloramphenicol RG

emrD 0 90 7 160.37 11534 12718 Strict homolog efflux pump conferring AR

mdtG 0 90 2 127.7 339682 340896 Strict homolog efflux pump conferring AR

pmrA 1.77E–143 90 9 160.96 119082 119750 Strict homolog polymyxin RG; gene altering cell wall charge

conferring AR

emrA 0 89 8 158.13 92719 93918 Strict homolog efflux pump conferring AR; fluoroquinolone

RG

pmrE 0 89 2 127.7 174573 175739 Strict homolog polymyxin RG; gene altering cell wall charge

conferring AR

baeS 0 89 2 127.7 107980 109383 Strict homolog efflux pump conferring AR; aminocoumarin

RG; aminoglycoside RG; gene modulating

antibiotic efflux

tolC 0 89 14 155.64 163404 164879 Strict homolog chloramphenicol RG; macrolide RG;

fluoroquinolone RG; efflux pump conferring

AR; aminocoumarin RG; tetracycline RG;

rifampin RG; beta-lactam RG

acrE 0 88 1 155.02 4223 5380 Strict homolog efflux pump conferring AR; beta-lactam RG;

fluoroquinolone RG

mexD 0 88 1 155.02 1098 4211 Strict homolog chloramphenicol RG; trimethoprim RG;

macrolide RG; fluoroquinolone RG; efflux

pump conferring AR; beta-lactam RG

mdfA 0 87 13 131.07 105101 106333 Strict homolog efflux pump conferring AR

pmrF 0 87 5 135.43 231615 232598 Strict homolog polymyxin RG; gene altering cell wall charge

conferring AR

mdtM 0 86 11 163.1 148308 149549 Strict homolog efflux pump conferring AR

ramA 1.93E–71 86 4 147.97 311233 311622 Strict homolog chloramphenicol RG; gene modulating

antibiotic efflux; gene modulating permeability

to antibiotic; fluoroquinolone RG; efflux pump

conferring AR; tetracycline RG; rifampin RG;

beta-lactam RG

mdtD 0 86 2 127.7 109383 110795 Strict homolog efflux pump conferring AR

acrA 0 85 4 147.97 212200 213393 Strict homolog chloramphenicol RG; fluoroquinolone RG;

efflux pump conferring AR; tetracycline RG;

rifampin RG; beta-lactam RG

phoQ 0 85 2 127.7 415649 417112 Strict homolog efflux pump conferring AR; polymyxin RG;

macrolide RG; gene modulating antibiotic

efflux; gene altering cell wall charge

conferring AR

pmrB 0 85 9 160.96 118002 119081 Strict homolog polymyxin RG; gene altering cell wall charge

conferring AR

mdtA 0 82 2 127.7 116995 118332 Strict homolog efflux pump conferring AR; aminocoumarin

RG

pmrC 0 82 9 160.96 119747 121390 Strict homolog polymyxin RG; gene altering cell wall charge

conferring AR

acrR 1.83E–124 82 4 147.97 213535 214188 Strict variant chloramphenicol RG; gene modulating

antibiotic efflux; fluoroquinolone RG; efflux

pump conferring AR; antibiotic resistant gene

variant or mutant; tetracycline RG; rifampin

RG; beta-lactam RG

robA 0 81 11 163.1 77518 78387 Strict homolog chloramphenicol RG; gene modulating

antibiotic efflux; fluoroquinolone RG; efflux

pump conferring AR; tetracycline RG;

rifampin RG; beta-lactam RG

arnA 0 79 5 135.43 229636 231618 Strict homolog polymyxin RG; gene altering cell wall charge

conferring AR

(Continued)
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TABLE 2 | Continued

Predicted

gene

e-value Identity

(%)

Contig Average

coverage

Start Stop RGI Cut-off RGI Protein

Model_type

Antibiotic Resistance Ontology (ARO)

category

mdtL 0 77 16 156.65 44691 45878 Strict homolog efflux pump conferring AR

rosB 0 74 4 147.97 230248 231924 Strict homolog polymyxin RG

rosA 0 71 4 147.97 232128 233348 Strict homolog efflux pump conferring AR; polymyxin RG

rpoB 0 58 19 154.2 4220 8248 Strict variant rifampin RG; antibiotic resistant gene variant

or mutant

katG 0 56 3 152.34 121560 123740 Strict variant antibiotic resistant gene variant or mutant;

isoniazid RG

gyrB 0 55 16 156.65 54369 56783 Strict homolog aminocoumarin RG; antibiotic resistant gene

variant or mutant

macB 0 50 13 131.07 143618 145564 Strict homolog efflux pump conferring AR; macrolide RG

vanG 8.15E–81 38 4 147.97 113335 114447 Strict homolog glycopeptide RG; AR gene cluster, cassette,

or operon; gene conferring AR via molecular

bypass

macA 2.30E–51 35 13 131.07 142503 143621 Strict homolog efflux pump conferring AR; macrolide RG

RG, resistance gene; AR, antibiotic resistance.

to the development and maintenance of antibiotic resistance
in bacterial communities through mechanisms of cross- or co-
resistance (Baker-Austin et al., 2006; Lemire et al., 2013; Pal et al.,
2015).

Furthermore, the RGI strict algorithm, which detects
previously unknown variants of known antimicrobial resistance
genes, identified 52 genes involved in efflux, transport, and
permeability, which might justify the low-level tetracycline
resistance identified by phenotypicmethods (Table 2). Resistance
to additional classes of antibiotics such as fluoroquinolones,
aminoglycosides, and chloramphenicol were bioinformatically
predicted. Indeed, efflux pumps are often associated with discrete
decreases in antibiotic susceptibility that may not necessarily
reflect an alteration in interpretation categories (Fernández and
Hancock, 2012). Genes responsible for the intrinsic resistance to
benzylpenicillin, glycopeptides, macrolides, and rifampicin were
also detected.

The total number of pathogenicity determinants present in
the genome of S. Enteritidis LV60, matching 1164 pathogenic
families, showed a 94.1% certainty of the isolate being a
human pathogen. Here we highlight the presence of Salmonella
Pathogenicity Island 4, which usually encodes a non-fimbrial
adhesion and the cognate type 1 secretion system (Gerlach et al.,
2007).

The use of complementary web tools assigned this isolate to
ST11, which according with MLST data (http://mlst.warwick.ac.
uk/) is commonly found among CTX-M-14 and CTX-M-15-
producing S. Enteritidis human isolates (Kim et al., 2011; Bado
et al., 2012). In this study, the identification of ST11 in an isolate
of animal origin, together with other pathogenicity determinants
may suggest its zoonotic potential.

We also identified 6 prophage regions, among which three
were incomplete and three were intact. The last included
prophage regions reaching the lengths of 64.3, 49.2, and 31.7 Kb,
and encoding 42, 78, and 66 DNA coding sequences, respectively.

Overall, 33 different IS were detected within the genome,
which were distributed as follows: 27.03% of IS3 family,

18.92% of IS256 family, 13.51% of IS unclassified elements,
10.81% of IS200/IS605 complex, and of ISL3 family, 8.11%
of IS481 family, 5.41% of IS630 family, and 2.7% of IS1 and
IS110 families. All identified structures (pathogenicity island,
prophages, ISs) constitute a multiplicity of pathogenicity factors
in LV60 S. Enteritidis isolate and contribute for the fitness
of the isolate in different environments; its presence may also
suggest the possibility of acquisition of other factors by different
mechanisms, including resistance genes e.g., by horizontal gene
transfer, contributing to its biological diversity and genetic
evolution.

CONCLUSION

The detection of an avian S. Enteritidis isolate harboring
multiple efflux pumps, pathogenicity factors, a variety of
mobile genetic elements and heavy-metal-tolerance genes raises
concerns regarding the dissemination of infection in birds and
potential risk of zoonotic transmission.

This study demonstrated the added value of WGS as
a routine tool for surveillance programs directed to food-
producing animals, which might complement sanitary measures,
essential to prevent the spread of Salmonella infections
among animals. It also proved to have an added value as
a complementary typing method. Moreover, the simultaneous
detection of putative Au resistance, intrinsic antibiotic resistant
genes, and mobile genetic elements, underline this method
as a helpful resource to follow the spread and evolution of
antibiotic resistance in this species by genomic comparison
studies.

DATA ACCESS

This Whole Genome Shotgun project has been deposited at
DDBJ/EMBL/GenBank under the accession LIHI00000000. The
version described in this paper is version LIHI01000000.

Frontiers in Microbiology | www.frontiersin.org 6 August 2016 | Volume 7 | Article 1130

http://mlst.warwick.ac.uk/
http://mlst.warwick.ac.uk/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jones-Dias et al. Genomic Analysis of Salmonella Enteritidis from Day-Old Chicks

AUTHOR CONTRIBUTIONS

DJ designed the study, performed molecular experiments,
analyzed the data and wrote the manuscript. LC performed the
microbiological experiments and reviewed the manuscript. CE,
HF performed 454 Roche genome sequencing experiments and
analyze the data; DS, LV performed Illumina genome sequencing
experiments. MF, NT analyzed the data. VM designed the study,
analyzed the data and reviewed the manuscript. MC designed the
study, reviewed and edited the manuscript. All authors read and
approved the final manuscript.

FUNDING

DJ has received research funding from Fundação
para a Ciência e a Tecnologia (FCT, grant number
SFRH/BD/80001/2011). VM was supported by FCT
fellowship (grant SFRH/BPD/77486/2011), financed by
the European Social Funds (COMPETE-FEDER) and
national funds of the Portuguese Ministry of Education
and Science (POPH-QREN). We thank the support of
FCT grant number PEst-OE/AGR/UI0211/2011-2014 and
UID/MULTI/00211/2013.

REFERENCES

Agron, P. G., Walker, R. L., Kinde, H., Sawyer, S. J., Hayes, D. C., Wollard,

J., et al. (2001). Identification by subtractive hybridization of sequences

specific for Salmonella enterica serovar Enteritidis. Appl. Environ. Microbiol.

67, 4984–4991. doi: 10.1128/AEM.67.11.4984-4991.2001

Bado, I., García-Fulgueiras, V., Cordeiro, N. F., Betancor, L., Caiata, L., Seija, V.,

et al. (2012). First human isolate of Salmonella enterica serotype Enteritidis

harboring blaCTX−M−14 in South America. Antimicrob. Agents Chemother. 56,

2132–2134. doi: 10.1128/AAC.05530-11

Baker-Austin, C., Wright, M. S., Stepanauskas, R., and McArthur, J. V. (2006). Co-

selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182. doi:

10.1016/j.tim.2006.02.006

Boisvert, S., Laviolette, F., and Corbeil, J. (2010). Ray: simultaneous assembly of

reads from a mix of high-throughput sequencing technologies. J. Comput. Biol.

17, 1519–1533. doi: 10.1089/cmb.2009.0238

Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen,M., Lund, O., Villa,

L., et al. (2014). In silico detection and typing of plasmids using PlasmidFinder

and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58,

3895–3903. doi: 10.1128/AAC.02412-14

Clemente, L., Manageiro, V., Ferreira, E., Jones-Dias, D., Correia, I., Themudo,

P., et al. (2013). Occurrence of extended-spectrum β-lactamases among

isolates of Salmonella enterica subsp. enterica from food-producing animals

and food products, in Portugal. Int. J. Food Microbiol. 167, 221–228. doi:

10.1016/j.ijfoodmicro.2013.08.009

Clemente, L., Manageiro, V., Jones-Dias, D., Correia, I., Themudo, P.,

Albuquerque, T., et al. (2015). Antimicrobial susceptibility and oxymino-

β-lactam resistance mechanisms in Salmonella enterica and Escherichia coli

isolates from different animal sources. Res. Microbiol. 166, 574–583. doi:

10.1016/j.resmic.2015.05.007

Cosentino, S., Voldby Larsen, M., Møller Aarestrup, F., and Lund, O.

(2013). PathogenFinder-distinguishing friend from foe using bacterial whole

genome sequence data. PLoS ONE 8:e77302. doi: 10.1371/journal.pone.00

77302

Delmar, J. A., Su, C. C., and Yu, E. W. (2014). Bacterial multidrug efflux

transporters. Annu. Rev. Biophys. 43, 93–117. doi: 10.1146/annurev-biophys-

051013-022855

Egas, C., Barroso, C., Froufe, H. J., Pacheco, J., Albuquerque, L., and Da Costa,

M. S. (2014). Complete genome sequence of the radiation-resistant bacterium

Rubrobacter radiotolerans RSPS-4. Stand. Genomic Sci. 9, 1062–1075. doi:

10.4056/sigs.5661021

European Food Safety Authority/European Center Disease Control (EFSA/ECDC)

(2015). EU Summary Report on antimicrobial resistance in zoonotic and

indicator bacteria from humans, animals and food in 2013. EFSA J. 13:4036.

doi: 10.2903/j.efsa.2015.4036

Fernández, L., and Hancock, R. E. W. (2012). Adaptive and mutational resistance:

role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25,

661–681. doi: 10.1128/CMR.00043-12

Foley, S. L., Johnson, T. J., Ricke, S. C., Nayak, R., and Danzeisen, J. (2013).

Salmonella pathogenicity and host adaptation in chicken-associated serovars.

Microbiol. Mol. Biol. Rev. 77, 582–607. doi: 10.1128/MMBR.00015-13

Foley, S. L., and Lynne, A. M. (2008). Food animal-associated Salmonella

challenges: pathogenicity and antimicrobial resistance. J. Anim. Sci. 86, E173–

E187. doi: 10.2527/jas.2007-0447

Foley, S. L., Lynne, A. M., and Nayak, R. (2008). Salmonella challenges: prevalence

in swine and poultry and potential pathogenicity of such isolates. J. Anim. Sci.

86, E149–E162. doi: 10.2527/jas.2007-0464

Gerlach, R. G., Jäckel, D., Stecher, B., Wagner, C., Lupas, A., Hardt, W. D., et al.

(2007). Salmonella Pathogenicity Island 4 encodes a giant non-fimbrial adhesin

and the cognate type 1 secretion system. Cell Microbiol. 9, 1834–1850. doi:

10.1111/j.1462-5822.2007.00919.x

Grimont, P. A., and Weill, F. X. (2007). Antigenic Formulae of the Salmonella

Serovars, 9th Edn. Paris: Institute Pasteur; WHO Collaborating Centre for

Reference and Research on Salmonella.

Hensel, M. (2004). Evolution of pathogenicity islands of Salmonella enterica. Int. J.

Med. Microbiol. 294, 95–102. doi: 10.1016/j.ijmm.2004.06.025

Hong, Y., Morcilla, V. A., Liu, M. A., Russell, E. L., and Reeves, P. R. (2015).

Three Wzy polymerases are specific for particular forms of an internal

linkage in otherwise identical O units. Microbiology 161, 1639–1647. doi:

10.1099/mic.0.000113

Kim, Y., Bae, I. K., Jeong, S. H., Lee, C. H., Lee, H. K., Ahn, J., et al. (2011).

Occurrence of IncFII plasmids carrying the blaCTX−M−15 gene in Salmonella

enterica serovar Enteritidis sequence type 11 in Korea. Diagn. Microbiol. Infect.

Dis. 71, 171–173. doi: 10.1016/j.diagmicrobio.2011.05.004

Lagesen, K., Hallin, P. F., Rødland, E., Stærfeldt, H. H., Rognes, T., and Ussery,

D. W. (2007). RNammer: consistent annotation of rRNA genes in genomic

sequences. Nucleic Acids Res. 35, 3100–3108. doi: 10.1093/nar/gkm160

Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L.,

et al. (2012). Multilocus sequence typing of total-genome-sequenced bacteria.

J. Clin. Microbiol. 50, 1355–1361. doi: 10.1128/JCM.06094-11

Lemire, J. A., Harrison, J. J., and Turner, R. J. (2013). Antimicrobial activity of

metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol.

11, 371–384. doi: 10.1038/nrmicro3028

Li, X.-Z., Plésiat, P., and Nikaido, H. (2015). The challenge of efflux-mediated

antibiotic resistance in gram-negative bacteria. Clin. Microbiol. Rev. 28,

337–418. doi: 10.1128/CMR.00117-14

Liu, B., Knirel, Y. A., Feng, L., Perepelov, A. V., Senchenkova, S. N., Reeves, P. R.,

et al. (2014). Structural diversity in Salmonella O antigens and its genetic basis.

FEMS Microbiol. Rev. 38, 56–89. doi: 10.1111/1574-6976.12034

Lutful Kabir, S. M. (2010). Avian colibacillosis and salmonellosis: a closer look at

epidemiology, pathogenesis, diagnosis, control and public health concerns. Int.

J. Environ. Res. Public Health 7, 89–114. doi: 10.3390/ijerph7010089

McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J.,

et al. (2013). The comprehensive antibiotic resistance database. Antimicrob.

Agents Chemother. 57, 3348–3357. doi: 10.1128/AAC.00419-13

Medardus, J. J., Molla, B. Z., Nicol, M., Morrow, W. M., Rajala-Schultz, P.

J., Kazwala, R., et al. (2014). In-feed use of heavy metal micronutrients in

U.S. Swine production systems and its role in persistence of multidrug-

resistant salmonellae. Appl. Environ. Microbiol. 80, 2317–2325. doi:

10.1128/AEM.04283-13

Pal, C., Bengtsson-Palme, J., Kristiansson, E., and Larsson, D. G. (2015). Co-

occurrence of resistance genes to antibiotics, biocides and metals reveals

Frontiers in Microbiology | www.frontiersin.org 7 August 2016 | Volume 7 | Article 1130

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jones-Dias et al. Genomic Analysis of Salmonella Enteritidis from Day-Old Chicks

novel insights into their co-selection potential. BMC Genomics 16:964. doi:

10.1186/s12864-015-2153-5

Pontel, L. B., Audero, M. E. P., Espariz, M., Checa, S. K., and Soncini, F. C. (2007).

GolS controls the response to gold by the hierarchical induction of Salmonella-

specific genes that include a CBA efflux-coding operon. Mol. Microbiol. 66,

814–825. doi: 10.1111/j.1365-2958.2007.05963.x

Poole, K. (2004). Efflux-mediated multiresistance in Gram-negative bacteria. Clin.

Microbiol. Infect. 10, 12–26. doi: 10.1111/j.1469-0691.2004.00763.x

Varani, A. M., Siguier, P., Gourbeyre, E., Charneau, V., and Chandler, M. (2011).

ISsaga is an ensemble of web-based methods for high throughput identification

and semi-automatic annotation of insertion sequences in prokaryotic genomes.

Genome Biol. 12, R30. doi: 10.1186/gb-2011-12-3-r30

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund,

O., et al. (2012). Identification of acquired antimicrobial resistance genes. J.

Antimicrob. Chemother. 67, 2640–2644. doi: 10.1093/jac/dks261

Zhang, S., Yin, Y., Jones, M. B., Zhang, Z., Deatherage Kaiser, B. L.,

Dinsmore, B. A., et al. (2015). Salmonella serotype determination utilizing

high-throughput genome sequencing data. J. Clin. Microbiol. 53, 1685–1692.

doi: 10.1128/JCM.00323-15

Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J., and Wishart, D. S. (2011).

PHAST: a fast phage search tool. Nucleic Acids Res. 39, W347–W352. doi:

10.1093/nar/gkr485

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Jones-Dias, Clemente, Egas, Froufe, Sampaio, Vieira, Fookes,

Thomson, Manageiro and Caniça. This is an open-access article distributed under

the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 8 August 2016 | Volume 7 | Article 1130

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive

	Salmonella Enteritidis Isolate Harboring Multiple Efflux Pumps and Pathogenicity Factors, Shows Absence of O Antigen Polymerase Gene
	Background
	Methods
	Bacterial Isolate, Antibiotic Susceptibility Testing, and Serotyping
	Whole Genome Sequencing (WGS), Assembly, and Annotation
	In silico Analyses

	Results
	Conclusion
	Data Access
	Author Contributions
	Funding
	References


