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Abstract

Increasingly rich metadata are now being linked to samples that have been whole-genome sequenced. However, much of

this information is ignored. This is because linking this metadata to genes, or regions of the genome, usually relies on

knowing the gene sequence(s) responsible for the particular trait being measured and looking for its presence or absence in

that genome. Examples of this would be the spread of antimicrobial resistance genes carried on mobile genetic elements

(MGEs). However, although it is possible to routinely identify the resistance gene, identifying the unknown MGE upon which it

is carried can be much more difficult if the starting point is short-read whole-genome sequence data. The reason for this is

that MGEs are often full of repeats and so assemble poorly, leading to fragmented consensus sequences. Since mobile DNA,

which can carry many clinically and ecologically important genes, has a different evolutionary history from the host, its

distribution across the host population will, by definition, be independent of the host phylogeny. It is possible to use this

phenomenon in a genome-wide association study to identify both the genes associated with the specific trait and also the

DNA linked to that gene, for example the flanking sequence of the plasmid vector on which it is encoded, which follows the

same patterns of distribution as the marker gene/sequence itself. We present PlasmidTron, which utilizes the phenotypic

data normally available in bacterial population studies, such as antibiograms, virulence factors, or geographical information,

to identify traits that are likely to be present on DNA that can randomly reassort across defined bacterial populations. It is

also possible to use this methodology to associate unknown genes/sequences (e.g. plasmid backbones) with a specific

molecular signature or marker (e.g. resistance gene presence or absence) using PlasmidTron. PlasmidTron uses a k-mer-

based approach to identify reads associated with a phylogenetically unlinked phenotype. These reads are then assembled de

novo to produce contigs in a fast and scalable-to-large manner. PlasmidTron is written in Python 3 and is available under the

open source licence GNU GPL3 from https://github.com/sanger-pathogens/plasmidtron.

DATA SUMMARY

1. Source code for PlasmidTron is available from GitHub

under the open source licence GNU GPL 3; (url – https://

github.com/sanger-pathogens/plasmidtron).

2. Simulated raw reads files have been deposited in figshare;
(url – https://doi.org/10.6084/m9.figshare.5406355.v1).

3. Salmonella enterica serovar Weltevreden strain
VNS10259 is available from GenBank; accession number
GCA_001409135.

4. Salmonella enterica serovar Typhi strain 60006 is avail-
able from GenBank; accession number GCA_900185485.

5. Accession numbers for all of the Illumina datasets used in
this paper are listed in the supplementary tables.

INTRODUCTION

When defining bacterial populations through whole-
genome sequencing (WGS), the samples often have detailed
associated metadata that relate to disease severity, antimi-
crobial resistance, or even rare biochemical traits. When
comparing these bacterial populations, it is apparent that
some of these phenotypes do not follow the phylogeny of
the host, i.e. they are genetically unlinked to the evolution-
ary history of the host bacterium. One explanation for this
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phenomenon is that these signals relate to genes that are
moving independently between hosts and therefore are
likely associated with mobile genetic elements. However,
identifying the element that is associated with these traits
can be complex, especially if the starting point is short-read
WGS data from which they can be difficult to assemble due
to repeats. This means that, despite the increased use of
next-generation WGS in routine diagnostics, surveillance
and epidemiology, this type of association is relatively
unexplored.

Recently a number of methods have been developed to
address the problem of assembling mobile genetic elements
from next generation sequencing (NGS) data [1]. plasmid-
SPAdes [2] detects plasmids by analysing the coverage of
assembled contigs to separate out chromosomes from plas-
mid-like sequences. By filtering the dataset, a higher quality
assembly is possible. However, if the copy number of the
plasmids is similar to that of the chromosome, it is difficult
to separate out candidate plasmid contigs. Unicycler [3] is a
hybrid assembler that can combine short- and long-read
data to produce fully circularized chromosomes and plas-
mids. It essentially fixes many of the deficiencies of SPAdes
[4] and fine-tunes it for assembling bacteria. Recycler [5]
takes an assembly graph and aligned reads to search for
cycles in the graph that may correspond to plasmids. The
method is only partially implemented, with substantial
work required on the researcher’s part to generate input files
in the correct formats. It is shown to work well on small
simple plasmids; however, it does not scale to larger more
complex plasmids. All of these software applications utilize
SPAdes within their methods, work on a single sample at a
time, and require no a priori knowledge about the samples
themselves. PLACNET can additionally be used for plasmid
reconstruction from WGS data [6]; however, as noted in
[7], the workflow includes a manual pruning step, so it was
excluded from the present evaluation of fully automated
tools.

We present PlasmidTron (Fig. 1), which utilizes the pheno-
typic data normally available in bacterial population studies,
such as antibiograms, virulence factors, or geographical
information, to identify sequences that are mobile and
where their distribution is independent of the host phylog-
eny and matches the phenotypic metadata recorded for a
given sample set. Given a set of reads, categorized into cases
(showing the phenotype) and controls (phylogenetically
related but phenotypically negative), PlasmidTron can be
used to assemble de novo reads from each sample linked by
a phenotype. A k-mer-based analysis is performed to iden-
tify reads associated with a phenotype. These reads are then
assembled de novo to produce contigs. By utilizing k-mers
and only assembling a fraction of the raw reads, the method
is fast and scalable to large datasets, whilst also producing
more accurate assemblies. This approach has been tested on
plasmids because of their contribution to important patho-
gen-associated traits, such as antimicrobial resistance
(AMR) (hence the name), but there is no reason why it

cannot be utilized for any sequence that can move indepen-
dently through a bacterial population. The method is tested
on simulated and real datasets drawn from Salmonella
enterica and Klebsiella pneumoniae,and compared with
other methods, and the results are validated with long-read
sequencing. PlasmidTron is a command-line tool, is written
in Python 3 and is available under the open source licence
GNU GPL3 from https://github.com/sanger-pathogens/
plasmidtron.

METHODS

PlasmidTron (Fig. 1) takes two spreadsheets as input, one
containing paired-end read file names in FASTQ format for
samples displaying the phenotype (trait), the other contain-
ing FASTA or FASTQ file names for samples not displaying
the phenotype (non-trait). The input files can be optionally
‘gzipped’ to minimize disk usage. For each sample in both
the traits and non-traits, all k-mers are calculated using KMC

(syntax versions v2.3.0 or v3.0.0) [8, 9] and the frequency of
occurrence of each k-mer is counted. The k-mer size
defaults to 51 and can be optionally set to any odd number
in the range 21–127 (assembler limitation). This produces a
database of k-mer counts for each sample, which will be
used in the next step. In the case of paired-end reads, both
the forward and reverse are included in the same database
for a sample. If raw reads in FASTQ format are provided as
input for a sample, k-mers occurring fewer than five times
in a sample are filtered out, since de novo assembly is more
error-prone below this level of k-mer coverage. If sequences
in FASTA format are provided as input for a sample, no fil-
tering is applied.

All of the k-mer count databases for the trait samples are
combined using standard set operations provided by KMC

[8, 9]. The default set operation is ‘union’ where k-mers
observed in any sample are combined into a single k-mer
count database. The stricter ‘intersection’ set operation can
optionally be used, which creates a single k-mer count data-
base where a k-mer must be present in every trait sample.
Similarly, all of the k-mer count databases for the non-trait
samples are combined with the ‘union’ set operation to cre-
ate a single k-mer count database of non-traits. Any k-mer
occurring in the non-trait database is removed from the
trait database, leaving a database of k-mers that are unique
to the traits only. In the case of repetitive elements, such as
transposons, if they exist in the non-traits database, they
will be excluded from the traits database; however, if they
are less than the insert size they may be re-included in the
final scaffolding step.

IMPACT STATEMENT

PlasmidTron utilizes the phenotypic data normally avail-

able in bacterial population studies, such as antibio-

grams, virulence factors, or geographical information, to

identify sequences that are linked to the phenotype.
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The raw reads in FASTQ format, plus their mates, which
match any of these unique trait k-mers, are extracted from
each trait sample using FASTAQ (v3.15.0) (https://github.
com/sanger-pathogens/fastaq). Optionally the user can
define a percentage k-mer coverage (default 20%) that a
read must have to be considered, and also if the mate
requires k-mer matches. These conditions help to control
noise; however, they may exclude regions of interest. Each
set of filtered trait reads is assembled de novo with SPAdes
(v 3.11.1) [4] using the same k-mer size as the previous step
(default 51). In some cases, a single erroneous k-mer,
unique to the traits, can draw in reads on either side equat-
ing to approximately the insert size of the DNA in the
sequencing library. Thus, the resulting assemblies are fil-
tered to remove small contigs (default 300 bases) and low-
coverage contigs (below 10�).

A scaffolding step is undertaken in an attempt to join
together contigs that are located close by in the underlying
genome, allowing gaps between contigs, equating to approx-
imately the insert to be spanned. These spanned regions
may contain k-mers that are not unique to the trait samples.
To perform this scaffolding a k-mer database is generated

for each trait assembly (FASTA format). No filtering is per-
formed on the k-mer database.

For each trait sample, the raw reads in FASTQ format, plus
their mates, which match any of these scaffolding k-mers,
are extracted into new FASTQ files. These FASTQ files are
then used to perform a second de novo assembly with
SPAdes resulting in one assembly in FASTA format for each
trait sample. A final filtering step of the assembled sequen-
ces is performed to remove low-coverage contigs, leaving
one assembly in FASTA format for each trait sample. The
most resource-intensive parts of the method, the k-mer
analysis and the assembly, are parallelized using GNU paral-
lel [10] to reduce the overall running time.

RESULTS

To evaluate the effectiveness of PlasmidTron, six experi-
ments were performed comprising: (1) simulated reads to
show the impact of copy number variation in identifying
plasmids in Salmonella enterica serovar Weltevreden
(S. Weltevreden), (2) identification of a novel AMR plasmid
in Salmonella enterica serovar Typhi (S. Typhi) with

Fig. 1. The PlasmidTron algorithm. FASTQ files are denoted as squares, FASTA files as triangles and k-mer databases as circles.
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subsequent validation using long-read sequencing, (3)
investigating the effectiveness of different methods in recall-
ing plasmid type sequences on real-world S. Weltevreden
data (Supplementary Material), (4) investigating invasive
versus carriage isolates in Klebsiella pneumoniae (Supple-
mentary Material), (5) investigating liver abscess-associated
ST23 K. pneumoniae compared with carriage isolates (Sup-
plementary Material), and (6) an analysis of using Plasmid-
Tron on a sample with multiple plasmids in K. pneumoniae
(Supplementary Material). All experiments were performed
using the Wellcome Trust Sanger Institute compute infra-
structure, running Ubuntu 12.04.

IMPACT OF COPY NUMBER VARIATION

Simulated reads were generated to show the impact of copy
number variation compared with other methods. A set of
simulated perfect reads was generated. A reference genome,
sequenced using the PacBio RSII for S. Weltevreden(acces-
sion number GCA_001409135), was used to generate per-
fect paired-end reads using FASTAQ (v3.15.0) (https://
github.com/sanger-pathogens/fastaq) with a read length of
125 bases generated from a mean DNA fragment size of 400
bases. The reference is composed of a chromosome
(5 062 936 bases) and a plasmid (98 756 bases), where the
chromosome depth of coverage was fixed at 30�, and the
plasmid depth of coverage was varied from 1 to 60� in steps
of 2�. As a plasmid must be represented linearly in a
FASTA file, the break point for the linearization was varied,
in steps of 500 bases, to simulate a circular genome.

The results of PlasmidTron (v0.3.5) were compared with
those of four other methods, Recycler (v0.6), Unicycler
(v0.4.0), SPAdes (v3.10.0), and plasmidSPAdes (v3.10.0).
SPAdes (v3.10.0) was used as the assembler for each of these
methods. The Recycler method required read pre-process-
ing steps using BWA (v0.7.12) [11] and SAMtools (v0.1.19)
[12]. SPAdes and Unicycler are not dedicated plasmid
assembly programs, being agnostic to the underlying geno-
mic structures; however, they provide a good baseline for
what is possible to generate using non-specialist approaches.
It is worth noting that the final plasmid sequences, if found,
would be contained in a large collection of chromosome
sequences. plasmidSPAdes and PlasmidTron are dedicated
plasmid assemblers, and Recycler is a post-assembly plas-
mid analysis tool, with each employing a fundamentally dif-
ferent analysis strategy.

Each resulting assembly was measured based on the per-
centage of the known plasmid to be assembled, how frag-
mented the resulting plasmid assembly was, and the
proportion of non-plasmid bases to plasmid bases within
the assembled contigs (signal to noise ratio). The assemblies
were BLASTed (v.2.6.0) [13] against the expected plasmid
sequence, with an E-value of 0.0001. BLAST hits fewer than
200 bases long or with less than 90% identity were excluded.
Recycler identified no plasmids, which appears to be due to
the large size of the plasmid genome and multiple repetitive
insertion sequence elements in the underlying sequence,

rendering the assembly graph too complex to unambigu-
ously resolve.

Fig. 2 shows how, as the copy number of the plasmid in the
input reads changes, the percentage of the plasmid recov-
ered also changes. These data also show that plasmidSPAdes
only identifies plasmid sequences above 40� depth of cov-
erage, recovering the full plasmid sequence. plasmidSPAdes
required a copy number difference of +/�0.5 times between
the chromosome and the plasmid to identify the plasmid
sequences. Above and below this level the plasmid copy
number is too similar to the chromosome coverage such
that the algorithm cannot distinguish between the two and
the reads are filtered out. The SPAdes and Unicycler assem-
blers identify all of the plasmid sequence with less than 10�
coverage; however, the plasmid sequences are fragmented
and make up only ~1.9% of the final assembled sequences,
as shown in Fig. 3. PlasmidTron requires slightly more cov-
erage (16�) to generate an assembly that covers the full
plasmid sequence; however, there is no requirement for a
difference in copy number between the chromosome and
the plasmid, such as in plasmidSPAdes. At 16�, more than
90% of the resulting contigs are plasmid-related sequences,
increasing to 100% at 40�. Taking the assemblies above
40�, where most assemblers reconstructed the plasmid,
PlasmidTron consistently produces the most accurate
assembly, with a mean of 7.9 single nucleotide polymor-
phisms, compared with plasmidSPAdes (10.9), Unicycler
(167.4) and SPAdes (169.6). Full details are available in
Table S1 (available with the online Supplementary
Material).

Fig. 2. The percentage of the plasmid sequence that was assembled

with different software applications as the depth of coverage of a plas-

mid increases in the raw data.
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OUTBREAK AMR

PlasmidTron was used to analyse an outbreak of 87 S. Typhi
samples with a resistance profile that had not been previ-
ously observed in haplotype H58 isolates (H58 isolates are
representative of the dominant global multidrug-resistant
clone of S. Typhi 4.3.1) [14]. Analysis using PlasmidFinder,
as previously described, indicated that the antibiotic resis-
tance may reside on an IncY plasmid, a plasmid type that
has not been associated with this S. Typhi haplotype before.
The chromosomes of six complete reference genomes for
S. Typhi were used as the controls (accession numbers
GCA_000195995, GCA_000007545, GCA_001157245,
GCA_000245535, GCA_001302605, GCA_000385905) for
PlasmidTron, and 87 Illumina sequenced outbreak samples
were used as cases (Table S2). For each outbreak sample,
PlasmidTron identified similar sequences, split over four or
five contigs. One contig carried the IncY sequence and a
second carried AMR genes. To verify this result we rese-
quenced one isolate (ERS1670682) using long-read technol-
ogy (MinION; Oxford Nanopore). This revealed that the
four contigs identified here composed a single plasmid
(accession number GCA_900185485.1), which was identical
in all of the other outbreak strain genomes. Having these
new references, we confirmed that the sequences generated
by PlasmidTron recovered an average of 96% of the plasmid
sequence from short-read data. The fragmentation (mean
4.6) of the plasmid in the Illumina sequenced samples was
due to repeats that could not be resolved with short-read
sequencing. Overall, 65% of the sequences in the resulting

assemblies were part of the plasmid sequence, with the
remainder resulting from a phage recombination in the
main chromosome. This indicates the power of Plasmid-
Tron to rapidly, accurately and cost-effectively extract
sequences of clinical importance from short-read data
alone.

CONCLUSION

We can utilize the wealth of phenotypic data usually gener-
ated for bacterial population studies, be it routine diagnos-
tics, surveillance or outbreak investigation, to reconstruct
plasmids responsible for a particular phenotype. Rather
than just identifying that an AMR or virulence gene exists
in a sample, PlasmidTron can reconstruct both the gene and
the genomic element harbouring the gene (e.g. a mobile ele-
ment such as a plasmid), providing more insight into mech-
anisms associated with genes, such as the dispersal of the
gene in the population. We demonstrated with simulated
and real sequences that PlasmidTron reconstructs large
plasmids more accurately than other methods. We present
the results of a real outbreak of S. Typhi where PlasmidTron
was used to identify the plasmid sequence carrying a novel
AMR profile not previously described in S. Typhi H58/4.3.1,
and validated the results using long-read sequencing. Addi-
tional experiments on K. pneumoniae demonstrated the
effectiveness in the presence of multiple plasmids and com-
plex phenotypes (outlined in detail in the Supplementary
Material). Whilst plasmid assembly remains difficult with
short reads, PlasmidTron allows phenotypic data to be uti-
lized to greatly reduce the complexity of the challenge.
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