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Abstract

Background: Exposure to aflatoxin, a mycotoxin produced by fungi that commonly contaminates cereal crops
across sub-Saharan Africa, has been associated with impaired child growth. We investigated the impact of aflatoxin
exposure on the growth of Gambian infants from birth to two years of age, and the impact on insulin-like growth
factor (IGF)-axis proteins.

Methods: A subsample (N = 374) of infants from the Early Nutrition and Immune Development (ENID) trial
(ISRCTN49285450) were included in this study. Aflatoxin-albumin adducts (AF-alb) were measured in blood
collected from infants at 6, 12 and 18 months of age. IGF-1 and IGFBP-3 were measured in blood collected at 12 and
18 months. Anthropometric measurements taken at 6, 12, 18 and 24 months of age were converted to z-scores against
the WHO reference. The relationship between aflatoxin exposure and growth was analysed using multi-level modelling.

Results: Inverse relationships were observed between lnAF-alb and length-for-age (LAZ), weight-for-age (WAZ),
and weight-for-length (WLZ) z-scores from 6 to 18 months of age (β = − 0·04, P = 0·015; β = − 0·05, P = 0.003; β = − 0·06,
P = 0·007; respectively). There was an inverse relationship between lnAF-alb at 6 months and change in WLZ between
6 and 12 months (β = − 0·01; P = 0·013). LnAF-alb at 12 months was associated with changes in LAZ and infant length
between 12 and 18 months of age (β = − 0·01, P = 0·003; β = − 0·003, P = 0·02; respectively). LnAF-alb at 6 months was
associated with IGFBP-3 at 12 months (r = − 0·12; P = 0·043).

Conclusions: This study found a small but significant effect of aflatoxin exposure on the growth of Gambian infants.
This relationship is not apparently explained by aflatoxin induced changes in the IGF-axis.
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Background
Undernutrition and its consequences, including faltered
growth, is a major contributor to high mortality rates in
children under the age of five years [1]. It can also lead
to impaired cognitive ability and reduced school per-
formance, leading to reduced productivity in adult life
and economic losses for the country [2]. Although rea-
sonable progress has been made to reduce the global
burden of undernutrition in children under five years of
age (from 39·6% in 1990 to 23·8% in 2014) the rate of

reduction in Africa has progressed more slowly than
other regions [3]. Undernutrition is a multifactorial con-
dition; hence, in order to facilitate effective prevention
in Africa all underlying risk factors should be identified
and targeted.
Exposure to aflatoxin, a mycotoxin produced by fungi

that contaminate major cereal crops worldwide, with
highest occurrence in hot and humid climates, is a
major public health concern due to its carcinogenic [4],
immunosuppressive [5] and growth suppressing effects
[6]. Populations at highest risk of exposure are those
from rural subsistence farming-communities in develop-
ing regions, such as in sub-Saharan Africa, where maize
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and groundnuts are dietary staples and diet variety is poor.
In such settings, this high risk of exposure is further com-
pounded by difficulties in the avoidance of contaminated
food supplies, limited enforcement of regulatory food
standards, and inadequate food storage conditions.
Aflatoxin exposure during foetal development, infancy

and early childhood, particularly during the weaning
stage when children are gradually introduced to family
food, has been associated with low birth weight [7, 8],
micronutrient deficiencies [9], growth faltering [10–12],
liver damage [13], and immunosuppression [14]. The evi-
dence supporting a causal association between aflatoxin
exposure and impaired growth however, is limited. Only a
small number of longitudinal studies covering the first
24 months following birth, a critical time period for linear
growth, have been conducted in settings where both un-
dernutrition and aflatoxin exposure are prevalent, and the
findings among these studies are inconsistent [7, 12, 15].
A number of possible mechanisms by which aflatoxin

exposure may cause stunted growth have been proposed,
including reduced intestinal absorption of nutrients, and
reduced levels of insulin-like growth factor-1 (IGF-1), a
peptide hormone that stimulates growth. Aflatoxin causes
liver toxicity, which may result in reduced levels of IGF-1
for which the liver is the main site of production [16].
This study aimed to examine the relationship between

aflatoxin exposure and growth in Gambian infants from
birth to two years of age, and to test the hypothesis that
reductions in IGF-axis proteins could be a mechanism
for growth impairment. The ENID trial [17] is a randomised
trial of nutritional supplementation during pregnancy and
infancy on infant immune development. As part of the trial
protocol, detailed data on infant growth, feeding practices
and morbidity were collected, providing an opportunity to
explore how aflatoxin exposure, nutrition and infection
interact to reduce growth in children living in an area with
high aflatoxin exposure [7, 14, 18].

Methods
The results from this study embedded within the ENID
Trial are reported in accordance with STROBE guidelines.

Study population
The ENID trial (ISRCTN49285450) primarily examined
whether early immune development can be improved
through pre-natal and infant nutritional repletion. The
trial followed pregnant women and their infants up to
one year of age. The ENID-Growth study was an extension
of the ENID trial that continued to follow the infants to two
years of age. The ENID trial protocol has been described in
detail elsewhere [17]. In brief, pregnant women (< 20 weeks
gestation) from rural subsistence-farming villages located
within The Gambia were recruited in early 2010, and
randomised to one of four supplementation groups

until delivery: 1) Iron-folate = standard care, 2) multiple
micronutrients (MMN), 3) protein-energy (PE) + iron-folate,
or 4) PE +MMN. Their infants were then randomised from
6 to 18 months of age to one of two supplementation
groups: 1) lipid-based nutritional supplementation (LNS) +
MMN, or 2) LNS only.
Infants in the main ENID trial were born between August

2010 and February 2014. For the current sub-study, infants
born between May 2011 and December 2012, where
plasma samples were available, were included (Fig. 1). All
infants received the Expanded Programme on Immunisa-
tion as per Gambian government protocol.

Anthropometric measurements
Anthropometric variables collected at birth (within 72 h
of delivery), and at clinic visits when the infants were
aged 6, 9, 12, 18, and 24 months were used. Weight was
measured to the nearest 0·01 kg using electronic scales
and recumbent length was measured to the nearest
0·1 cm using a length board. Growth indicators including
length-for-age z-score (LAZ), weight-for-age z-score
(WAZ), and weight-for-length z-score (WLZ) were com-
puted using WHO Anthro software (http://www.who.int/
childgrowth/software/en/). Infants were characterised as
stunted, wasted, or underweight if they had LAZ, WLZ,
and WAZ scores, respectively, below − 2 SD from the
median of the WHO reference population.

Aflatoxin exposure
Blood samples collected at infant ages 6, 12, and 18 months
were used to measure aflatoxin-albumin adduct (AF-alb)
concentrations at the University of Leeds. AF-alb concen-
trations in 250 μl plasma samples were measured using a
competitive ELISA method [19]. The CV% had to be less
than 25% between repeats. The assay’s limit of detection
(LOD) was 3 pg/mg albumin. A value of 1·5 pg/mg albu-
min was assigned to samples with AF-alb concentrations
below this limit.

IGF-axis proteins
Blood samples collected at 12 and 18 months were ana-
lysed for IGF-1 and IGF Binding Protein-3 (IGFBP-3)
concentrations using IDS-iSYS IGF-1 and IGFBP-3 as-
says, with the IDS-iSYS Multi-Discipline Automated
System (Immunodiagnostic Systems Holdings PLC, UK).
The LOD levels for IGF-1and IGFBP-3 assays were
10 ng/mL and 80 ng/mL, respectively. The intra and inter
assay CV% for the IGF-1 assay were 3·4 and 6%, and for
the IGFBP-3 assay were 2·5% and 5·4%, respectively.

Infant feeding practice and morbidity
Field assistants visited the infants at home weekly, and
administered a morbidity and feeding questionnaire to
the primary caregiver (typically the mother). At this visit,
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the primary caregiver was asked if the infant had experi-
enced any vomiting, diarrhoea, rapid breathing, fever, or
cough in the past seven days. At these weekly visits, they
were also asked to provide information on breastfeeding
practices and the type and frequency of weaning foods
the infant consumed.

Covariates
Household quality, used as an indicator of socio-economic
status (SES), was assessed by a questionnaire that collected
information on the material of the main structural compo-
nents (floor, roof and walls) of the house of the mother. The
questionnaire was completed in the participants’ homes and

were conducted by trained field assistants. For each of the
household structural components a list of materials was
provided with a scoring guide 1 to 5, with 1 being the low-
est score and 5 the highest. For example, for the floors of
the house five different types of materials were listed, if
earth/sand/mud was used for the floor of the house the low-
est score of 1 was entered, if carpet was used the highest
score of 5 was entered. A weighted score based on the
household materials (multiplied by 0.2 for floor, 0.3 for roof
and 0.5 for wall) was then computed for each infant. For
analyses infants were then divided into tertiles and classified
as belonging to a low, middle or high SES household (cut
off at < 2.6 for low; 2.61–3.2 for medium; > 3.21for high).

Fig. 1 Flow diagram of infants included and excluded in ENID and in this analysis. Abbreviation: SAM, severe acute malnutrition
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Other potential confounders included: season of sampling
(wet season, June–October, or dry season, November–
May), age (months) when non-breast milk foods were
introduced (i.e. cessation of exclusive breastfeeding),
supplementation group infants were assigned to (LNS +
MMN, or LNS only), and incidence of infant diarrhoea
and infant morbidity (combined episodes of diarrhoea,
vomiting, cough, rapid breathing and fever) in the first
two years of life.

Statistical analysis
Statistical analyses were performed using SPSS version
22·0 (SPSS Inc., Chicago, IL) and STATA version 14
(StataCorp LP).
AF-alb was log transformed (lnAF-alb) and presented

as geometric mean, GM (95% CI).

Relationship between aflatoxin exposure and infant
growth
Three separate multilevel linear models (MLM) with
maximum likelihood estimation were used to examine
the relationship between the repeated measures (at 6,
12, and 18 months of age) of the three infant growth
outcomes (LAZ, WLZ and WAZ) and lnAF-alb levels
(time-varying covariate also measured at 6, 12, and
18 months). In each model lnAF-alb was modelled as a
continuous variable. Measurement occasion was at level
one, and individuals at level two. Random effects of the
intercept and slopes were allowed, and an unstructured
covariance matrix of the random effects was used. All
adjusted models included the following covariates: sea-
son of sampling (measured at 6, 12 and 18 months),
mother’s household quality, supplementation group, and
age (months) of introduction of non-breast milk foods.
With the assumption that AF-alb value at a given time
point represents the average exposure in the previous
6 months (for example AF-alb value at month 12 repre-
sents the average exposure between month 6 and month
12) the above MLM models assesses the temporal rela-
tionship between infant growth and aflatoxin exposure.
Mother’s education was not included as it was not very
discriminatory.
Additionally, four separate multilevel linear spline models

(MLSM) were used to examine the relationship between
lnAF-alb and change in infant growth (WAZ, LAZ, WLZ,
and height) at three time intervals (6 to 12 months, 12 to
18 months, and 18 to 24 months). These were added as
spline models to allow the slopes to be estimated separately
for different observation periods (as the infant growth was
not linear during the observation periods). Spline models
can also estimate the effect of aflatoxin on different age
periods of infant growth. These models use lnAF-alb value
at 6, 12 or 18 months as the baseline exposure level of the
next 6 months to evaluate its effect on infant growth in the

next 6 months. To increase the flexibility in modelling
infant growth, a series of linear splines with knots were
used to model change in infant growth at the different
time intervals. In each model knot points were set at 12
and 18 months, which allowed different linear slopes
from 6 to 12 months, 12 to 18 months, and 18 to
24 months, with these slopes varying between individuals.
To determine the effect of aflatoxin exposure on change
in infant growth for the three time periods, lnAF-alb
(modelled as a continuous variable) at 6, 12, and
18 months and their interactions with the linear splines
for the three time intervals were then included in the
model. If lnAF-alb were related to change in infant
growth within a period of time, the interaction would
be significantly different from zero.
In the MLSMs, adjustments were made for potential

confounders identified from previous studies, these included
season of sampling (measured at 6, 12, 18, and 24 months),
mother’s household quality, supplementation group, infant
morbidity, and age (months) of introduction of non-breast
milk foods. Random effects for the baseline body size and
the change in infant growth between 6 and 12 months, as
indicators of growth scores, measured at three time points
(6, 9, and 12 months) within this interval, were included.

Relationship between aflatoxin exposure and IGF-axis
proteins
The associations between lnAF-alb measured at 6, 12,
and 18 months of age, and IGF-1 and IGFBP-3 mea-
sured at 12 and 18 months of age were examined using
Pearson Correlation. Mixed ANOVAs were used to
investigate whether change in IGF-1/IGFBP-3 from 12
to 18 months of age was associated with the interaction
between the level of AF-alb measured at 12 months of
age and time. AF-alb measured at 12 months of age was
divided into ‘high exposure’ and ‘low exposure’ by means
of a median split, and was the between-subject factor in
each model. Time was the within-subject factor in each
model, and represented IGF-1/IGFBP-3 measured at 12
and 18 months.

Results
A total of 374 infants were included in the current
sub-study. At 12, 18, and 24 months of age, 366 (98%),
354 (95%), and 348 (93%) of the infants were followed
up (Fig. 1). In addition to the participants lost to follow
up, ethnicity data was missing for five mothers, SES data
for seven and education for four. Mean duration of
exclusive breastfeeding was 5·2 ± 1·3 months, and ~ 34%
of the infants were exclusively breastfed up to 6 months
of age (Table 1). Approximately 8% of the sample had a
low birth weight measurement (< 2500 g). Most of the
infants’ mothers had no formal education.
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Infant growth
Mean WAZ, LAZ and WLZ measurements at birth
(Fig. 2) were low (− 0·65 ± 1·11, − 0·53 ± 0·98, − 0·57 ± 0·83,
respectively). At 2 years of age mean WAZ, LAZ and
WLZ scores decreased to − 1·33 ± 0·91, − 1·31 ± 0·97,
− 0·93 ± 0·9; respectively (Fig. 2). The proportion of

stunting, wasting and underweight increased between
six and 24 months of age (5·6% vs. 25·9%, 8·9% vs.
12·9%, and 10·2% vs. 24·4%, respectively).

Aflatoxin exposure
At 6, 12 and 18 months of age, approximately 48% (170/
352), 98% (325/331), and 99% (307/309) of available
plasma samples had detectable AF-alb concentrations
(LOD > 3·0 pg/mg), respectively. The higher number of
samples below the LOD at 6 months reflects the fact
that breast fed infants have lower exposure to aflatoxin,
which increases as weaning food is introduced. GM
AF-alb concentrations by infant age and season of sampling
are presented in Fig. 3. AF-alb concentrations increased
as the infants got older (P < 0·001), and were higher in
samples collected during the dry season than during
the wet season.

Aflatoxin exposure and infant growth
To assess the impact of aflatoxin exposure on infant
growth between 6 and 18 months of age we regressed
lnAF-alb levels against each z-score at each of the three
visits (6, 12, and 18 months) using MLM adjusting for
key confounders (Table 2). Inverse relationships were
observed over this 12 month period between lnAF-alb
and LAZ (β = − 0·04, 95% CI: -0·08, − 0·01, P = 0·015)
WAZ (β = − 0·05, 95% CI: -0·09, − 0·02, P = 0·003) and
WLZ (β = − 0·06, 95% CI: -0·10, − 0·02, P = 0·007) scores.
As the ENID trial included four maternal supplementa-

tion groups as well as the two child supplementation
groups we have reanalysed the results to check for any
effect of the maternal supplementation groups. No such
effect was observed (results not shown).
In separate MLSMs, a significant inverse relationship

was observed between lnAF-alb measured at 6 months of
age and change in WLZ score between 6 and 12 months
of age (β = − 0·01, 95% CI: -0·02, − 0·00; P = 0·013). Inverse
relationships were found between lnAF-alb measured
at 12 months of age and change in LAZ score, and
change in length between 12 and 18 months of age
(LAZ β = − 0·003, 95% CI: -0·01, − 0·00, P = 0·02; length:
β = − 0·01, 95% CI: -0·02, 0·00, P = 0·003]. No other
significant relationships were observed at the other
time periods (results not shown).

Aflatoxin exposure and IGF-axis proteins
IGF-1 and IGFBP-3 concentrations increased signifi-
cantly between 12 and 18 months of age (Table 3). Both
IGF-1 and IGFBP-3 were positively correlated with infant
growth measurements at the time point samples were
taken (P < 0.01).
A negative correlation was observed between lnAF-alb

at 6 months and IGFBP-3 at 12 months of age (r = − 0·12;
P = 0·043). No other significant correlations were observed

Table 1 ENID subsample characteristics

Variable n Mean ± SD

Gender, n (%) 374

Male 192 (51·3)

Female 182 (48·7)

Ethnicity, n (%) 348

Fula 30 (8·6)

Jola 11 (3·2)

Mandinka 304 (87·4)

Other 3 (0·9)

Mothers’ education, n (%) 352

< 1 year formal education 235 (66·8)

> 1 year formal education 117 (33.2)

Birth weight (kg) 335 3·04 ± 0·39

Birth weight categories, n (%) 335

Low (< 2.5 kg) 25 (7·5)

Normal (2.5–3.9 kg) 307 (91·6)

High (≥4.0 kg) 3 (0·9)

Birth length (cm) 50·2 ± 5·0

LAZ at birth −0·53 ± 0·98

WAZ at birth −0·57 ± 0·83

WLZ at birth −0·65 ± 1·11

LAZ at 2 y of age 343 -1·31 ± 0·97

WAZ at 2 y of age 344 -1·33 ± 0·91

WLZ at 2 years 342 −0·93 ± 0·91

Stunted growth at 2 y of age, n (%) 343 89 (25·9)

Wasting at 2 y of age, n (%) 344 44 (12·9)

Underweight at 2 y of age, n (%) 342 84 (24·4)

Age of introduction of non-breast milk foods, n (%) 374

0–3 months 62 (16·6)

4–5 months 186 (49·7)

6 months 126 (33·7)

Diarrhoea episodes (first 2 y of life) 4·3 (3·6)

Total morbidity episodes (first 2 y of life) 13·2 (7·1)

Infant supplementation group, n (%) 374

LNS +MMN 192 (51·3)

LNS only 182 (48·7)

Data are mean ± SD or frequency (percentage). Total morbidity is the
combined episodes of diarrhoea, vomiting, rapid breathing, cough and fever in
the first 2 years of life. LAZ length-for-age z score,WAZ weight-for-age z score,
WLZ weight-for-length z score, MMN multi micronutrient, LNS lipid-based
nutritional supplementation
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between lnAF-alb levels and IGF-axis proteins. Mixed
ANOVA results showed that aflatoxin exposure at
12 months was not associated with change in IGF-1 or
IGFBP-3 from 12 to 18 months of age.

Discussion
The results of this study have confirmed the negative
impact of aflatoxin exposure on child growth in children
up to 2 years old. We hypothesised based on our previous

findings in older children [20] that a reduction in IGF levels
could contribute to the mechanism by which this occurs.
However, in this population we did not see reduced IGF1
or IGFBP3 associated with aflatoxin exposure.
Growth faltering is common in low and middle income

countries [21, 22], and is multifactorial in aetiology. Inad-
equate dietary intake, infection, early breastfeeding cessa-
tion and poverty have all been identified as factors that
contribute to faltered growth [23]. The results from this

Fig. 2 Anthropometric z scores at 0, 6, 12, 18 and 24 months of age. Abbreviations: WAZ, weight for age z-score; LAZ, length for age z-score; and
WLZ, weight for length z-score. Values are means ±95% CIs

Fig. 3 Geometric mean (95% CI) AF-alb concentrations at 6, 12 and 18 months of age, and seasonal differences in AF-alb concentrations. Total =
geometric mean AF-alb concentrations; wet = geometric mean AF-alb concentrations measured in blood samples collected during the wet
season (June to October); dry = geometric mean AF-alb concentrations measured in blood samples collected during the dry season (November
to May). Seasonal differences (wet vs. dry) in lnAF-alb concentrations were analysed using independent samples t-test
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study conducted in The Gambia, covering the period from
birth to two years of age, are consistent with the hypothesis
that aflatoxin exposure may also be an important factor.
In this population growth faltering and aflatoxin exposure

occurred simultaneously. For instance, from 6 to 24 months
of age the amount of infants with stunted growth increased
fivefold, the amount of wasting doubled and the amount of
infants classified as underweight increased threefold. This
infant growth pattern is consistently observed within this
sub-Sahara African community [24]. Approximately half of
the infants’ blood samples had detectable AF-alb concentra-
tions when aged 6 months, and almost all the samples had
detectable concentrations when aged 12 and 18 months.
These prevalence rates are comparable to those reported in
other sub-Sahara African countries, where AF-alb is typic-
ally detected in ~ 95% of collected blood samples [25].

Whilst the above evidence shows that aflatoxin exposure
and infant growth faltering are both prevalent in this
cohort, it does not imply causality; it is possible that both
are the consequence of the same circumstances, including
poverty and insufficient food intake. Nevertheless, when
further analyses were conducted, there was some evidence
to suggest that aflatoxin exposure may lie on the causal
pathway. For instance, aflatoxin exposure was inversely
related to WLZ, WAZ and LAZ scores between 6 and
18 months of age after adjusting for a range of con-
founders. Furthermore, aflatoxin exposure appeared to
temporally proceed impaired infant growth, as infants
with higher aflatoxin exposure measured at 6 months
of age, demonstrated less gain in WLZ scores between
6 and 12 months, and similarly infants with higher afla-
toxin exposure at 12 months of age demonstrated less gain
in length and LAZ scores between 12 and 18 months.
Although the size of the effect observed here was not

great, these findings contribute to the body of evidence
from existing cross-sectional [10, 14, 20, 26–28] and
longitudinal studies [7, 12, 29] that have also tested this
hypothesis, and have found similar inverse relationships
between aflatoxin exposure and LAZ [7, 10, 12, 27–29],
WLZ [10, 27, 29] and WAZ [10, 14, 26] scores. There is
no doubt that understanding the possible contribution

Table 2 Multilevel linear model of the longitudinal relationship from 6 to 18 months between AF-alb and infant growth z scores

Item Final model LAZ Final model WAZ Final model WLZ

Fixed effects Coef. (95%CI) Coef. (95%CI) Coef. (95%CI)

Intercept −0·12 (−0·56, 0·32) −0·83 (−1·28, − 0·39)*** −0·77 (−1·22, − 0·32)***

Time point −0·33 (− 0·39, − 0·26)*** −0·22 (− 0·28, − 0·16)*** −0·15 (− 0·23, − 0·07)***

lnAF-alb −0·04 (− 0·08, − 0·01)* −0·05 (− 0·09, − 0·02)** −0·06 (− 0·10, − 0·02)**

Season

Wet Reference Reference Reference

Dry −0·07 (− 0·14, − 0·00)* 0.16 (0·09, 0·24)*** 0·29 (0·20, 0·38)***

Supplementation group

LNS + MMN Reference Reference Reference

LNS −0·17 (− 0·37, 0·02) −0·18 (− 0·38, 0·02) −0·12 (− 0·32, 0·07)

Breastfeeding

Age (months) of introduction of non-breast milk foods −0·01 (− 0·09, 0·07) 0·03 (− 0·05, 0·11) 0·04 (− 0·04, 0·11)

Mother’s household quality

Low Reference Reference Reference

Med 0·35 (0·13, 0·58)** 0·37 (0·14, 0·60)** 0·27 (0·04, 0·50)*

High 0·23 (−0·03, 0·49) 0·36 (0·10, 0·62)** 0·31 (0·05, 0·57)*

Random effects Var (95% CI) Var (95% CI) Var (95% CI)

Var (Intercept) 0·82 (0·63, 1·06) 0·91 (0·70, 1·18) 1·06 (0·78, 1·44)

Var (Time point) 0·04 (0·02, 0·08) 0·00 (0·00, 0·35) 0·02 (0·00, 0·18)

Cov (Intercept, timepoint) -0·05 (−0·11, 0·02) -0·03 (− 0·09, 0·04) -0·09 (− 0·20, 0·01)

Residual 0·20 (0·17, 0·23) 0·22 (0·18, 0·25) 0·34 (0·29, 0·40)

Analysed using multilevel linear regression modelling with a random intercept and random slope. Final models fitted using maximum likelihood estimation.
***P < 0·001, **P < 0·01, *P < 0·05

Table 3 Mean IGF-1 and IGFBP-3 concentrations (ng/ml) at age
12 and 18 months

12 month
N

12 month
Mean (sd)

18 month
N

18 month
Mean (sd)

P valuea

IGF1 317 35·7 (14·8) 312 43·2 (17·8) < 0·001

IGFBP3 292 1670·8 (514·4) 276 1902·6 (619·0) < 0·001
aMean differences between 12 and 18 month IGF measurements were
analysed using paired samples t-test
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of aflatoxin exposure to child growth impairment is
complex, with many other potential contributing factors.
In our longitudinal study conducted in Tanzania (infants
aged 6–14 months) [15], a trend in lower growth over
12 months in children with higher AF-alb did not reach
statistical significance, but we did find a significant inverse
association between exposure to another mycotoxin that
contaminates maize, fumonisin, and LAZ scores. Mean
AF-alb concentrations observed over the three sampling
time points in that particular study, however, were lower
than those observed in this current study, consistent
with higher levels of exposure that have been associated
with groundnut intake (more common in Gambia) versus
maize intake, elsewhere [30].
Notably, the associations between aflatoxin and growth

impairment observed in the current study remained
after controlling for a range of important confounders
including mother’s household quality, an indicator of SES.
Low SES is related to inadequate dietary intake and infec-
tious diseases, which consequently can lead to impaired
linear growth during childhood. There is also evidence to
suggest its association with higher aflatoxin exposure. For
instance, Leroy et al. [31] found an array of socioeconomic
determinants associated with lower aflatoxin exposure
levels in rural Kenyan women, including higher levels
of education, land ownership, food security, higher
household expenditure and use of fertiliser. While the
current study did not find a significant association between
mother’s household quality and aflatoxin exposure, we
have not tested how well these measurements of house-
hold quality are associated with wealth.
To further elucidate the relationship between aflatoxin

exposure and child growth impairment it is essential that
the molecular and biological mechanisms by which
aflatoxin exposure causes impaired growth be identified.
It has been proposed that alteration of the growth
hormone-IGF system by aflatoxin exposure, possibly due
to protein synthesis, liver toxicity or DNA methylation,
could be a potential pathway. In an earlier study of older
Kenyan children [20], it was estimated that 16% of the
effect of aflatoxin being associated with reduced child
height could be explained by reduced IGF1/IGFBP-3
levels. In this current study there were no significant
associations between IGF1 and AF-alb concentrations, but
an inverse relationship was observed between AF-alb
levels at 6 months of age and IGFBP-3 concentrations
at age 12 months. There are a number of differences
between the two studies, most notably that the prior
study was cross-sectional, the population were adolescents
and that a different method was used to quantify the
IGF-axis proteins. Further research is, therefore, war-
ranted to determine if alteration in IGF-axis by aflatoxin
exposure is a mechanistic pathway for growth stunting,
particularly during the critical 24 months after birth.

The strengths of this study include the large represen-
tative sample that is well characterised owing to the data
collected longitudinally on morbidity, feeding practices
and infant growth. Also objective measurements of afla-
toxin exposure and growth were used which enhances
the validity of the results. The main limitation of this
research is that an observational study design was used,
which is susceptible to potential bias, including response
bias (specifically social desirability bias) for the household
quality questionnaire and recall bias for the morbidity and
feeding questionnaires. Since outcomes are measured as
sectional events and initiation of exposure before outcome
onset cannot be clearly established there is also potential
temporality bias. Although this sub-study was from within
a nutrition intervention trial, the population sampled was
representative of the local population as all women within
the area who became pregnant during the trial period
were available for recruitment (with specific eligibility
exceptions [17]), and were randomised to the intervention
on recruitment. Furthermore, the WAZ, LAZ and WLZ
scores (6, 12, 18 and 24 months) did not significantly
differ according to infant supplementation group, so we
are confident that the nutrition intervention did not
influence our findings.

Conclusions
This study of Gambian infants, covering the first two
years following birth, found that aflatoxin exposure was
associated with impaired growth. The findings contribute
to a body of evidence that suggests aflatoxin may be an
underlying determinant of impaired child growth. Further
research, however, is required to identify the biological
mechanistic pathways, and to design and implement inter-
vention studies that target aflatoxin exposure alongside
child undernutrition.
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