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ABSTRACT

Tuberculosis (TB) has surpassed HIV to become the leading infectious killer of 

adults globally, causing almost 2 million deaths annually.1  Although this airborne 

disease has been treatable since 1948, global rates of TB have dropped less than two 

percent per year; an estimated 10 million incident cases continue to occur annually, 

including one million in children.1,2  While transmission of active disease is an important 

driver of the epidemic, the seedbed that feeds the epidemic is the more than two billion 

people estimated to have TB infection, five to ten percent of whom will progress to 

active disease during their lifetime.3  While any successful strategy aimed at TB 

elimination needs to address this reservoir of TB infection worldwide, much remains to 

be understood about host and pathogen factors that can be used to identify increased 

risk for progression to disease, and intervened upon to prevent progression from 

occurring.4

The Division of AIDS of the National Institute of Allergy and Infectious Diseases, 

National Institutes of Health, USA, and the Harvard Medical School Center for Global 

Health Delivery–Dubai convened a group of scientists and stakeholders on September 

28 and 29, 2017, to address knowledge gaps that affect our ability to rapidly find and 

treat individuals infected with Mycobacterium tuberculosis who are most likely to 

progress to active disease.  The meeting identified a number of efforts underway to 

address this important gap in the collective ability to stop the global TB epidemic.  Here, 

we review and outline the priority areas for research, diagnosis and treatment of TB 

infection that emerged from the meeting (Table 1), building on recent reviews in this 

area.5,6,7  
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Understanding the spectrum of TB infection and disease: a critical first step

Although epidemiological data from the late 1950s—and a number of randomized 

controlled trials since then—demonstrate the importance of treating TB infection before 

it becomes clinically apparent (preventive therapy for so-called “latent” TB),8,9,10,11,12 

very little is known about the spectrum of clinical states between asymptomatic infection 

and clinically apparent disease.  It is becoming increasingly clear that conventional 

conceptions of TB as “latent” versus “active” are overly simplistic, and neither 

adequately reflect host immunology nor microbial pathogenesis.13,14,15  Indeed, there is 

now increased appreciation that clinically apparent “TB disease” is assuredly preceded 

by a period of incipient TB—an asymptomatic phase that can been characterized by an 

evolving blood-based host RNA signature.16 These observations confirm that the 

previous classification of “latent” infection is imperfect and limited by the characteristics 

of available diagnostic tests.17  Moreover, it is hypothesized that some exposed 

individuals can mount effective immune responses that eradicate all viable bacilli, a 

phenotype distinct from persons in whom immune responses can only contain the 

infection, thereby harbouring populations of bacilli that intermittently replicate in 

macrophages, granulomata and other tissues.4   Whether the newer terminology of 

“incipient” disease indicates early active TB that inevitably progresses to clinically 

apparent disease, or whether it is more of a dynamic state that reflects ongoing host-

pathogen interactions, remain unknown. In addition, the definitions and pathophysiology 

of a pre-incipient state is also unknown.  Being able to characterize and identify the full 

spectrum of “latency”, including the dynamics of microbial and host interplay and the 
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role this relationship has in developing disease is a critical component to addressing the 

TB epidemic (Figure 1).  

It has long been hypothesized that sub-clinical TB infection is characterized by a 

population of M. tuberculosis in a dormant or metabolically quiescent state.18,19  Rather, 

recent data on changes in host immunity during TB infection and the efficacy of 

treatment for TB infection point towards a population of organisms that have substantive 

metabolic activity.14,20  The true nature of bacterial metabolism, and associated 

vulnerability to anti-tubercular drugs, remains a critical knowledge gap that has been 

difficult to study in humans due to the inability to meaningfully sample bacteria prior to 

TB disease progression.19 To address this, in vitro, ex vivo and in vivo models have 

been established to study various aspects of non-replicating persistence in 

mycobacteria. Passage of M. tuberculosis through these models reveals a dynamic and 

complex pathogen response to the immune stresses imposed during infection.19 For 

example, in vitro models that simulate the non-replicative state demonstrate that carbon 

metabolism is extensively remodelled to accommodate for a reduction in simple 

glycolytic substrates and an increase in the availability of fatty acids and host derived 

cholesterol.21,22,23,24  Similarly, nitrogen metabolism is rewired to respond to increasing 

availability of nitrate, a by-product of host-derived reactive nitrogen stress.25,26 In vitro 

models and infection studies in animals show specific pathogen metabolic adaptations 

that address the reduced levels of oxygen present in the TB granuloma.19,27,28,29 

Collectively, data from these models of non-replicating mycobacterial persistence 

suggest that the bacteria are not metabolically quiescent. While this finding may provide 

an explanation for the effectiveness of preventative therapy with agents that target 
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active cellular processes given over an extended time-frame (e.g. isoniazid and 

rifampin),4,8,9,10,11,12 it is not yet clear how much these in vitro models correspond to 

mycobacterial activity in humans.

There are many unanswered questions regarding the ability of tubercle bacteria 

to survive in an immune-active host.  Gaps exist in understanding where bacteria are 

located during the early stages of TB infection and whether different locations and 

environments affect bacterial behaviour and treatment response.19  How similar is the 

bacterial metabolism along the spectrum between infection and disease?  If there are 

differences, how do we define vulnerable drug targets for TB infection?  Would 

recognition of bacterial behaviour during early conditions allow us to define new 

growth/media conditions for diagnosis?  These are all critical areas of inquiry. 

The interplay between bacterial and host genetics and the subsequent 

combinatorial effect on host immune response during infection is another important area 

of research. First, we know that M. tuberculosis can interact with a large repertoire of 

innate host receptors that shape the immune response and outcome of infection and 

progression to disease.30 For example, eicosanoid generation, considered as a host 

protective response to mycobacteria, is regulated by leukotriene A(4) hydrolase 

(LTA4H). In tuberculous meningitis, a genetic polymorphism in LTA4H is associated 

with both inflammation and responsiveness to adjunctive anti-inflammatory therapies.31  

Second, immune responses appear to also be influenced by M. tuberculosis strain 

diversity.  Mycobacterium tuberculosis Complex (MTBC) comprises seven human 

adapted lineages and studies have reported that genotypic diversity is associated with 

differences in host immune responses.32,33,34  That the interaction between host 
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polymorphisms and TB strain variation may dictate the outcome of infection is illustrated 

in a study that showed that the association of SNP TLR2 T597C with risk of TB 

meningitis is strongest among those infected with the Beijing lineage.35  

Overall, it is plausible that the spectrum of infection is influenced by a 

combinatorial effect of both host and bacterial genotypes.  A better understanding of the 

nuances of host-pathogen dynamics during different M. tuberculosis infection states and 

with M. tuberculosis genetic diversity would contribute to developing protective vaccines 

for TB infection and therapeutic vaccines for treatment. It would also help to identify 

biomarkers of pathogen clearance and of progression to TB, and advance our 

understanding of host innate and adaptive immunity to M. tuberculosis.  This is critical 

for eradicating persistent infection, preventing reactivation of TB infection, shortening 

TB infection treatment and/or preventing re-infection. 

Diagnosing TB Infection and Progression to Disease

Another major gap in addressing TB infection has been the inability to 

differentiate between asymptomatic individuals harboring viable persistent bacteria 

versus those that have cleared the infection.  This is highly relevant for the accurate 

identification of infected individuals that are at greatest risk for progressing to TB 

disease. Whereas persons with positive interferon gamma release assays specific for 

TB antigens are at increased risk of progressing to clinically apparent disease, the 

number needed to treat to prevent a single active case can range as high as from 111 

to 314 (depending on setting and the patient’s risk for progression), an observation that 
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has dampened enthusiasm for universal treatment of TB infection.36 While recent 

studies have identified host biomarkers and transcriptional profiles associated with 

active TB and signatures associated with TB disease risk,37,38,39 signatures that 

distinguish persistent TB infection from cleared infection have not been identified. 

Moreover, the effect on these signatures by co-infection with HIV or helminths, or co-

morbidities such as diabetes, is not known. 

Overall, there are substantial problems with current definitions of infection since 

they are generally inferred from surrogate assays that measure the metabolic, 

transcriptomic or bimodal immunologic response of the host to an encounter with M. 

tuberculosis.  The extent to which surrogate markers reflect characteristics of 

infection—versus “conversion”—remains unknown. It is recognized that individuals post-

conversion exhibit both increased risk for progression and heterogeneity in timing of 

progression.  Exposed individuals who do not convert may represent a “resistance to 

infection” phenotype. Genetic mapping efforts of M. tuberculosis infection offer 

particularly powerful approaches for identifying loci that confer resistance to infection or 

that control progression from conversion to clinical disease.  These efforts may also be 

useful in fine-tuning surrogate markers to improve the accuracy of prediction of 

progression to clinical disease.  For example, transcriptomic signatures have been 

identified that provide a correlate of risk for progression from conversion to disease with 

relatively good accuracy.40 By including genetic markers that impact on transcript levels, 

so called eQTL loci, it may be possible to further improve the accuracy of these 

signatures.  Much needs to be done in this area.  
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Despite the checkered history of serologic assays in TB, more refined 

understanding of the antigen binding (Fab) and constant (Fc) domains would support 

accurate antibody-based diagnostics. Most antibody work has focused on the Fab 

domain given the specificity of association with microbial antigens. Unfortunately, this 

approach has thus far given rise to commercial serological tests with poor sensitivity 

and specificity for TB infection and disease.  However, it is well understood that 

immunogenic microbial antigens are not just proteins but also lipids and carbohydrates. 

Recent studies have shown that the “constant” Fc domain is actually diverse, capturing 

a plethora of host-associated processes.41 More specifically, isotypes (n=5), subclasses 

(n=6), and post translational modifications such as glycosylation (n=at least 36) are 

dynamic throughout the course of disease, reflecting the host immune responses.42 

These Fc features, specifically glycosylation, have been successfully used in oncology 

to functionally enhance monoclonal antibody therapeutics, in rheumatology to provide 

more predictive and granular biomarkers, and in HIV diagnostics.43,44,45 Overall, these 

important advances in our understanding of the role of antibodies suggest that further 

research is essential46. 

The measurement of other aspects of cellular immunity to mycobacterial infection 

may provide signals that discern TB infection from active disease, and hence might be 

used to define those with subclinical TB.  As M. tuberculosis is an intracellular 

pathogen, CD8+ T-cells are uniquely poised to sample the intracellular environment.  

The prevalence of M. tuberculosis-specific CD8+ T-cells is associated with surrogates of 

bacterial burden such as sputum-smear positivity and is inversely correlated with 

treatment.  Innate T-cells, such as invariant natural killer cells and mucosal associated 
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invariant T-cells, are diminished in the circulation of individuals with M. tuberculosis, 

possibly reflecting their movement to the site of active infection.  Increased numbers of 

myeloid derived suppressor cells in blood of recently exposed individuals and in TB and 

increased numbers at the site of disease in pleural TB have been found, whereas these 

numbers normalize after prolonged asymptomatic infection and after successful TB 

treatment. These cells suppress innate and adaptive immune responses against TB.47,48  

Expression of immune activation markers such as CD38 and HLA-DR and intracellular 

proliferation markers such as Ki-67, on Mtb-apecific CD4 T cells have been shown to 

accurately discriminate between active TB disease and TB infection, suggesting that 

antigen-specific T cell phenotypes can be useful as biomarkers of TB disease.49 Finally, 

the measurement of the functional status of M. tuberculosis-specific CD4+ T-cells—

using either IL-2 production or cellular activation—has been demonstrated to discern TB 

from TB infection.50  In summary, understanding better the host response to infection 

with M. tuberculosis has the potential to predict those at risk for progression, add 

specificity to RNA signatures, and guide therapy.  

As high TB incidence areas are often characterized by high sensitization rates to 

M. tuberculosis antigens (i.e. TST or IGRA positivity), these tests are of limited value in 

selecting healthy individuals for targeted preventative treatment.51 Recent publications 

have highlighted a new approach using gene signatures to predict future progression to 

clinically active disease in people who are apparently healthy at the time of 

testing.40,52,53 The Adolescent Cohort Study, reported the generation of a risk signature 

from whole blood RNA sequencing followed by validation through multiplex quantitative 

real-time PCR in adolescents without a known exposure episode from a high TB 

Page 10 of 32 AJRCCM Articles in Press. Published on 18-October-2018 as 10.1164/rccm.201806-1053PP 

 Copyright © 2018 by the American Thoracic Society 



incident community. The expression of 16 mRNA transcripts constituted a correlate of 

risk (CoR) for active TB disease and was validated in a cohort of recent household 

contacts of active TB cases from South Africa and The Gambia (the GC6-74 study).38  

The CoR progression in the adolescent cohort was similar to CoR regression towards a 

control state in an independent TB treatment cohort that was recently reported from 

South Africa.54 Subsequent further analysis of the GC6-74 cohort showed similar 

promising predictive performance across household contacts from multiple sites, 

suggesting that predictive signatures are indicative of incipient disease up to two years 

prior to the development of symptoms, and that signatures that perform reasonably well 

across different geographical areas should best be developed from data sets that 

include samples from multiple locations55. Such signatures are now being tested 

prospectively in clinical trials of biomarker-driven targeted preventative treatment.40Error! 

Bookmark not defined.

Newer discovery platforms, like next-generation biological mass spectrometry, 

coupled with methods for enhancing sensitivity such as exosome enrichment, are being 

evaluated for the detection of pathogen-specific markers across the spectrum of TB 

infection to disease.56,57 Pathogen-specific diagnostics would provide a valuable 

alternative to surrogate marker approaches and be able to discern true “infection” in M. 

tuberculosis exposed patients from immunologic “conversion” after exposure.  

Lastly, the fundamental challenge of how to optimize the evaluation of 

diagnostics for TB infection, for which there is no gold standard, needs to be addressed.  

Historically, active TB disease cohorts have been used, but the severe immunologic and 

pathogen features of this state are recognized as poorly reflective of the pre-disease, 
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infection state. Proxies for infection (e.g. based on TST or IGRA results) are also used 

in studies, including proposed new cut-offs for defining positive results,58 and these can 

be further enhanced by determining whether a novel biomarker or diagnostic test 

separates the study population into two groups of size consistent with the known 

epidemiology of TB infection: the majority (80-95%) with stable TB infection and a 

minority (5-20%) identified as being at-risk (i.e., unstable TB infection or sub-clinical 

TB). This approach still has risk in terms of misclassification, but candidate biomarkers 

that achieve this goal could then be advanced to Phase 2 studies that assess changes 

in the candidate biomarker levels with treatment of TB infection.  In the absence of a 

reference standard, assessing for treatment response is also a reasonable approach 

and is supported by prior studies demonstrating that gene expression is similar among 

patients who have completed treatment for TB disease and controls with TB infection.59 

Such Phase 1 and 2 studies require smaller sample sizes and shorter follow-up as 

compared to large epidemiologic cohorts, and could help identify potential candidate 

biomarkers or tests to advance to clinical impact studies that assess TB incidence.

Innovations in Treatment of Infection

Recently completed trials of duration shortening regimens for drug-susceptible 

TB infection have confirmed the importance of treating TB infection and provided viable 

alternatives to the conventional nine months of isoniazid (9H) used since the 

1960’s.8,9,10,11,12 Several randomized controlled trials have shown that a new 

combination regimen of isoniazid (INH) and rifapentine (RPT) administered weekly for 

12 weeks as directly observed therapy (DOT) or as self-administered therapy (SAT) is 
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as effective for preventing TB as other regimens and is more likely to be completed than 

the longer 9 months of INH daily.60,61,62 A four month regimen of rifampicin (4R) has 

been evaluated in adults and children with TB infection (NCT00931736), and found not 

to be inferior to the standard 9-month regimen of isoniazid for the prevention of active 

tuberculosis and, notably, is associated with a higher rate of treatment completion and 

better safety.63 Two ongoing studies are evaluating the effectiveness of preventive 

therapy among people living with HIV (PLHIV): A one month course of daily rifapentine 

and isoniazid (1HP) versus 9H (the A5279 study; NCT01404312) was recently 

completed and preliminary results indicate non-inferiority of the ultrashort regimen when 

applied under pragmatic strategy trial settings;64 and a three arm comparison between 

3HP, 9H and intermittent 3HP is being evaluated among people living with HIV (the 

WHIP3TB study; NCT02980016). The durability of protection achieved from a single six-

month course of INH treatment for TB infection in PLHIV remains uncertain, with some 

trials showing up to seven years of protection,65 while others found significant benefits 

from prolonged courses (36 months) of INH treatment in high-incidence settings as 

compared to the six-month regimen.66 The CORTIS study is evaluating the 

effectiveness of 3HP for high-risk individuals, against surveillance, with the treatment 

decision based upon a blood-based RNA -expression profile (NCT02735590). 

Supervised weekly 3HP is being compared to isoniazid among pregnant and post-

partum women (P2001; NCT02651259). Finally, six weeks of daily, self-administered 

rifapentine alone regimen is being evaluated in a new phase 3 clinical trial conducted by 

the CDC TB Trials Consortium.67  
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Currently, there are limited data on how best to treat contacts of individuals with 

multidrug-resistant (MDR)- and extensively drug-resistant (XDR)-TB. Several drugs or 

combinations of drugs including fluoroquinolones, ethambutol, pyrazinamide and 

ethionamide have been tested in modest sized trials that have not provided adequate 

evidence to impact practice guidelines. Currently, three large, randomized controlled 

trials are underway. Six months of daily levofloxacin is being compared to placebo for 

contacts of individuals with MDR-TB in the VQUIN MDR Trial 

(ACTRN12616000215426, in adults), and the TB CHAMP study (ISRCTN92634082, in 

children under five years). In the PHOENIX MDR-TB Trial, six months of daily 

delamanid will be compared with six months of daily isoniazid for contacts of individuals 

with MDR- or XDR-TB. 

Current treatment studies focus on the use of orally-administered antibiotics for 

which susceptibility is presumed, however, there is interest in evaluating novel, non-

antibiotic based approaches to treating infection and halting progression to disease, as 

well as alternative drug-delivery mechanisms.  The idea of using host-directed therapies 

as adjunctive therapies for TB has gained traction.68 Theoretically, host-directed 

therapies can address the challenges associated with antibiotic resistance, as bacterial 

mutations will be incapable of directly abrogating binding of the drug to a host target. In 

addition, these therapies open a new landscape of ways to harness or alter host 

immunity to attack the pathogen.  A number of host-directed therapies have been 

proposed based on modulation of detrimental inflammation – more classically 

considered in the context of clinically apparent disease – including alterations of 

eicosanoid networks, lipid metabolism, and autophagy, among others.69,70,71  Questions 
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remain about whether these newer host-directed approaches would be effective for 

addressing the spectrum of infection, where the inflammatory response may be different 

from active disease.  Answering these questions is an important first step in determining 

the role of adjunctive host-directed medications or therapeutic vaccines in the 

prevention of progression from infection to disease.5  

There remain a number of challenges in efficiently transforming pre-clinical 

results and clinical observations into specific adjunctive therapies, particularly given the 

heterogeneity in disease presentation and progression. Cell culture, animal models, 

human clinical data and long-term experiments in non-human primates (e.g. 

cynomolgus macaques or rhesus macaques, where infection with M. tuberculosis 

results in similar outcomes as the human infection/disease spectrum) are needed to 

capture the full spectrum of possibilities with adjunctive therapies. Ultimately, novel 

adjunctive therapies will require initial assessment of safety, consideration of potential 

interactions with front-line anti-TB drugs, and knowledge of efficacy in pre-clinical 

models.  

Ensuring that treatment can be delivered is also a critical area of inquiry.  Long-

acting/extended release drug formulations have proved very successful in diverse areas 

of medicine including contraception, psychiatry, and most recently, HIV disease. While 

challenging, application of this technology to TB treatment could have substantial 

impact by improving treatment adherence.  Although the properties of some TB drugs 

make them unsuitable for long-acting formulation, promising candidates have been 

identified through modelling and simulations.72,73,74,75  An efficacious delivery 

mechanism for TB infection, particularly for those co-infected with HIV, would be an 
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important tool to accelerate progress towards TB elimination.  Progress in this area is 

closely linked to the identification of markers associated with disease clearance and 

progression. 

Understanding host-pathogen interactions in the setting of high transmission 

pressure is also an important facet of combatting the disease.  While many of the early 

studies on preventive therapy were undertaken in high-burden settings,8,9,10,11,12 and 

models of disease elimination have underscored the importance of using a 

comprehensive epidemic control approach strategy that includes active case finding, the 

treatment of active disease, and the treatment of infected contacts,76,77,78 research is 

required to better understand how targeted identification of infected individuals in 

“hotspots” and other epidemiological contexts could advance the goal of TB 

elimination.79 

Lastly it must be remembered that most of the studies on the relationship 

between M. tuberculosis and its human host have been conducted in adults.  There are 

an estimated 10 million new pediatric TB infections each year.80  Once infected with M. 

tuberculosis the risk of disease progression is much higher in children especially those 

<5 years of age.81  Because of differences in host immunity between young children and 

older children and adults, this population faces a different series of gaps in diagnostics 

and therapeutics.  Studying TB infection in children—who usually have a defined 

contact and hence defined time since exposure—is a unique “challenge model” to 

examine time-and possibly strain-related infection progression and protection.82 
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Conclusions

TB elimination can only be achieved if the reservoir of infected individuals at high 

risk of progression to disease are identified and treated.  Recent advances in our 

understanding of host-pathogen interactions in TB, coupled with newer approaches for 

diagnosis, predictive biomarkers of risk for progression, and the promise of shorter 

duration treatments, adjunctive therapies and innovative modalities for drug-delivery are 

providing a new horizon for research. For the first time, the collective of these advances 

provide an exciting and viable platform on which to build the next generation of 

interventions for identifying and treating TB infection. 
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Table 1.  Key research areas and questions in diagnostics and therapeutics.  

1.  Defining the spectrum between M. tuberculosis infection and clinically 
apparent disease, and identifying genetic and immunological markers 
associated with progression to disease?

 Where in the host is the M. tuberculosis population during TB infection, are 
there niche tissues, and do different locations and environments affect 
bacterial behavior, host response, and treatment response?

 What is the physiologic and metabolic state of the population of M. 
tuberculosis along the spectrum between infection and clinically evident 
disease, and could this be used to target individuals for treatment?

 Are there host and pathogen genetic markers (“gene signatures”) that define 
these states, what is the interplay between the two?

 Are there host immunological/cellular function responses that define these 
states?

 Are their protein biomarkers that define these states?

 Can any markers be identified that indicate the presence of live M. 
tuberculosis? 

 Can markers of bacterial clearance in response to chemotherapy or 
therapeutic vaccines be identified? 

 Are genetic, immunological and protein biomarkers the same between adults 
and children, and how can differenced between age groups be used to 
better understand the spectrum between TB infection and disease?

 How is progression along the spectrum to disease affected by host and 
pathogen genetic diversity?

 What are the correlates of protection from TB disease?

 How do the above processes differ between young children and older 
children/adults, and what bearing will this have on identification of infection 
in this population?

2.  Optimizing treatment for infection with M. tuberculosis?

 Which drugs and regimens are optimal for treatment of incipient forms of 
TB?

 What are the drug mechanisms of action that could safely shorten duration 
of treatment for TB infection to 4 weeks or less?  
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 Is there a role for host-directed and adjunctive therapy to modulate 
inflammation, lipid metabolism, autophagy, and other cellular networks, to 
disrupt the transition between TB infection and disease?

 How can host-directed and adjunctive therapies be used to reduce the 
duration of treatment for TB infection?

 What anti-TB drugs are amenable to long-acting/extended release 
formulations that will help maintaining more constant antibiotic coverage and 
help with treatment adherence?

 What anti-TB drugs are amenable to alternative treatment delivery 
mechanisms (e.g. drug patches, depo injections)?

 What drugs should we use to treat individuals suspected of being infected 
with multidrug-resistant (MDR) strains of TB?

 What molecular markers, immunological responses and protein biomarkers 
can help define when infection and/or disease has been successfully 
treated? 

 Do children and adults require the same treatments and durations for TB 
infection?
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Figure 1. Spectrum of clinical states that comprise asymptomatic TB infection. Shown are the various 
manifestations of infection with Mycobacterium tuberculosis, prior to the diagnosis of active TB. The spectrum of 
TB infected states, which were previously all characterized as latent TB infection, represents a diversity of 
outcomes upon exposure to infectious particles. This appreciation of clinical complexity has been largely driven 
by the development of biomarkers to monitor risk of disease progression and refined imaging techniques. Text 
below the graphic details areas of investigation necessary to better characterize the latency spectrum including 
study of bacterial physiology, novel diagnostics, HDTs, new therapeutic options and host immunity. The ultimate 
goal of further understanding the spectrum of TB infection is to develop interventions that prevent progression 
to active TB disease. H-isoniazid, R-rifampin, P – rifapentine. 
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