Decraene, V; Phan, HTT; George, R; Wyllie, DH; Akinremi, O; Aiken, Z; Cleary, P; Dodgson, A; Pankhurst, L; Crook, DW; +14 more... Lenney, C; Walker, AS; Woodford, N; Sebra, R; Fathi-Ordoubadi, F; Mathers, AJ; Seale, AC; Guiver, M; McEwan, A; Watts, V; Welfare, W; Stoesser, N; Cawthorne, J; TRACE Investigators’ Group: (2018) A large, refractory nosocomial outbreak of K-lebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control. Antimicrobial agents and chemotherapy. ISSN 0066-4804 DOI: https://doi.org/10.1128/AAC.01689-18

Downloaded from: http://researchonline.lshtm.ac.uk/4649480/

DOI: https://doi.org/10.1128/AAC.01689-18

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
A large, refractory nosocomial outbreak of *Klebsiella pneumoniae* carbapenemase (KPC)-producing *Escherichia coli* demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control.

V Decraene¹#, HTT Phan².³c#, R George⁴#, DH Wyllie².³#, O Akinremi³.⁵, Z Aiken⁴, P Cleary¹, A Dodgson².⁶, L Pankhurst².³, DW Crook².³.⁵, C Lenney⁴, AS Walker².³, N Woodford³.⁵, R Sebra⁷, F Fath-Ordoubadi⁴, AJ Mathers⁸.⁹, AC Seale¹⁰.¹¹, M Guiver⁶, A McEwan⁴, V Watts¹, W Welfare¹².¹³, N Stoesser².³¶, J Cawthorne⁴¶ and the TRACE Investigators’ Group

¹ Valerie Decraene, Hang TT Phan, Ryan George and David H Wyllie contributed equally to this manuscript

¶ Julie Cawthorne and Nicole Stoesser contributed equally to this manuscript

¹ Field Service North West, Public Health England, Liverpool, UK

² Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK

³ National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Oxford University, John Radcliffe Hospital

⁴ Manchester University Hospitals NHS Foundation Trust, Manchester, UK

⁶ Public Health Laboratory (Manchester), Public Health England, Manchester Royal Infirmary, Manchester, UK
Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA

Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia

Clinical Microbiology, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia

London School of Hygiene and Tropical Medicine, London, UK

Public Health England North West, Manchester, UK

Manchester Academic Health Science Centre, University of Manchester, Manchester, UK

Running title: \(bla_{KPC}\)-E. coli outbreak in Manchester, UK

Correspondence to: Dr Nicole Stoesser, Department of Microbiology, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
Tel: +44 (0)1865 220856
e-mail: nicole.stoesser@ndm.ox.ac.uk

Keywords: Antimicrobial resistance, Carbapenemase-producing Enterobacteriaceae, genome sequencing, molecular epidemiology, infection control
ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are a health threat, but effective control interventions remain unclear. Hospital wastewater sites are increasingly highlighted as important potential reservoirs. We investigated a large Klebsiella pneumoniae carbapenemase (KPC)-producing E. coli (KPC-EC) outbreak and wider CRE incidence trends over eight years in the Central Manchester Foundation NHS Trust (CMFT), UK, to determine the impact of Infection Prevention and Control measures.

Bacteriology and patient administration data (2009-2017) were linked; a subset of CMFT/regional KPC-EC isolates (n=268) was sequenced. Control interventions followed international guidelines and included cohorting, rectal screening (n=184,539 screens), environmental sampling, enhanced cleaning, and ward closure/plumbing replacement. Segmented regression of time trends of CRE detections was used to evaluate the impact of interventions on CRE incidence.

Genomic analysis (n=268 isolates) identified spread of a KPC-EC outbreak clone (ST216, strain-A; n=125) amongst patients and the environment, particularly on two cardiac wards (W3/W4), despite control measures. ST216 strain-A had caused an antecedent outbreak, and shared its KPC plasmids with other E. coli lineages and Enterobacteriaceae. CRE acquisition incidence declined after W3/W4 closure and plumbing replacement, suggesting an environmental contribution. However, W3/W4 wastewater sites were rapidly re-colonised with CRE and patient CRE acquisitions recurred, albeit at lower rates.

Patient relocation and plumbing replacement were associated with control of a clonal KPC-EC outbreak; however, environmental contamination with CRE and patient CRE acquisitions
recurred rapidly following this intervention. The large numbers of cases and persistence of
\(bla_{KPC} \) in \(E. coli \), including pathogenic lineages, is a concern.
INTRODUCTION

Carbapenem-resistant Enterobacteriaceae (CRE) are a global public health threat(1). Major carbapenemases include the metallo-beta-lactamases, some oxacillinases and the Klebsiella pneumoniae carbapenemase (KPC, encoded by blaKPC), one of the commonest carbapenemases globally(2). Transfer of carbapenemase genes on mobile genetic elements has resulted in the rapid, inter-species dissemination of carbapenem resistance(3, 4). Since few therapeutic options remain for CRE infections(5, 6), effective control is critical.

Escherichia coli is a major human pathogen, but also a gastrointestinal commensal, and can be transmitted between humans and the environment. Carbapenem resistance in E. coli, including that encoded by blaKPC, is increasing(7, 8), but is uncommon, and KPC-E. coli outbreaks have not been observed to date. The emergence and persistence of carbapenem resistance in E. coli in human and/or environmental reservoirs is of concern.

CRE detections in England have increased since 2008(9), and are approximately ten times the national average in Greater Manchester(10). Central Manchester University Hospitals NHS Foundation Trust (CMFT) has experienced an on-going multi-species blaKPC-associated CRE outbreak since 2009. Intensive Infection Prevention and Control (IPC) measures, in line with national and international recommendations(11-13), have been implemented in response.

In 2015, a sudden increase in cases of faecal colonisation with KPC-producing E. coli (KPC-EC) was detected in the Manchester Heart Centre (MHC) at the Manchester Royal Infirmary (MRI; part of CMFT). We retrospectively investigated the genomic epidemiology and evidence for nosocomial transmission of KPC-EC and KPC plasmids isolated from patients.
and the environment in this context, and assessed the impact of guideline-compliant IPC bundles on CRE and KPC-EC incidence.

RESULTS

High prevalence of CRE colonisation in the MHC

Between 01/Apr-30/Dec/2014, 23 new CRE-colonised individuals were detected on the MHC, including two with *E. coli* (Fig.1A). A CRE outbreak was declared on 02/Jan/2015 when six new CRE-colonised individuals were identified (four with *bla*_{KPC}, two with *bla*_{NDM}; no *E. coli*). Consequently, intensified IPC measures were implemented (Table S1; Fig.1B), and W3/W4 were closed (06/Jan/2015), terminally cleaned (hypochlorite), and decontaminated (hydrogen peroxide vapour). W3 was re-opened on 11/Jan/2015 and W4 on 23/Jan/2015; high-risk patients (CRE previously detected/history of hospitalisation abroad or in UK hospital with known CRE transmission in past 12 months) were screened; CRE-positive patients were transferred to a cohort ward or, if they required cardiac monitoring, to side-rooms.

By January 2015, CMFT was operating a Trust-wide CRE screening program (>110 screens/day; Table S2). Between 01/Sep/2014-30/Dec/2014, screening transitioned from culture- to PCR-based methods: during this period 16,612 samples from 7,239 inpatients were screened using either culture (n=9,808), or PCR+culture (n=6,804), with an overall CRE prevalence of 3.8% (438 positive samples, 272 patients). Molecular mechanism data for 135/163 (83%) PCR-positives indicated *bla*_{KPC} accounted for most carbapenem resistance (97%).

KPC-*E. coli* outbreak despite IPC interventions
Following the implementation of enhanced IPC activity, there was a further sharp increase in the number of CRE-colonised patients detected from 09/Mar/2015 (Fig.1A; CR- E. coli and other species, mostly blaKPC, a few blaNDM). W3 was again closed to admissions (11/Mar/2015-28/Mar/2015) and environmental decontamination repeated; the following week W4 was closed after detection of additional CRE-colonised patients (Figs.1A, 1B).

From 01/April/2015 KPC-EC predominated in the outbreak (Fig. 1A).

From April-September 2015, W3/W4 were closed repeatedly, with two peaks in KPC-EC patient colonisation (April-May and August; Fig.1B). W3 capacity was reduced to 10 day-case beds (12/Aug/2015; day-case patients not screened for CRE) and W4 to 12 in-patient beds. Between 10/Aug/2015-28/Sep/2015, there were 27 new KPC-EC colonisations detected on the MHC (Fig.1A), and two cases with other KPC-Enterobacteriaceae. Of 88 KPC-EC cases between 24/Feb/2015-28/Sep 2015, 86 (98%) represented colonisations only; one individual additionally had a UTI and one a sternal wound infection (treated with gentamicin and ciprofloxacin respectively, to which the isolates were susceptible).

Carbapenem-resistant E. coli cases in CMFT

CR- E. coli had been isolated in CMFT prior to the 2015 MHC outbreak, with 514 CR- E. coli cases (considering first positives by patient from clinical/screening isolates, 2010-2016 inclusive), and including a separate outbreak on the geratology wards (W45/46) in late 2012 (Figs.2A,2B). Of these, 434 cases were detected on ≥day 2 of admission, and a further 80 on day 0-1 of admission. Case peaks were not related to screening policy changes/rates (Fig.S6).

CR- E. coli were almost invariably detected from rectal screening (420/434 cases, 97%).

Environmental sampling yielded CRE from sinks/drains
Intermittent environmental sampling was undertaken to identify potential reservoirs. Overall, 927 samples from 833 sites were taken 09/Apr-17/Nov/2015; 355 (38%) samples from W3/W4, and the remainder from eleven other wards. 850 samples were from sink/drain/shower/bath sites, 18 from toilets/hoppers/sluices, and 33 from high-touch sites (including keyboards, door handles, sponges etc.; labelling unclear for 26 samples). Eighty-five samples (9%) and 72 sites (9%) were CRE-positive (26/355 samples [7%], 21/333 sites [6%] on W3/4). CRE-positive sites included: shower drains (n=19), sink taps (n=7); sink drain tailpieces (n=10); sink drain strainers (n=8); sink trap water (n=1); toilet bowls (n=1); other (n=26). Common isolates cultured included: Klebsiella spp. (n=34), Enterobacter spp. (n=25), and E. coli (n=11) (Fig.1A). All CRE-positive cultures were from wastewater/plumbing-associated sites; no other sites tested were CRE-positive.

Of ten sites yielding 11 KPC-EC isolates, five were in the W3/W4 kitchen (14-18/May/2015 [n=4], 10/Sep/2015 [n=1]), one a W4 staff sink (14/May/2015), and four from kitchen sinks/drains on wards 31/32 (sampling in response to a separate ward 31/32 outbreak, 12-17/Nov/2015). W3/W4 sink-specific interventions included sink trap replacement for CRE-colonised sinks (16/Apr/2015, 31/Jul/2015, 11/Aug/2015) and horizontal pipework cleaning with a brush to try and remove biofilm (11/Aug/2015).

Cardiac service relocation and decline in CRE colonisation incidence

Given the on-going difficulty in preventing KPC-EC acquisitions, and the isolation of KPC-EC from sinks/drain sites, W3/W4 were closed from 25/Sep/2015 and patients re-located to another ward to allow replacement of the plumbing infrastructure back to the central drainage stacks. Replaceable sink plughole devices designed to prevent water aerosolisation in the sink U-bend and limit biofilm formation were installed (HygieneSiphon, Aquafree;
Controlling for screening and compared to the period immediately pre-intervention (when screening policy was the same), the incidence of first detection of any CRE or CR- \textit{E. coli} fell significantly following the plumbing intervention, both in the MHC and elsewhere in the hospital (Fig. 2C, Table 1); but the decline in incidence was significantly greater in the MHC (\(p_{\text{heterogeneity}}<0.001\)), where incidence fell by 89\% for any CRE and by 98\% for CR- \textit{E. coli}.

Incidence of CR- \textit{K. pneumoniae} also fell significantly in both settings, but there was no evidence that the decline differed between the two settings (\(p_{\text{heterogeneity}}=0.31\), Table 1).

However, when patients were transferred back to W3/W4 (from 18/Jan/2016), CR- \textit{E. coli} continued to be detected in patients (six first detections in 2016, Fig. 2A). Patient colonisation with other CRE was also observed, in similar numbers to 2014 (Fig. 1A); environmental contamination with CRE in sink/wastewater sites recurred rapidly (Fig. 1A), and two environmental sites (both ward utility room sink drains) were CRE-positive even prior to patient re-admissions to the ward, suggesting residual contamination after the plumbing replacement, or re-introduction following the plumbing replacement but prior to patient readmissions.

Genomic epidemiology of KPC-EC

268 clinical and environmental CR- \textit{E. coli} isolates were sequenced. These included 82 isolates from the MHC (2015-2016 [16 environmental]), 36 from W45/W46 (2010-2016), 109 from other CMFT wards/units, and 41 from other regional hospitals (Table S3). Nine isolates were \textit{blaKPC}-negative on sequencing; five of these contained \textit{blaOXA-48}, one \textit{blaOXA-181}, and one \textit{blaNDM-5}, with no known carbapenem resistance mechanisms identified in the
remaining two. The 259 KPC-EC isolates included all 16 environmental CR- \textit{E. coli}, 158 isolates which were the first CR- \textit{E. coli} cultured from patients, 38 sequentially cultured CR- \textit{E. coli} from patients (longitudinal cultures from 12 patients). For 47/259 isolates sequencing and patient epidemiological identifiers could not be linked.

Forty sequence types (STs), including known pathogenic lineages (e.g. ST131), occurred amongst the KPC-EC isolates (Fig.3, Table S3), highlighting regional KPC-EC diversity. In contrast, 67/80 (84\%) MHC isolates were ST216 versus 59/179 (33\%) elsewhere. ST216 has rarely been reported in other settings.

\textit{ST216 KPC-EC}

The ST216 KPC-EC group (n=126; 9,118 variable sites; one \textit{bla}_{KPC}-negative isolate [H134880341]) was represented by two main genetic sub-groups consisting of 112 isolates (main outbreak strain, denoted strain-A1 in Fig.3; \(\leq 65\) SNVs between isolates in this cluster, 2012-2016), and 12 isolates respectively (secondary outbreak strain, strain-A2 in Fig.3, \(\leq 25\) SNVs between isolates in this cluster; >7,800 SNVs divergent from strain-A1 isolates, 2012-2015). Although the SNV-based distances between strains-A1 and -A2 were large, review of the ClonalFrameML output suggested these differences represented a single “mega”-recombination event affecting \(\sim 1\)Mb of the genome (Fig.S7).

All but three ST216 isolates carried \textit{bla}_{KPC-2} in a \textit{Tn4401}a transposon(14), typically associated with high-level \textit{bla}_{KPC} expression(15), and flanked by a 5-bp target site duplication, AGTTTG, previously only observed with the \textit{Tn4401b} isoform in an isolate from Colombia (Fig.3, Table S3). This relatively unique transposon-flanking sequence unit was also observed in other lineages within CMFT (e.g. ST401, Fig.3). However, plasmid and
resistance gene profiles varied considerably, even to some extent within the ST216 KPC-EC outbreak strains (Figs.3, S8). Overall, these results demonstrated clonal expansion of specific KPC-EC strains, with significant accessory genome mobility. Most notable was the emergence and persistence of ST216 KPC-EC strain-A1, isolated from patients and the environment over four years, and causing outbreaks on W45/W46 (2012) and the MHC (2015).

Long-read sequencing demonstrated that the ST216 KPC-EC strain-A1 isolate H124200646 (W46, 2012) contained two plasmids, pKPC-CAD2 (307kb; IncHI2/HI2A; blaKPC present) and pCAD3 (152kb; IncFIB/FII; blaKPC absent). 83% of pKPC-CAD2 was highly similar (99% sequence identity) to pKPC-272 (282kb, *E. cloacae*, GenBank accession CP008825.1), identified in a sink drain at the National Institutes of Health Clinical Centre, Maryland, USA, 2012(16). In contrast, the other long-read sequence, H151860951 (W4, April 2015), also an ST216 KPC-EC strain-A1 isolate, contained a blaKPC-plasmid pKPC-CAD1 (200kb; IncFIB/FII), which had 99% sequence identity over 76% of its length to pCAD3, together with a 48kb contiguous region including blaKPC that was 99% identical to part of pKPC-CAD2 (Fig.4A). These results suggest the evolution of a blaKPC plasmid similar to pKPC-272 in CMFT within an ST216 KPC-EC strain-A from 2012-2015, including recombination between pKPC-CAD2 and pCAD3 giving rise to pKPC-CAD1.

Although plasmid typing based on mapping short-read data to plasmid references should be interpreted cautiously, sequence comparisons with the outbreak plasmids pKPC-CAD1 and pKPC-CAD2 were consistent with the emergence of pKPC-CAD1 and its domination within ST216 KPC-EC strain-A post-2014; and exchange of pKPC-CAD1/pKPC-CAD2/pCAD3 with other *E. coli* STs (Fig.3; Fig.4B).
Environmental CRE isolates

Thirty environmental carbapenem-resistant Enterobacteriaceae isolates from W3/W4 were sequenced, 27 isolated prior to the plumbing replacement, and 16 of which were CR-E. coli, as described above (13 prior to plumbing replacement). 11/16 E. coli were ST216 KPC-EC (ten strain-A1, one strain-A2), isolated on eight separate days (in March, May, September 2015, February 2016), and consistent with transmission between patients and the environment (Fig.3), and persistence/reintroduction following plumbing replacement. The other 14 isolates represented diverse KPC-CRE, including: K. pneumoniae (n=7), Citrobacter freundii (n=4), Klebsiella oxytoca (n=1), Enterobacter cloacae (n=1) and Kluyvera intermedia (n=1). The KPC plasmids in these KPC-CRE likely included the outbreak plasmids pKPC-CAD1 and pKPC-CAD2, pKpQIL, and others, consistent with the inter-species transfer of a diverse set of blaKPC plasmids.

DISCUSSION

Our detailed analyses of the largest institutional KPC-E. coli outbreak described to date demonstrate a complex genetic and epidemiological picture including the emergence of ST216 KPC-EC strain-A1 as a significant clone in CMFT, causing the major 2015 MHC outbreak, an antecedent outbreak in 2012, and sporadic cases/small clusters in other wards and regional healthcare settings. Plasmid-associated dissemination of blaKPC to other E. coli lineages, including recognised “high-risk” clones such as ST131, was evident, and the problem substantial, with 514 confirmed patient acquisitions of CR-E. coli over a six-year period.
Environmental sampling on W3/W4 confirmed that sinks/drains were colonised by multiple CRE, including the ST216 KPC-EC strains-A1/A2 and other CRE containing the outbreak KPC plasmids (pKPC-CAD1, pKPC-CAD2), potentially representing a persistent reservoir between patient-associated outbreaks, and plausibly explaining why this large outbreak was refractory to standard IPC bundles. Supporting this, the incidence of new CR-\textit{E. coli} detections declined substantially after ward plumbing replacement and temporary relocation of patients (Figs.1A, 2A, 2C), consistent with a major contribution from the ward environment. However, after W3/W4 reopened the environment was rapidly re-contaminated, including with ST216 KPC-EC strain-A1, and CRE were again detected in patients, suggesting that this type of intervention has limited durability. National and international guidelines on CRE management recommend rectal screening, strict contact precautions, isolation/cohorting of cases, and antimicrobial stewardship to limit transmission\cite{12, 13, 17}, all measures already implemented in CMFT. Current guidelines do not address the control of large, persistent outbreaks, or advise on the sampling and management of environmental reservoirs, and there is limited evidence in support of any given measure\cite{18}. It is unclear why a particular strain of KPC-\textit{E. coli} predominated in the outbreak described, as opposed to other CRE contemporaneously found in the environment - differences in gastrointestinal colonisation ability of species, or an unidentified point source could be potential hypotheses.

The response to this outbreak caused major disruption to the hospital and regional cardiac services. Given that almost all cases represented colonisations and not infections, the risks of associated delays in cardiac interventions were debated, although the impact of these were not formally quantified. The estimated cost of CRE to CMFT in the first 8 months of 2015 was £5.2m\cite{19}, and the MHC outbreak contributed significantly to this, with ~£240,000 spent on the W3/W4 plumbing replacement.
The study has several limitations, including its observational nature, with only a year of follow-up after the W3/W4 plumbing replacement. Limited environmental sampling may have meant that the extent of contamination and diversity of CRE in environmental niches was underestimated. Environmental sampling was restricted to wards on which CRE outbreaks were detected and focused predominantly on sink/drain sites (as initial sampling suggested these were most heavily contaminated); however, component parts of each sink drainage system were not sampled consistently due to resource issues and so relative CRE isolation prevalence from any given site type needs to be interpreted with caution. We only sequenced single isolates cultured from individuals at any given time-point due to resource limitations, and may therefore have underestimated the CRE strain diversity within patients. Other non-\textit{E. coli} \textit{Enterobacteriaceae} were not comprehensively sequenced, possibly underestimating dissemination of pKPC-CAD1 and pKPC-CAD2; however, even our limited sequencing of CREs from the environment in 2015 identified these plasmids (and other KPC plasmids) in multiple species. Although genetic overlap between environmental and patient isolates was consistent with transmission between these compartments (Fig.3), the numbers were too small to infer directionality. Of the two predominant KPC plasmid types present within the ST216 KPC-EC strain-A1 outbreak clone, one (pKPC_CAD2) was transferred to multiple \textit{E. coli} STs (Figs.3, 4B), and another (pKPC_CAD1) may have contributed to the clone’s success from 2014 (Fig.4B), although the genetic/biological mechanisms underpinning this have not been explored.

Our experience highlights the limited evidence for managing large CRE outbreaks including environmental sampling protocols and interventions, despite numerous centres reporting similar experiences with wastewater sites acting as CRE reservoirs(18, 20-23). Widespread
colonisation with KPC-EC is a concern, as *E. coli* is a common gastrointestinal colonizer and cause of infection, and any stable association between *bla*KPC and *E. coli*, particularly in pathogenic lineages such as ST131 (Fig.3), represents a significant clinical and transmission threat. Although our analyses focused on CRE, similar wider environmental contamination and dissemination of carbapenem-susceptible *Enterobacteriaceae* seem plausible. A more robust evidence base delineating transmission networks (including initial contamination of sink sites), drivers and effective control measures (including differential impacts of decontamination methods on particular species/strains), is needed to minimize the financial, clinical and social impacts of CRE outbreaks.

MATERIALS and METHODS

Setting

CMFT is one of the largest hospital trusts in northwest England. The MHC manages >10,000 patients/year, and in 2015 included two 28-bedded inpatient wards (Wards 3 [W3] and 4 [W4]), an acute facility (Ward 35), intensive care unit, and cardiac catheter laboratory. Both W3 and W4 comprised three bays, four single-patient side-rooms, and a shared kitchen (Figs. S1A, S1B).

IPC measures

CRE screening/IPC measures, based on UK guidelines(11), were implemented Trust-wide from mid-2014. Enhanced measures were introduced in April 2015 in response to the MHC KPC-EC outbreak (Table S1). In addition, W3/W4 (where most KPC-EC cases were observed) were closed to replace plumbing infrastructure back to the drainage stacks (Fig. S2) from September 2015. Staff screening was not undertaken, consistent with national guidelines(11).
Rectal swabs were screened for CRE using selective chromogenic agar (ChromID CARBA, Biomerieux; published sensitivity: 89-100%, specificity: 95%(24-26)) to August 2014, and the Cepheid Xpert Carba-R assay (published sensitivity: 97-100%, specificity: 99%(27, 28)) from August 2014, alongside an in-house multiplex PCR (bla\textsubscript{KPC}, bla\textsubscript{NDM}, bla\textsubscript{OXA-48}) from November 2014. The Cepheid assay was used on specimens from patients with admissions to the Trust in the last 12 months, those admitted from overseas, or those due to be transferred to a district general hospital (to facilitate transfer planning). All other samples were tested using the multiplex PCR. Species identification of isolates was performed using MALDI-TOF mass spectrometry (Bruker).

As CMFT CRE screening rates changed over time in response to national guidance and local IPC interventions, and a key aim was to specifically evaluate the impact of ward closure and a radical plumbing intervention in the MHC on CRE acquisition rates, we considered CRE detection rates in four periods delineated by three time points: the implementation of national CPE IPC policy in mid-2014 (which substantially increased the number of screens performed), the beginning of the MHC-specific intervention (patient relocation and plumbing infrastructure replacement on W3/W4), and the end of the MHC intervention.
First-CRE positive screens were used as a pragmatic proxy for CRE acquisition (i.e. a “case”), given that 89% of patients first-CRE positive on the MHC had a negative rectal screen within the preceding 14 days (79% within 7 days; Figs S3-5). Information on specific carbapenemase mechanism was not consistently available for all isolates, precluding our ability to perform these analyses specifically by carbapenemase gene family (Table S2).

We tested the hypothesis that CRE acquisitions (reflected by first CRE-positive screens) changed on the MHC more than other hospital wards following the W3/W4 closure/plumbing intervention using negative binomial regression models for the weekly counts of first (per person) CRE detection ≥2 days post-admission (i.e. cases), using weekly numbers of persons screened ≥2 days post-admission as an offset (i.e. adjusting for screening rates, and counting each patient as screened as long as they had one or more screens per week). Models were fitted (R v3.4.1) for CRE, carbapenem-resistant *E. coli* (CR-*E. coli*), and carbapenem-resistant *K. pneumoniae* (CR-*K. pneumoniae*). We included period and ward location (MHC versus other wards) as independent variables, plus interaction terms between period and location (details in Supplementary Methods).

Environmental sampling and sample processing

In 2015, environmental samples were taken from ward sites using charcoal swabs, and cultured on ChromID CARBA (18 hours, 37°C). After January 2016, ~20mls of wastewater was aspirated from sink P-traps, shower drains or toilets. Aspirates were centrifuged at 4000rpm for 10mins, 15mls of supernatant were discarded, and the pellet was re-suspended in the remaining 5mls. One ml of sample was then incubated aerobically overnight (~37°C) in 5mls trypticase soy broth with an ertapenem disc; the multiplex PCR (as above) was
performed on broths to identify bla_{KPC}-positive samples for subsequent culture on ChromID CARBA. Environmental sampling prior to January 2016 was not systematic; after January 2016, 75 wastewater sites on W3/W4 were sampled fortnightly on rotation (half of the sites one week and half the next). These sites included toilets, sink basins and sink drains.

Genome sequencing and sequence data analysis

To provide genetic context for the outbreak, we sequenced retrievable, archived KPC-EC patient and environmental isolates from CMFT, and patient isolates collected for regional public health surveillance (Supplementary Methods; Table S3). We also sequenced a small subset of non-*E. coli* environmental CRE that had been stored (n=14) ad hoc as part of outbreak sampling prior to the plumbing replacement.

For Illumina sequencing (HiSeq 2500, 150bp PE reads), DNA was extracted using Quickgene (Fujifilm, Japan), with an additional mechanical lysis step following chemical lysis (FastPrep, MP Biomedicals, USA). Two outbreak isolates (H124200646, H151860951) were selected for long-read sequencing based on Illumina data. For long-read sequencing (PacBio [n=1], MinION [n=1]) DNA was extracted using the Qiagen Genomic tip 100/G kit (Qiagen, Netherlands) (Supplementary Methods; sequencing data available under NCBI BioProject PRJNA379782).

In silico species identification was performed using Kraken(29). Illumina reads were then mapped to species-specific references (*E. coli* CFT073 [AE014075.1], and the ST216 reference H151860951) and base-calling performed as previously(30). *De novo* assembly was performed using SPAdes (v3.6)(31) and resistance gene, bla_{KPC} plasmid and Tn4401 typing using BLASTn and mapping-based approaches (Supplementary Methods; Table S3).
2D-reads were extracted from MinION sequence data using poretools (32); hybridSPAdes (31) and Canu (33) were used to generate de novo hybrid assemblies from MinION+Illumina data (Supplementary Methods). PacBio sequence data were de novo assembled using HGAP3 (34). E. coli phylogenies were reconstructed using IQTree (35) and ClonalFrameML (36), and visualised in iTOL (37) (Supplementary Methods).

Ethical approval

As the investigations formed part of a Trust board-approved outbreak response, ethical approval was not required under NHS governance arrangements (Supplementary Methods).

ACKNOWLEDGEMENTS

We are grateful to and acknowledge the contribution of the clinical and support staff working in the Manchester Heart Centre, CMFT; the microbiology laboratory staff and infection control teams at CMFT; the staff of the Manchester Medical Microbiology Partnership; and the research laboratory (in particular Ali Vaughan), informatics and project management teams working as part of the Modernising Medical Microbiology consortium (Oxford). We thank Jeff Scott, Ashley Sharp and Theresa Shryane (PHE NW) and Suzan Trienekens (FES, PHE) for data collection, and Karen Mathieson (CMFT), Jane Turton and Claire Perry (PHE) for outbreak investigation and support. We thank the HPRU Steering Group for their review of the draft manuscript.

The Transmission of Carbapenemase-producing Enterobacteriaceae (TRACE) study investigators are listed alphabetically, with those also included as named individuals in the author list in brackets: (Zoie Aiken), (Oluwafemi Akinremi), (Julie Cawthorne), (Paul
Cleary), (Derrick W Crook), (Valerie Decraene), (Andrew Dodgson), Michel Doumith,
Matthew Ellington, David W Eyre, (Ryan George), (Malcolm Guiver), Robert Hill, Katie
Hopkins, Rachel Jones, (Cheryl Lenney), (Amy J Mathers), (Ashley McEwan), Ginny
Moore, Sarah Neilson, Tim EA Peto, (Hang TT Phan), Mark Regan, (Anna C Seale), (Nicole
Stoesser), Jay Turner-Gardner, (Vicky Watts), Jimmy Walker, (A Sarah Walker), (David
Wyllie), (William Welfare) and (Neil Woodford).

Funding: This work was supported by the National Institute for Health Research Health
Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and
Antimicrobial Resistance at Oxford University in partnership with Public Health England
(PHE) [grant HPRU-2012-10041]. The report presents independent research funded by the
National Institute for Health Research. The views expressed in this publication are those of
the authors and not necessarily those of the NHS, the National Institute for Health Research,
the Department of Health or Public Health England. NS is funded by a PHE/University of
Oxford Clinical Lectureship. Contemporaneous outbreak investigation by CMFT and PHE
was undertaken as part of routine activity.

Transparency declaration: No conflicts of interest to declare.
REFERENCES

FIGURE LEGENDS

Figure 1. A. The number of individuals on the Manchester Heart Centre (MHC) wards with first-ever positive carbapenem-resistant *Enterobacteriaceae* detection, by week, stratified by genus group/species of the organism isolated. *bla*KPC-positive *Enterobacteriaceae* detected in environmental samples over the same timeframe are also shown. The MHC outbreak was declared by the Infection Prevention and Control Team in the first week in 2015 (arrow). B. Timeline of infection prevention and control measures instituted. C. Bed occupancy per week in the MHC, demonstrating the impact of infection control interventions on clinical activity.

Figure 2. A, B. Counts of individuals with first carbapenem-resistant *E. coli* detection by ward location. Detections on days 0 and 1 of admission are excluded. Faint vertical lines correspond to the boundaries of four time periods: P1-prior to implementation of systematic carbapenemase-producing *Enterobacteriaceae* (CPE) rectal screening policy; P2-implementation of CPE rectal screening policy consistent with national guidance; P3-closure of W3/W4 and replacement of plumbing infrastructure; P4-reopening of W3/W4 to patient admissions. C. Panels show incidence rate ratios for rates of first positive carbapenem-resistant *E. coli* detection, carbapenem-resistant *K. pneumoniae* detection, and any carbapenem-resistant *Enterobacteriaceae* detection ≥2 days post-admission relative to period P2 in the same location (Manchester Heart Centre [MHC] vs rest of CMFT). An IRR is not shown for P3 in the MHC due to unit closure during this time period to facilitate plumbing replacement.

Figure 3. Recombination-corrected phylogeny of 259 sequenced KPC-*E. coli* (and nine *E. coli* isolates that were *bla*KPC negative on sequencing) from CMFT and other regional hospitals in northwest England, annotated with collection date, ward/centre location, Tn4401.
type and outbreak plasmid types. Earliest available sequences per patient are denoted “first carbapenem-resistant *E. coli* from patient” if the stored isolate collection date was ≤ 7 days from the first isolation date in the TRACE database, or “sequential carbapenem-resistant *E. coli* from patient” if the stored isolate date was after this. KPC-EC isolates from a Public Health England (PHE) project sequencing the first ten KPC-Enterobacteriaceae from hospitals in northwest England (2009-2014) are denoted “regional study isolates”.

“Environmental isolates” denote KPC-EC cultured during an initial environmental prevalence survey on W3/W4 (10/Mar/2015); any KPC-EC isolated as part of subsequent, intermittent IPC-associated environmental sampling (09/Apr/2015-17/Nov/15); and isolates available at the time of analysis from environmental and patient samples from a separate, on-going study (commenced January 2016).

Figure 4A. Alignments of Manchester Heart Centre (MHC) outbreak 2012 KPC plasmid pKPC-CAD2 (W45/46; Tn$^{4401a+b}la_{KPC}$) and the 2015 MHC KPC plasmid pKPC-CAD1 (Tn$^{4401a+b}la_{KPC}$), highlighting the recombination of the Tn$^{4401a+b}la_{KPC}$-harbouring 48kb segment from pKPC-CAD2 with pCAD3 to generate pKPC-CAD1. Regions of sequence homology are represented by salmon-pink links drawn between alignments. pKPC-272 (GenBank accession CP008825.1), a plasmid identified in an isolate in a sink drain at the National Institutes of Health Clinical Centre, Maryland, USA, 2012, demonstrates significant sequence homology with pKPC-CAD2. **B.** Incidence plot of different *E. coli* STs and likely MHC-related KPC plasmid types across hospital locations.
Table 1. Incidence rate ratios (IRR) for detection from screening swabs 2 or more days after admission, a proxy marker of acquisition, in Central Manchester Foundation NHS Trust of: (i) all carbapenem-resistant *Enterobacteriaceae*; (ii) carbapenem-resistant *E. coli*; and (iii) carbapenem-resistant *K. pneumoniae*, modelling the impact of the W3/W4 closures and plumbing replacement on acquisition. Four time periods were evaluated: P1-prior to implementation of systematic carbapenemase-producing *Enterobacteriaceae* (CPE) rectal screening policy; P2-implementation of CPE rectal screening policy consistent with national guidance; P3-closure of W3/W4 and replacement of plumbing infrastructure; P4-reopening of W3/W4 to patient admissions.

<table>
<thead>
<tr>
<th></th>
<th>All carbapenem-resistant Enterobacteriaceae</th>
<th>Carbapenem-resistant E. coli</th>
<th>Carbapenem-resistant K. pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(number of cases=3,086)</td>
<td>(number of cases=502)</td>
<td>(number of cases=1,134)</td>
</tr>
<tr>
<td>IRR</td>
<td>95% CI</td>
<td>P</td>
<td>IRR</td>
</tr>
<tr>
<td>Manchester Heart Centre (MHC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 03 2010 to week 26 2014 (P1)</td>
<td>0.61</td>
<td>0.31-1.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Week 27 2014 to week 39 2015 (P2; reference period*)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Week 40 2015 to week 02 2016 (P3; W3/W4 closed)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Period</td>
<td>p</td>
<td>Lower 95% CI</td>
<td>Upper 95% CI</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Week 03 2016 to week 52 2016 (P4)</td>
<td>0.11</td>
<td>0.05-0.22</td>
<td><0.001</td>
</tr>
<tr>
<td>Other hospital locations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 03 2010 to week 26 2014 (P1)</td>
<td>2.85</td>
<td>1.87-4.34</td>
<td><0.001</td>
</tr>
<tr>
<td>Week 27 2014 to week 39 2015 (P2;</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>reference period)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 40 2015 to week 02 2016 (P3)</td>
<td>0.41</td>
<td>0.26-0.63</td>
<td><0.001</td>
</tr>
<tr>
<td>Week 03 2016 to week 52 2016 (P4)</td>
<td>0.49</td>
<td>0.32-0.76</td>
<td>0.002</td>
</tr>
<tr>
<td>MHC vs other location in reference</td>
<td>1.69</td>
<td>0.81-3.50</td>
<td>0.16</td>
</tr>
<tr>
<td>period (P2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity between reduction in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHC vs other location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 03 2010 to week 26 2014 (P1)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Week 40 2015 to week 02 2016 (P3)</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Week 03 2016 to week 52 2016 (P4)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
</tbody>
</table>

* P2 chosen as reference period because of change in screening policy between P1 and P2 (Table S2, Fig.S6), meaning that a greater incidence would be expected in P2 due to more patients being screened every week.