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Abstract

Background: Increases in physical activity through active travel have the potential to have large beneficial effects
on populations, through both better health outcomes and reduced motorized traffic. However accurately
identifying travel mode in large datasets is problematic. Here we provide an open source tool to quantify time
spent stationary and in four travel modes(walking, cycling, train, motorised vehicle) from accelerometer measured
physical activity data, combined with GPS and GIS data.

Methods: The Examining Neighbourhood Activities in Built Living Environments in London study evaluates the
effect of the built environment on health behaviours, including physical activity. Participants wore accelerometers
and GPS receivers on the hip for 7 days. We time-matched accelerometer and GPS, and then extracted data from
the commutes of 326 adult participants, using stated commute times and modes, which were manually checked to
confirm stated travel mode. This yielded examples of five travel modes: walking, cycling, motorised vehicle, train
and stationary. We used this example data to train a gradient boosted tree, a form of supervised machine learning
algorithm, on each data point (131,537 points), rather than on journeys. Accuracy during training was assessed
using five-fold cross-validation. We also manually identified the travel behaviour of both 21 participants from
ENABLE London (402,749 points), and 10 participants from a separate study (STAMP-2, 210,936 points), who were
not included in the training data. We compared our predictions against this manual identification to further test
accuracy and test generalisability.

Results: Applying the algorithm, we correctly identified travel mode 97.3% of the time in cross-validation (mean
sensitivity 96.3%, mean active travel sensitivity 94.6%). We showed 96.0% agreement between manual identification
and prediction of 21 individuals’ travel modes (mean sensitivity 92.3%, mean active travel sensitivity 84.9%) and 96.5%
agreement between the STAMP-2 study and predictions (mean sensitivity 85.5%, mean active travel sensitivity 78.9%).
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Conclusion: We present a generalizable tool that identifies time spent stationary and time spent walking with very
high precision, time spent in trains or vehicles with good precision, and time spent cycling with moderate precisionIn
studies where both accelerometer and GPS data are available this tool complements analyses of physical activity,
showing whether differences in PA may be explained by differences in travel mode. All code necessary to replicate, fit
and predict to other datasets is provided to facilitate use by other researchers.

Keywords: Machine learning, Xgboost, Active travel, Travel mode, Physical activity, GPS, Accelerometer, Gradient
boosting

Background
Non-communicable diseases, such as cardiovascular dis-
ease, type 2 diabetes and cancer, account for almost half of
the adult disease burden worldwide [1]. The importance of
physical activity in decreasing the burden of such chronic
diseases is well-established [2], and increasing the physical
activity of populations has become a key goal of public
health policy [1, 3, 4]. Active travel, predominantly by walk-
ing and cycling, is an accessible form of physical activity,
which is associated with positive health outcomes [5–7].
Quantifying the proportion of time spent in different active
travel modes is therefore important to understand how
these contribute to overall physical activity and health, and
to assess the effectiveness of interventions that aim to
increase active travel. Assessment of active travel changes,
alongside quantification of PA levels, will aid understanding
in both observation and intervention based studies.
Travel modes have previously been assessed using

detailed travel diaries [8]. However, self-reported data
have limitations, because they may be subject to social
desirability and recall bias and often record only a single
day of travel [9]. Activity and movement patterns are now
increasingly objectively assessed, using accelerometers and
GPS receivers [10–12]. Combining accelerometer and
GPS data allows for the identification of both the intensity
and location of physical activity. This combination of
activity and location is potentially valuable to describe
travel behaviour, and particularly active travel behaviour.
Accelerometry has been widely used, with many different

devices deployed. The most common devices in the litera-
ture are the ActiGraph, Actiheart, Actical, activePAL and
GeneActiv, of which over half of published studies used the
ActiGraph, up to 2015 [13]. Many of these different devices
convert raw acceleration (measured in g) into some form of
activity count variable, which has been used to classify
physical activity intensity and energy expenditure [14–17].
However, the methods used to convert raw acceleration
into counts are often unclear. For this reason, and because
the raw acceleration data contain much more information
to train an algorithm than derived count variables, we have
made use of the raw data in this study.
Previous work on travel mode identification has been

developed from the transport perspective rather than

physical activity, where segmentation into journeys is
important to assess travel behaviour [18–21]. A focus on
journeys often results in short periods of physically
active transit behaviour, such as walking between
bus-stops, being identified as part of a non-active travel
mode. However, for physical activity researchers, quan-
tifying the volume and intensity of physical activity
when actively travelling is an essential component of
the overall purpose of a journey. Consequently, it is im-
portant to identify all data-points that denote active
travel, so that all time in active travel modes can be
quantified. As a result, we identify the travel mode of
each GPS data point (recorded every 10 s), without
prior segmentation into journeys.
In recent years, supervised machine learning has

shown the potential to identify active travel from
physical activity data. Supervised machine learning algo-
rithms are trained on an example data-set, and are then
used for prediction to other data-sets. The most promis-
ing algorithms appear to be random forests, an ensemble
supervised learning algorithm where predictions are
taken from a consensus across a large number of deci-
sion trees [18, 22, 23]. A related algorithm, gradient
boosted trees, has recently replaced random forests as a
leading algorithm for data science tasks, with many ma-
chine learning approaches using the XGBoost imple-
mentation of gradient boosting instead of random
forests [24, 25].
Here we present a method to distinguish five travel

modes (walk, cycle, motorised vehicle, train, and station-
ary) using accelerometer and GPS data and the super-
vised machine learning tool XGBoost. We use survey
data from the Examining Neighbourhood Activities in
Built Living Environments in London (ENABLE London)
study [26] to create a training data-set of combined GPS
and accelerometer data of daily commuters on which to
develop and test the algorithm. All code necessary to
replicate our findings and apply our predictive model to
other data-sets is made available as a package of the
open-source statistical software environment R [27, 28].
We also provide a full usage example, so that researchers
inexperienced in coded input tools such as R can apply
the model [28].
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Methods
Data collection
We used data from the ENABLE London study, which is
described in detail elsewhere [26]. In brief, the study is
examining the effect of the area of residence, including
features of the local built and social environment on health
behaviours, particularly physical activity levels. Between
January 2013 and December 2015, a total of 1278 adult
participants were recruited from neighbourhoods largely in
the east of London, UK.Participants were asked to wear an
accelerometer (ActiGraph GT3X+; Florida, USA) and a
GPS receiver (Qstarz BT-1000XT; Taipei, Taiwan) on an
elasticated belt worn around their waist for seven consecu-
tive days, removing devices for sleep, swimming and
bathing, with 1089 (85%) participants providing both
accelerometer and GPS data. Participants also completed a
questionnaire to describe their travel patterns to work/place
of study. They reported the specific days on which they
would be travelling to work/study during the ActiGraph
and GPS wear period, and whether they commuted at the
same time on each day. Reported travel modes for these
journeys to and from work were: tube (underground) /
train (overground) / bus, minibus or coach / taxi / motor-
cycle, scooter or moped / driving a car or van / passenger
in a car or van / bicycle / walk / jog / other. Travel modes
were re-categorised into walk, cycle, vehicle (taxi, motor-
cycle, car/van driver and car/van passenger/bus/minibus/
coach) and train (underground and overground rail) for this
analysis (Table 1). Insufficient participants consistently
jogged to work for us to be able to separate “jog” as an add-
itional mode. In addition, time of leaving and arriving for
each journey to and from work was collected. The study
was approved by the City Road and Hampstead Ethical
Review Board (REC reference number 12LO1031); all
participants gave written informed consent.

Data preparation and cleaning
Raw accelerometer data were extracted as csv files using
ActiLife 6 software (ActiGraph, Florida, USA). We chose
to not use processed accelerometer count data, because
count data is processed differently for each device, and
so is not comparable between devices. Furthermore, raw
accelerometer data is more detailed than count data,
allowing us to create more variables for our algorithm to
assess. Acceleration data were then summarised per 10 s
epoch as the median absolute deviation from the
median, 10th percentile, 90th percentile, skewness and
kurtosis of each axis of the accelerometer. We calculated
the fast Fourier transform of the accelerometer signal
and took the mean strength of all acceleration signals
for each accelerometer axis per 10 s epoch. Mean
strength was extracted following visual inspection of the
full range of transforms, with all showing a similar pat-
tern between travel modes. These derived accelerometer
characteristics were merged by timestamp to GPS data
using a custom R function [28]. We identified non-wear
time using the GGIR 1.5–12 package of R, which identi-
fies periods of 60 min where there is a standard devi-
ation on at least two accelerometer axes of less than
13 mg (1 mg = 0.00981 ms− 2) [29, 30]. A wide variety of
non-wear time algorithms have been used, and a 60 min
window is recommended to balance accuracy of
non-wear time identification with minimising data loss
[31]. The 60-min window we use is analogous to that
used on count data, but uses small axis deviations
instead of count data, because our analysis focusses on
raw data. To provide a measure of satellite signal quality
we calculated the sum of the signal to noise ratio
(sumSNR) from each satellite the GPS device was
connected to at each epoch. SumSNR is a measure of
the accuracy of signal coming from each satellite to the
GPS device – if the signal is unobstructed then there
should be many satellites connected to the GPS device,
and each should show a high signal to noise ratio. If
there are obstructions to the GPS signal, such as the par-
ticipant being indoors, then there will be fewer satellites
connected to the GPS device, with lower signal to noise
ratios. SumSNR gives a single measure of signal quality,
rather than the three measures (horizontal, vertical and
position dilution of precision) the GPS device outputs,
therefore reducing the number of variables to consider.
During normal travel, variables such as speed or accel-

erometer signals are not stable across every 10 s epoch,
there will be variation, e.g., cars must stop for traffic
lights, walkers must pause to cross roads, GPS signal
can be poor inside trains, leading to loss of accuracy
where single data-points can be located over 50 m from
train lines. This variation makes all modes more difficult
to identify. We smoothed out some of the inherent
natural variation in travel by calculating four-minute

Table 1 The characteristics of the training data and how we
classify travel modes

Commute Mode Number of
participants

% of
total

Training
category

Walk 66 20.2 Walk

Cycle 34 10.4 Cycle

Car/Van driver 48 14.7 Vehicle

Car/Van passenger 6 1.8 Vehicle

Motorcycle/ moped/
scooter

1 0.3 Vehicle

Taxi 2 0.6 Vehicle

Bus/minibus/
coach

37 11.3 Vehicle

Train (over ground) 46 14.1 Train

Underground 86 26.4 Train

Total 326 100 –
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moving windows of the calculated accelerometer
variables. For each window we calculated mean, standard
deviation, 10th and 90th percentile of each accelerom-
eter axis and speed, from the GPS device. We also calcu-
lated mean sumSNR and mean distance from train lines.
We calculated the distance of each data-point from train
lines using a combination of Meridian 2 rail network
data for the UK, OS OpenMAP data for central London
and the spatstat package of R [32–34]. If researchers are
not used to using GIS data, it is currently more easy to
get hold of and utilise than ever before, and included
within our code is a demonstration of the acquisition
and use of train line data [28]. We also calculated
distance travelled over the previous minute and over the
next minute. All the variables were chosen because they
are likely to differ between travel modes: vehicles and
trains should have higher speed than walking and
cycling; walking should show greater accelerometer
activity than other modes; cycling may show higher
accelerometer activity than vehicles and trains; both
vehicles and trains have metal structures around the
participant which may obstruct GPS signal resulting in
lower sumSNR than other travel modes. Either distance
over the next minute or distance over the previous
minute should be very low while a subject is stationary.

Training data-set creation
The purpose of the training data is to provide reliable
examples of how different travel modes are represented
in accelerometer and GPS data, at 10 s epochs. As a re-
sult, it is important that a data-point in the training data
is a true representation of the assigned travel mode. The
context around the training data is less relevant, i.e. the
purpose is to ensure that a data point is taken from a
point in time when someone is walking; whether they
were recently in other types of travel behaviours is not
relevant to the assignment to a specific travel mode. As

a result, we use a conservative methodology to extract
reliable points from commute journeys. Importantly, this
does not mean that our method can only predict the
mode of commutes, rather we train the model using data
from commutes and predict to all data.
The time of the journey to and from work was

extracted from the ENABLE London questionnaire,
using the participants reported home departure time
and work arrival time (commute to work) and work
departure time and home arrival time (commute from
work). We only used participants who commuted to and
from work using the same mode of transport and who
specified the time they usually commuted for both jour-
neys, in total 326 participants (Table 1, Additional file 1
for demographics). We extracted all combined GPS and
accelerometry data during commutes in R and exported
this as a shapefile for ArcGIS 10.4, using the sp and
rgdal packages of R [35, 36]. Assuming a five-day work-
ing week for each participant, the total possible number
of commutes included within our training data is there-
fore 3260 (two commutes per day for 5 days). However,
not all data were available due to non-wear, GPS signal
loss and participants not necessarily working 5 day
weeks: hence, our training data-set was based on 1174
commutes from the 326 participants.
We then manually identified all points during (total

131,537) the commute of each participant that con-
formed to the mode they stated, using a Geographical
Information System (ArcGIS 10.4) (Fig. 1a). Only the
points relevant to the stated mode were identified, i.e., if
the participant used a train and walked to and from the
train station we only marked those points along the train
line as the mode “train”, and the walked points would
not be included in the training data (Fig. 1b). Any
sequences of points where we could not clearly ascertain
what travel mode was in use, e.g. because there was
repeated GPS signal loss, were excluded from the

a) b)

Fig. 1 a Workflow for creation of training data-set, b) decisions made to manually identify commutes
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training data. In addition, any points occurring within
the period of the commute that showed no directionality
and were clustered around a single location were
classified as “stationary”. As a result, each participant
contributed to the mode which they stated they used to
commute and, potentially, to the “stationary” mode, if
they displayed any non-travel behaviour. Vehicle and
train journeys were confirmed by location of appropriate
features (e.g., roads/rail tracks). The identification of the
“stationary” subset allowed us to predict travel mode for
every data point in the full data-set, without first making
assumptions about which points represent any form of
travel. It is important to note that stationary does not
imply inactive. For our purposes we are seeking to iden-
tify when participants travel, therefore walking within a
building, which will appear stationary in terms of GPS
signal, would be classified as stationary using our meth-
odology. This twofold assessment of the training data,
both with the participants stating their mode during this
time, and then a researcher manually double checking it
in GIS, means that we can be sure that our training
data-set contains reliable examples of each travel mode.

Model fitting and prediction
The training data-set was split into two different
sections for model-fitting. First, we extracted a subset of
the training data to test different moving window sizes:
if a participant contributed multiple days to the training
data, we took the first day to test moving windows. If a
participant only contributed a single day to the training
data, we extracted half of that day’s data to test moving
window sizes. Secondly, we used the remaining points to
fit a gradient boosted tree, using the XGBoost package
of R [37]. Gradient boosted trees are an example of an
ensemble learner [38]. To learn how to assign a mode to
each point, a gradient boosted tree fits a large number of
decision trees to the data, each of which is shallow.
Following creation of a decision tree, data-points are
re-weighted (the relative importance of points are chan-
ged), to emphasize points which were miss-classified last
round, and a new decision tree is fit. Each tree is a weak
learner i.e. it performs better than random but with poor
accuracy, however a consensus across all trees leads to
high predictive accuracy. In prediction, each point is
assessed for how likely they are to belong to each travel
mode, with the highest probability determining the
predicted outcome.
Where our parameters differ from default, it is to avoid

overfitting to the training data as much as possible. There-
fore the learning rate is set lower than default (0.1 instead
of 0.3). The learning weight is a measure of how much we
dilute the default re-weighting of points. We also used
subsampling value of 0.2, so that each tree was only fit to
20% of the available data.

We used five-fold cross-validation to assess model
accuracy [39]. Participants within the training data were
randomly assigned to one of five subsets. Each subset
was iteratively removed from the pool of training data, a
model was trained on the remaining 80% of the training
data and the excluded subset was used as test data.
Therefore, our cross-validation contains five separate
fitted models and test data-sets, of which we report the
overall accuracy scores. Full cross-validation output is
available in Additional file 2, along with all model
parameters used.
While our training data contains reliable examples of

different travel modes when participants are known to
be travelling, it is not a true representation of identifying
travel from free-living data. As a further test of the
predictive accuracy of our method, we compared our
predicted mode with the manually identified travel
patterns across all time periods from other participants.
We randomly selected 21 participants from the ENABLE
London study, who contributed 402,749 data points.
These participants were not included within the training
data-set. We exported each individual’s data as a Shapefile
for ArcGIS 10.4 and then worked through each day
of data, manually classifying the travel-mode of every
data-point.
To test the generalisability of our fitted model to other

data-sets we also compared predicted values to manually
identified data from 10 participants from a second separ-
ate data-set (total 210,936 data points), the Sedentary
Time and Metabolic Health in People with type-2
Diabetes study (STAMP-2) [40]. Briefly, STAMP-2 was a
cross-sectional observational study of sedentary behav-
iour in adults with newly diagnosed (diagnosis within
previous 5–12 months) type-2 diabetes, conducted in
two English National Health Service (NHS) Foundation
Trusts in South West England. A total of 139 partici-
pants were recruited between January 2014 and June
through diabetes education days, general practitioner
(GP) referral and self-referral. Eligibility criteria were:
aged 30 to 70 years, a clinical diagnosis of T2DM
(HbA1c > 48 mmol/mol; > 6.5%) within the previous five
to 12 months, no ketosis and a body mass index (BMI)
of > 25 kg/m2. Exclusion criteria were unstable angina, a
myocardial infarction within the previous 3 months and
a medical condition that precludes PA (e.g. a foot ulcer).
Participants wore an ActiGraph accelerometer for 7 days,
and those in one centre also wore a GPS receiver for the
same period. STAMP-2 received ethical approval from
the South West-Central Bristol NHS Research Ethics
Committee (13/SW/0187). All participants provided
written informed consent before taking part in the study.
STAMP-2 participants were independent of the ENABLE

London study and were recruited from a city with different
travel options from central London. Furthermore, the
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STAMP-2 participants had been recently diagnosed with
type-2 diabetes and represented an older (age mean, sd
= 58.6, 8.6), less healthy demographic (70.1% obese,
BMI mean, sd = 34.4, 7.3), than those in the ENABLE
London study. Good predictive performance on this
data-set would demonstrate that the algorithm can gen-
eralise to other populations and geographical contexts.

Measures of test performance
We report several measures of predictive accuracy in
this paper. Firstly, we present an overall accuracy score:
the percentage of points we correctly predict overall.
This is tempting because it reduces the overall predic-
tion accuracy down to a single number. However, if you
have uneven numbers of data-points in each category,
which we do, this is not necessarily representative of
each mode we report. We therefore also report positive
predictive value (the percentage of those points we
predict as a mode that were observed as that mode),
sensitivity (the percentage of points observed to be a
travel mode, which we correctly predict) and F1 score
(the harmonic mean of positive predictive value and sen-
sitivity) for each mode separately. To fully understand
how our model performs all of these values are useful.
For those unfamiliar with such terms we recommend
interpreting the F1 score for each mode as a measure of
accuracy for that mode. For researchers who would like
more information we also present the raw confusion
matrix. This table compares counts for observed and
predicted mode, and can also be used to calculate
accuracy scores.

Results
Training data
We identified 66 participants from the ENABLE study
who walked to work, 34 cyclists, 94 vehicle users (group-
ing together car/van drivers, car/van passengers, taxi
users, bus/coach users and motorcyclists) and 132 train
users (grouping together underground and over ground
train users) (Table 1). In total, the training data-set

contained 131,573 data-points (365.5 h): 12,791 walking
(35.5 h), 11,607 cycling (32.2 h), 29,407 in vehicles
(81.7 h), 18,269 train (50.7 h) and 59,499 ‘stationary’
(165.3 h). These training data were split into two parts,
as described above. The subset of the data used to test
moving window sizes contained approximately a quarter
of the training data (33,529 points). Following testing of
1, 2, 3, 4 and 5-min moving windows, we selected a
four-minute window, because a four-minute window
resulted in the highest predictive accuracy for active
travel modes (Additional file 3). The remaining 98,387
points were used to build the cross-validated model.

Model prediction
In model cross-validation, overall, we correctly predicted
97.3% of points. All five travel modes were predicted
with high accuracy (lowest F1 score 93.9; Table 2). The
F1 score is the harmonic mean of positive predictive
value and sensitivity, therefore a high value represents a
high rate of correct identification of both true positives
and true negatives.
In comparison with manually identified data (n = 21),

overall accuracy was still high at 96.0% of predictions
being correct, however, this was substantially driven by
the fact that most people spent most of their time
stationary (83.7% of the time stationary). Our F1 scores
for the other modes were lower than in cross-validation,
with the lowest at 75.5 for cycling (Table 3).
When compared with manual identification of travel

mode from the STAMP-2 study, our predictions per-
formed well considering the different participants and
context (Table 4). We correctly predicted the travel
mode of 96.5% of points, but again this is driven by our
high accuracy on stationary points, which is the domin-
ant mode (86.8% of time stationary). The poorest
performing predictive mode was for cycling, with an F1
score of 69.1% (Table 4).
To understand, how the model miss-classifies in some

situations we also present the total time predicted and
observed in each travel mode (Table 5). In cross-
validation the times are remarkably close, however in

Table 2 The confusion-matrix and accuracy scores per mode, expressed as percentages, for the cross-validated model

Observed mode Mode Positive
predictive
valuea

Sensitivityb F1
scorecCycle Walk Train Vehicle Stationary

Predicted mode Cycle 8062 33 5 328 20 Cycle 95.4 96.2 95.8

Walk 10 9171 21 32 357 Walk 95.6 92.3 93.9

Train 3 18 12,296 95 18 Train 98.9 97.5 98.2

Vehicle 260 6 139 20,911 159 Vehicle 97.4 96.9 97.1

Stationary 47 710 155 214 45,317 Stationary 97.6 98.8 98.2
aPositive predictive value (PPV) or Precision, the ratio of true positives to the sum of true and false positives
bSensitivity or Recall/ True positive rate/Detection rate, the ratio of true positive to true positives and false negatives
cF1 score, the harmonic mean of PPV and sensitivity
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the other comparisons there are notable differences.
Total time walking is underestimated based on predic-
tions, and vehicle time is over-estimated.

Discussion
We have developed an accurate predictive algorithm,
which identifies five travel modes, including the active
travel modes walking and cycling, identifying each travel
mode correctly over 90% of the time. Our levels of
accuracy in cross-validation out-perform recent similar
studies [18, 23]. The models developed here are made
freely available to apply to similar data in the statistical
software environment R [28]. It is unsurprising that our
accuracy scores are lower when compared with manual
identification of both participants within this study and
from elsewhere, than in cross-validation of the training
data-set. Identification is most likely to be accurate
during defined trips, which is what the training data are
comprised of. During full days of data there are likely to
be other more ambiguous forms of movement, which
may be short in duration, and therefore difficult to iden-
tify, or which do not fully represent one of the forms of
travel we have included. Our model performs least well
for the detection of cycling, and therefore is likely
overfitted to our training data. We would therefore
recommend manual checking of cycling data, in order to
improve accuracy. In this study, cycling represents a
relatively small amount of total time, therefore manual

checking of this subset represents a much smaller time
investment than the full analysis.
Applying the algorithm to the STAMP-2 dataset

resulted in similar levels of accuracy of travel mode
prediction within a very different group of participants,
living in a different environmental setting. This finding
suggests that our method may be generalizable to other
data-sets and could be used by other researchers without
the time-consuming steps of creating new training data.
However, until more robust tests have been completed,
we would recommend a manual identification checking
stage similar to our methods, to verify the generalisabil-
ity of the method.
We exhibit similar levels of accuracy to the PALMS

system, which is a freely available method to process
physical activity data [21]. The purpose of the output is
somewhat different, though, with PALMS identifying
journeys and our method identifying each data point.
The preferred method will depend on what the research
question is. One advantage our R package does have
over the server-based system in PALMS, is that it can be
run on a researcher’s own machine. Data used for the
present (and other similar) analyses is subject to strict
data privacy and ethical conditions. Running the analyses
on a researchers’ own machine, rather than uploading to
a server for remote processing, can help avoid problems
related to data privacy. Furthermore, our method is open
source, meaning all code is freely available online [28].

Table 3 The confusion-matrix and accuracy scores per mode, expressed as percentages, compared with manually-identified data

Observed mode Mode Positive
predictive
valuea

Sensitivityb F1
scorecCycle Walk Train Vehicle Stationary

Predicted mode Cycle 3651 1426 116 215 385 Cycle 63.0 94.3 75.5

Walk 15 23,346 12 128 1858 Walk 92.1 75.6 83.0

Train 43 749 6275 89 1318 Train 74.1 96.6 83.8

Vehicle 156 585 38 23,684 3726 Vehicle 84.0 97.1 90.1

Stationary 8 4776 58 285 329,807 Stationary 98.5 97.8 98.2
aPositive predictive value (PPV) or Precision, the ratio of true positives to the sum of true and false positives
bSensitivity or Recall/ True positive rate/Detection rate, the ratio of true positive to true positives and false negatives
cF1 score, the harmonic mean of PPV and sensitivity

Table 4 The confusion-matrix and accuracy scores per mode, expressed as percentages, compared with the STAMP-2 study

Observed mode Mode Positive
predictive
valuea

Sensitivityb F1
scorecCycle Walk Train Vehicle Stationary

Predicted mode Cycle 1381 290 0 109 182 Cycle 70.4 67.9 69.1

Walk 17 7729 0 1 202 Walk 97.2 73.6 83.8

Train 1 39 716 0 320 Train 66.5 89.8 76.5

Vehicle 602 329 0 14,242 2840 Vehicle 79.1 98.1 87.5

Stationary 33 2112 81 171 179,539 Stationary 98.7 98.1 98.4
aPositive predictive value (PPV) or Precision, the ratio of true positives to the sum of true and false positives
bSensitivity or Recall/ True positive rate/Detection rate, the ratio of true positive to true positives and false negatives
cF1 score, the harmonic mean of PPV and sensitivity
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As a result, other researchers can suggest edits and
improvement and contribute to the development of our
method, and its utility to the research community.
Visual inspection of the data in GIS revealed that

much of the disagreement between prediction and
manual classification was found at the start and end of
journeys. This highlights the challenge of identifying
modal shift, i.e. when to switch from one mode to
another. This is a limitation of the current method.
However, the strength of identifying individual data
points, rather than journeys, means that imprecision in
identifying modal shift results in small numbers of
mis-classified points rather than entire mis-classified
journeys. Small numbers of mis-classified points will
only have a small effect on total time in each travel mode.
Our inaccuracy at the start and end of trips mean that any
prediction to a data-set where many short-duration trips
are expected in high volume would be expected to yield
lower accuracy. Conversely, longer journeys should be
able to be identified with greater precision.
It is worth highlighting that some disagreement within

our test data-sets may not be true errors. For example, if
a participant is stationary, but on a train, it is question-
able whether they should be classified as using a train or
stationary and it may not matter as long as the rule is
applied consistently. However, when comparing the
predicted vs manually derived methods this causes
disagreement, because during manual classification,
stationary points on train lines were termed stationary
(for example standing at a train station), yet the algo-
rithm identifies them as “train”. A number of the miss-
classifications between our manual identification and
predicted data-sets may therefore be open to interpret-
ation, and may not be true miss-classifications..
The prediction of active travel modes should comple-

ment existing analyses of physical activity using acceler-
ometers. Accelerometers have been used with great
effect to objectively quantify activity, but they are not
without limitations. A well-known problem of traditional
PA analyses using accelerometers is that cycling is not
recognised as a form of moderate to vigorous activity,
because cycling generates relatively low readings on a

waist-worn accelerometer compared to other active
modes. Identification of cycling from combined acceler-
ometer and GPS data will allow better quantification of
cycling as a form of physical activity. Traditional PA
analyses will still miss cycling as a form of activity, but
our method quantifies it, although with moderate preci-
sion. Furthermore, assessment of active travel using our
method will help understand how people are active. For
example, activity at a single location, e.g. the home/gym,
will not be classed as active travel using our method,
rather as a stationary travel mode, therefore a participant
may show high levels of overall physical activity but low
levels of active travel. Incorporation of this extra infor-
mation will help to understand participant’s overall
physical activity patterns. For example: if a participant
shows increased PA but not active travel it is likely that
they have increased their activity at locations such as at
home or the gym. If we see no change in PA but an
increase in active travel then participants have replaced
some of their PA at a location with active travel.
There are several limitations to our study. First, we

only identify the active modes walking and cycling, there
is no consideration of running, or any other activity.
This limitation is based on our study sample, where no
commuters consistently used these modes, so we could
not include them in our training data. However, walking
and cycling represent the most frequently used active
transport modes, and other modes were rarely reported
by our participants. Any form of running will most likely
be identified as walking using our method, due to the
high acceleration that running causes on an accelerom-
eter, and so will still be identified as active travel. We
therefore feel that this limitation will have little impact
on our study, although we would recommend caution in
applying our method to a data-set where large quantities
of running are expected. Secondly, we have demon-
strated our capacity to identify major travel modes, but
do not discriminate car travel from public transport.
Consequently, if a study is attempting to quantify the
use of public transport the current method is inad-
equate. To address this, we have developed a second
model that discriminates bus travel. However, this leads

Table 5 Time observed and predicted per participant in each travel mode for the different data-sets

Travel
mode

Mean minutes in travel mode per participant

Cross validation ENABLE full days STAMP

Reported Predicted Manually identified Predicted Manually identified Predicted

Cycle 5.4 5.4 30.7 46.0 33.9 32.7

Walk 6.4 6.1 245.1 201.3 175.0 132.5

Train 8.1 8.1 51.6 67.3 13.3 17.9

Vehicle 13.9 13.8 193.7 223.7 242.1 300.2

Stationary 29.5 29.9 2675.4 2658.2 3051.4 3032.3
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to reduced overall accuracy, because the pattern of
speed/activity can be confused between buses and other
vehicles (Additional file 4). Further work in this area
would need to assess the generalisability of our methods.
Thirdly, our method does not identify the purpose of the
journey, therefore there is no distinction between leisure
and transport-related travel. Another method in addition
to our identification step will be necessary to determine
the context of the journey. Lastly, though we assess
different geographical contexts, both are in the UK. We
do not know how well the method would perform
elsewhere in the world, where other transport options
may be available. Furthermore, we have only tested the
current model on adults, and further research could assess
how well our model performs on older adults or children,
to potentially be of use in a wider group of studies.

Conclusion
In summary we have developed a method to identify
travel modes from accelerometer, GPS and GIS data for
the ENABLE London study, which successfully predicts
over 90% of points tested in a range of contexts. This
method can be of use to complement existing analyses
of physical activity, and assess active travel alongside
physical activity. All code necessary to replicate the
analysis, apply the method to other data-sets or predict
from our models to other data-sets are provided, to
facilitate usage by other researchers.

Additional files

Additional file 1: Characteristics of the training data and remainder of
the cohort from ENABLE, for further detail and demographics see the baseline
cohort paper (Ram et al., 2016, BMJ Open 6: e012643) (DOCX 15 kb)

Additional file 2: Model accuracy for each cross-validation subset
(DOCX 26 kb)

Additional file 3: Testing of moving window sizes for predictive
accuracy. Model parameters: ETA = 0.1 (a measure of how conservative
XGBoost is, set lower than standard to be more conservative and ovoid
over-fitting), rounds = 200, subsample = 0.2 (use 0.2 of data in each
model, again to avoid over-fitting), max tree depth = 10, gamma = 10, all
others default (DOCX 26 kb)

Additional file 4: Fitted model accuracy when buses are included
(DOCX 14 kb)
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