Mini-Stern Trial: A randomised trial comparing mini-sternotomy to full median sternotomy for aortic valve replacement

Authors:

Sukumaran K Nair FRCS(CTh),1,4 Catherine D Sudarshan FRCS(CTh),1 Benjamin S Thorpe PhD,2 Jeshika Singh PhD,3 Thasee Pillay FRCS(CTh),4 Pedro Catarino FRCS(CTh),1 Kamen Valchanov MD,1 Massimiliano Codispoti FRCS(CTh),1 John Dunning FRCS(CTh),1 Yasir Abu-Omar FRCS(CTh),1 Narain Moorjani FRCS(CTh),1 Claire Matthews BSc,1 Carol J Freeman MPhil,1 Julia A Fox-Rushby PhD,3 Linda D Sharples PhD,5

Institutions:

1. Papworth Hospital, Cambridge, UK
2. Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
4. Freeman Hospital, Newcastle upon Tyne, Newcastle upon Tyne, UK
5. London School of Hygiene and Tropical Medicine, Keppel Street, London, UK

Conflict of interest statement and source of funding:

This work was supported by the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RfPB) Programme (grant number PB-PG-0408-16296). The views expressed are those of the author(s) and not necessarily those of the NHS, NIHR or Department of Health.

Corresponding author and contact information:

Mr Sukumaran Nair, Consultant Cardiac Surgeon, Golden Jubilee National Hospital, Agamemnon Street, Glasgow, G81 4DY, United Kingdom
Telephone: 0044 141 951 5280.
Email: Sukumaran.Nair@gjnh.scot.nhs.uk

Trial Registration: ISRCTN, number 58128724
Article word count: 3500 (including main text and figure legends)

Justification for more than 7 authors: This study was conducted in two surgical units in the UK involving 8 Surgeons, 1 Anaesthetist/Intensivist, 2 Health Economists, 2 Trial Managers and 2 Biostatisticians. Each co-author listed above have contributed significantly to the co-ordination and management of the trial, data collection, data analysis and preparation of the manuscript and hence included in the list of authors. A detailed author contribution form with detailed justification of authorship will be submitted along with the revised manuscript on acceptance for publication.
Glossary of Abbreviations

AVR aortic valve replacement
mAVR minimal access aortic valve replacement
BMI body mass index
CI 95% confidence interval
COPD chronic obstructive pulmonary disease
CPB cardiopulmonary bypass
FEV₁ forced expiratory volume in one second
FS full median sternotomy
HR hazard ratio
HRQoL health-related quality of life
ICER incremental cost-effectiveness ratio
LVEF left ventricular ejection fraction
MS mini-sternotomy
NHS National Health Service
OR odds ratio
QALY quality-adjusted life year
RCT randomised control trial
SAE serious adverse event
SD standard deviation
TLCO transfer factor of the lung for carbon monoxide
TOE transoesophageal echocardiogram
UK United Kingdom
Central Message

In the UK NHS, compared to conventional median sternotomy approach for surgical AVR, mini-sternotomy did not hasten recovery or hospital discharge, and was not cost-effective.
Perspective Statement

Minimal access surgery is appealing for its perceived advantages including better patient recovery, satisfaction and cost-effectiveness. This RCT conducted within the UK NHS setting did not demonstrate quicker patient recovery or cost-effectiveness associated with mini-sternotomy compared to full median sternotomy approach. These findings are relevant to physicians, patients and health care funders.
Structured Abstract

Objective: Aortic valve replacement (AVR) can be performed either through full median sternotomy (FS) or upper mini-sternotomy (MS). The Mini-Stern trial aimed to establish whether MS leads to quicker postoperative recovery and shorter hospital stay after first-time isolated AVR.

Methods: This pragmatic, open-label, parallel RCT compared MS with FS for first-time isolated AVR in two UK NHS hospitals. Primary endpoints were duration of postoperative hospital stay and the time to fitness for discharge from hospital after AVR, analysed in the intent-to-treat population.

Results: In this RCT, 222 patients were recruited and randomised (118 MS, 104 FS). Compared to FS patients, MS patients had longer hospital stay (mean 9.5 vs. 8.6 days) and took longer to achieve fitness for discharge home (mean 8.5 vs. 7.5 days). Adjusting for valve type, sex and surgeon, hazard ratios (HR) from Cox models did not show a statistically significant effect of MS (relative to FS) on either hospital stay (HR 0.874, 95% CI 0.668-1.143, p-value 0.3246) or time to fitness for discharge (HR 0.907, 95% CI 0.688-1.197, p-value 0.4914). During mean follow up of 760 days (MS:745 and FS:777 days), 12 (10%) MS and 7 (7%) FS patients died (HR 1.871, 95% CI 0.723-4.844, p-value 0.1966). Average extra cost for MS was £1,714, during the first 12 months after AVR.

Conclusions: Compared to FS for AVR, MS did not result in shorter hospital stay, faster recovery or improved survival and was not cost-effective. MS approach is not superior to FS for performing AVR.

Word count for Abstract: 248
Introduction

Aortic valve replacement (AVR) is the second commonest cardiac surgery in the UK [1] with an increasing proportion of older patients [1, 2]. Minimal access AVR (mAVR) might shorten hospital stay and postoperative recovery period and could be beneficial if offered safely and cost-effectively.

Currently, most AVRs are performed safely through full median sternotomy (FS) [2-6]. However, mAVR may be associated with less postoperative pain, blood loss, pulmonary and wound complications and shorter hospital stay [2]. The most commonly practised mAVR involves mini-sternotomy (MS), which could potentially hasten postoperative recovery, shorten hospital stay and improve patient satisfaction [2-10].

Most studies comparing MS and FS for AVR are non-randomised. Although systematic reviews with meta-analyses [11, 12] have been conducted, inadequate statistical power and heterogeneity of studies calls for prospective, randomised control trials (RCTs) to assess benefits and risks of mAVR. Published evidence on cost-effectiveness comparing MS to FS is sparse and weak. A recent review comparing cost-effectiveness of FS and MS called for a well-designed RCT to evaluate cost-effectiveness of mAVR up to at least a year after surgery [13]. Recently, a propensity-matched study from the UK national data concluded that mAVR is safe and was associated with shorter postoperative hospital stay [14]. The authors concluded that although general clinical equipoise exists between FS and MS, it is essential to have a well-constructed and adequately powered RCT before widespread adoption of MS. This retrospective study did not analyse cost-effectiveness of either surgical approach.
The Mini-Stern trial assessed whether MS is superior to FS in shortening postoperative recovery time and improving patient outcomes without compromising patient safety. It also assessed cost-effectiveness of MS from the perspective of the UK NHS as a health care provider.

Materials and Methods

Mini-Stern was a two-centre, pragmatic, open-label RCT conducted in the UK. Patients were randomised (1:1) to AVR either by MS or FS.

Sample Size

Considering four published RCTs [5, 6, 9, 10] and two cohort studies [7, 8], a 20% reduction in hospital stay from 11.7 to 9.36 days was considered clinically significant. Based on an internal audit of 252 first-time elective AVR performed at Papworth Hospital in 2007/08 (mean hospital stay 11.7 days, SD 6.2), to detect this change with 80% power and 2-sided significance of 5%, 110 patients per group were required. As randomisation was performed on the day of surgery after induction of anaesthesia and introduction of the transoesophageal echocardiogram (TOE) probe, no subjects dropped out between randomisation and surgery thereby making the total trial recruitment target, 220 patients.

Recruitment

Adult patients undergoing first-time isolated AVR were included. Exclusion criteria included emergency AVR, LVEF ≤ 30%, chest wall deformities, severe COPD (FEV₁ or TLCO < 40% predicted), BMI > 35kg/m², concomitant cardiac surgery, redo-surgery and inability to perform TOE. Details of patient enrolment are given in the online protocol.
Randomisation

Randomisation (1:1) used random permuted blocks of variable lengths (6 or 8), stratified by surgeon and valve prosthesis (bio-prosthetic or mechanical). Random allocations were pre-generated, held in secure files by Papworth Trials Unit. During early days of the trial, TOE probe could not be passed in four patients due to technical reasons. These patients underwent the allocated procedure and were included in the trial. Later the Trial Steering Committee decided that under such circumstances, MS would be unsafe and patients should be excluded from the trial to FS. Since eligibility for MS required TOE, in order to avoid post-randomisation drop-out, group allocation for the study subjects was retrieved via telephone by theatre staff soon after anaesthesia and introduction of the TOE probe. Due to the nature of interventions, this trial could not be blinded.

Outcomes

Primary endpoints: Two closely related primary endpoints were measured. Firstly, length of postoperative hospital stay (days between surgery and actual hospital discharge) which is easily measured, a surrogate for early postoperative events and sensitive to outcomes that affect health-related quality of life (HRQoL). Secondly, the interval in days between surgery and the patient being medically fit for discharge. To reduce investigator bias, standard discharge criteria were followed to decide the day of fitness for discharge. This endpoint was chosen to address exogenous effects (social factors, lack of transport, non-availability of space in nursing homes etc.) that commonly delay hospital discharge in the UK.

Clinical secondary endpoints: duration of surgery, total theatre time, aortic cross-clamp and cardiopulmonary bypass (CPB) times, blood loss in the first 12 hours after surgery, transfusion of blood and clotting products in the first 48 hours (blood transfusion trigger was
haemoglobin level < 80g/L, frequency of re-intubation, time to initial extubation,

mediastinal drain removal and first independent mobilisation, daily pain scores at rest and on

deep breath (over the first ten days or until hospital discharge) on a scale of 0 to 10, LVEF

and severity of para-prosthetic regurgitation at hospital discharge and at 6 months, and time
to all-cause death. Definitions of adverse events and details of their reporting are in the online
protocol. To exclude bias, clinical outcome data were collected by research team who were
not involved in routine care of subjects, following standardised protocols.

Non-clinical secondary endpoints: Health-related Quality of Life and Healthcare resource
use.

HRQoL: Patients completed EQ-5D-3L [15] and SF-36 [16, 17] questionnaires at baseline,
6 weeks, 6 months and 12 months following surgery. EQ-5D-3L was repeated on fourth
postoperative day and at discharge.

Healthcare resource use: Patient-specific resource use collected from hospital records and
patient interviews during the primary admission included phases of care including operative
surgery, critical care, post-surgical ward care and medications. Post-discharge resource use
included attending wound clinics, community nurse visits, physiotherapy sessions,
occupational therapy services, medical tests, cost of analgesics and other drugs and further
hospitalisation within the first year after AVR.

Surgical details

All participating surgeons were consultants experienced in performing AVR by both FS and
MS. They followed the operative surgical protocol as described below.

MS approach: With the patient anaesthetised as per standard protocol, skin was incised from
half-way between the suprasternal notch and the sternal angle to the level of the fourth
intercostal space, measuring approximately 8cm. The manubrium was divided in the midline from the suprasternal notch inferiorly and then into the right 4th intercostal space. Thymus was divided and pericardium opened exposing the ascending aorta, aortic root and right atrial appendage. A loading dose of unfractionated heparin 300U/kg followed by boluses of 5000U was administered to achieve activated clotting time above 450 seconds. Aorta was cannulated using a wired flexible aortic cannula. Right atrial appendage was cannulated using a flat venous cannula and CPB commenced. The ascending aorta was cross-clamped and intermittent, antegrade, cold blood cardioplegia administered. The aorta was then incised open in an oblique or transverse fashion, the diseased valve excised and annulus decalcified. A suitably sized aortic valve prosthesis was inserted using either horizontal mattress, 2-0 Ethibond sutures or semi-continuous, 2-0 Prolene sutures. Surgeons adopted either of these suture techniques and adhered to the same technique irrespective of the type of valve prosthesis or the surgical approach. Aortotomy was then closed, heart de-aired, right atrial and ventricular epicardial pacing wires inserted and patient weaned off CPB. After confirming satisfactory functioning of the aortic valve prosthesis by TOE, heparin was reversed with protamine (1mg/100U of heparin). Chest drains were inserted into the anterior mediastinum, posterior pericardial space and pleural space if necessary. Sternal wires were inserted and incision closed in layers. Conversion to FS was performed to ensure patient safety if access was difficult or if intraoperative complications occurred.

FS approach: Anaesthesia and positioning of patients was the same as for MS approach. The skin incision was made between the suprasternal notch and the xiphoid process and sternum divided in the midline from the suprasternal notch to the xiphoid process. A two-stage venous cannula was used for atrial cannulation. Remaining steps were similar to MS approach.
Statistical analysis

Analyses of primary and secondary endpoints used intention-to-treat and included all randomised patients. Unless stated otherwise, statistical models included treatment (MS vs. FS), valve (mechanical vs. bio-prosthetic) and sex as fixed effects, and surgeons as random effects. Hypothesis testing was two-sided at the 5% significance level, with no adjustments for multiple testing. All confidence intervals (CI) were estimated at the 95% confidence level.

Distributions of time-to-event endpoints were compared between study groups using Kaplan-Meier curves and log-rank tests (stratified by sex, valve and surgeon). Hazard ratios (HR) for MS relative to FS were estimated from a Cox model. The null hypothesis of no treatment effect (HR = 1) was tested. Patients who were lost to follow-up, withdrew or died before the event were censored at the latest time they were known to be event-free. Models were checked by plotting Schoenfeld and deviance residuals. For primary endpoints, Cox models were re-fitted using the per-protocol population and in sensitivity analyses (Appendix A. Table A4).

Need for reintubation and other dichotomous endpoints were compared between groups by estimating a MS/FS odds ratio (OR) via logistic regression. EQ-5D, SF-36 and pain scores were modelled using repeated measures linear regression. Where possible, random intercepts and random time coefficients for patients were included. For EQ-5D and SF-36, fixed effects for baseline scores were included. Models were fitted using complete cases, then re-fitted with multiple imputation of missing scores via chained equations.

Serious adverse events (SAEs) were analysed in the safety population according to intervention received. Patients randomised to MS who crossed over to FS prior to surgery were considered to have received FS; those who crossed over after MS had commenced were
considered to have received MS. Rates of SAEs were explored using Poisson regression with a random patient effect.

CONSORT guidelines [18] were followed. Analyses were performed in SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). No interim analyses were undertaken but reports were presented annually to the Data Monitoring and Ethics Committee.

Economic analysis

Unit costs were obtained from nationally published sources in the UK [19, 20, 21, 22] or from the Finance department, Papworth Hospital when the former did not provide the required information. Total cost per patient was calculated by summing resource use items multiplied by unit costs across the in-patient stay and the 12-month postoperative follow-up period (Appendix B. Table B7). Health state utilities from the EQ-5D-3L and SF-36, based on UK value sets [15, 23] were used to generate quality-adjusted life years (QALYs) using the area under the curve method and assigning a value of zero from date of death. Missing values were imputed using chained predictive mean matching, stratified by treatment and conditional on age, sex and baseline EQ-5D-3L.

Differences in mean costs and QALYs were estimated using seemingly unrelated regression, controlling for age, sex, valve, baseline EQ-5D-3L and treatment, to accommodate skewness [24]. Uncertainty in cost-effectiveness was estimated by drawing 1000 bootstrapped samples and conducting probabilistic sensitivity analysis. Results are presented as incremental net monetary benefit at various thresholds of willingness to pay per QALY, cost-effectiveness planes and cost-effectiveness acceptability curves. Deterministic sensitivity analyses explored effects of using complete cases only, SF6D-based QALY estimates, the procedure inpatient
admission only, excluding patients who died and excluding additional equipment costs (Appendix B. Table B1).

Results

Overall 1024 patients were screened between 28 January 2010 and 13 April 2015, of whom 222 were recruited and randomised to MS (118) or FS (104). One-year follow-up was completed on 23 May 2016.

Study groups were similar at baseline except for a non-significant sex imbalance (Table 1). In this trial, MS was not completed in 14 (12%) of 118 patients randomised to MS. Of these patients, 6 (5%) had conversion from MS to FS due to reasons listed in Figure 1. The remaining 8 patients underwent FS after randomisation to MS but without initial MS incision as MS was considered unsafe/impractical. The true rate of intraoperative conversion of MS to FS was therefore 5%. Four patients (2%, Table 2) were censored before discharge: one withdrawal before surgery (FS) and three deaths (all randomised to and received MS). A further thirteen (6%) were censored before fitness for discharge: six discharged to acute hospital (three MS, three FS), seven to long-term care or rehabilitation (three FS, four MS).

Mean time to hospital discharge was longer for MS than FS (9.5 vs. 8.6 days), as was mean time to fitness to discharge (8.5 vs. 7.5 days). However, distributions of these endpoints were similar in both groups (Figure 2, Table 2). The difference was not statistically significant in either primary analyses using Cox models (Figure 3), log-rank tests (Table 2) or sensitivity analyses (Appendix A. Table A4). The gamma-distributed frailty term in the Cox models was estimated to have variance 0.006675 for time to fitness and 0.000100 for time to discharge, suggesting that surgeon heterogeneity was negligible.
Time to drain removal (including drains inserted/retained to treat complications) was longer for MS, but times to extubation and independent mobilisation did not differ significantly between groups (Table 2, Figure 3), nor did numbers of patients re-intubated (six MS vs. five FS, OR 1.039, CI 0.306-3.531, p=0.9512). Statistically significant HRs indicated longer surgery, CPB, cross-clamp and theatre times for MS (Figure 3). No significant differences were seen in blood loss (Appendix A. Table A3), or in numbers of patients requiring transfusion of blood (50 MS vs. 51 FS, OR 0.797, CI 0.453-1.402, p=0.4310) or clotting products (11 MS vs 4 FS, OR 2.616, CI 0.801-8.541, p=0.1112).

Regression models for pain at rest, EQ-5D utilities and SF-36 domain scores (Appendix A. Tables A6, A7, A8) estimated greater rate of improvement over time in MS patients for three SF-36 domains (social functioning, vitality and role physical). After multiple imputation, the difference was only significant for the role physical domain (Appendix A. Table A9). Pain on deep breath was not analysed as only less than half the data were collected due to poor patient compliance.

Nine (4%) patients died within a year of surgery: seven (6%) MS, two (2%) FS. Five deaths were possibly related to treatment (four MS, one FS), none were probably or definitely related (Appendix A. Table A15). Overall, twelve (10%) MS and seven (7%) FS patients died during follow-up (mean follow-up 760 days: 745 MS, 777 FS). Time to all-cause death, adjusted for age, showed a moderately large but statistically non-significant HR (MS/FS) of 1.871 (CI 0.723-4.844, p=0.1966).

Safety analyses excluded one patient who was withdrawn before surgery. There were significantly more SAEs in MS recipients (rate ratio 1.615, CI 1.070-2.437, p=0.0225) (Appendix A. Table A11). The numbers of patients experiencing SAEs were not significantly different (OR 1.559, CI 0.895-2.715, p=0.1161). Incidence of para-prosthetic
regurgitation did not differ significantly between groups (Appendix A. Table A13). Seven
patients developed pericardial collection (three MS vs four FS, OR 0.680, CI 0.146-3.178,
p=0.6229). Wound infections (including superficial and deep infections) were more common
in FS recipients (thirteen FS vs four MS, OR 0.312, CI 0.097-1.005, p=0.0511). Deep sternal
wound infection developed in one MS and one FS recipient, neither of whom required plastic
surgical repair.

Economic analyses are summarised in Table 4. There was additional cost for MS relative to
FS (£1,714 per patient, p=0.0765) in the first year following surgery. MS patients had (non-
significant) better EQ-5D-based QALYs (0.03 per patient, p=0.1509). The incremental cost
per QALY gained was £61,379, but after adjusting for baseline characteristics, MS had
higher costs and lower QALYs (i.e. was dominated). In deterministic and probabilistic
sensitivity analyses, MS was either dominated or had a very large cost per QALY, except for
the complete case analysis (Appendix B. Tables B11, B12).

Discussion

The UK NHS is a free for patient at point-of-delivery healthcare system. Apart from good
recovery, hospital discharge of a significant proportion of elderly patients depends on the
timely availability of social care services in the community. The Mini-Stern trial is the first
RCT comparing FS and MS for isolated AVR when performed for UK NHS patients.

In this prospective, pragmatic, open-label RCT, MS did not reduce the total duration of
hospital stay after AVR. As hospital discharge is sometimes delayed due to social factors, we
included time until fit for discharge as a second primary endpoint. This was also not reduced
by MS. These endpoints were recorded by physiotherapists based on a common discharge
protocol with specific clinical milestones to achieve, thereby excluding physician-induced bias.

In this study operation, total theatre, aortic cross-clamp and CPB times were significantly prolonged with MS. This was expected as in general, minimal access valve operations take longer [5, 9]. This is justifiable if MS resulted in either faster recovery, shorter postoperative stay, reduced cost of treatment or more importantly a significant reduction in adverse events and therefore superior patient safety. In this RCT, MS did not achieve these benefits and hence we feel that the prolonged operation time, total theatre, cross-clamp and CPB times are not justifiable for performing AVR through MS.

Previously, two meta-analyses [11, 12] concluded that mAVR approaches are superior in certain aspects of postoperative recovery. However, both included studies on mini-thoracotomy approach for AVR, and therefore inferences drawn cannot be extrapolated to MS. A retrospective propensity-matched analysis of data from a UK national database concluded that MS is safe and comparable to conventional AVR [14]. The authors found that MS resulted in a shorter postoperative hospital stay, which disagrees with our findings. However, a propensity-matched study can suffer from selection bias if its matching algorithm produces treatment groups that are unbalanced in some unobserved characteristics. Recently, a retrospective study demonstrated safety of right thoracotomy minimally invasive isolated and concomitant AVR in patients of all age groups [25]. As randomisation balances study groups in known and unknown characteristics, results of the Mini-Stern trial should be more reliable than non-randomised studies.
Previous studies investigating cost-effectiveness provided unclear answers. A report analysing registry data from patients who underwent isolated primary AVR [26] reported lower hospital cost when AVR was performed through right anterior thoracotomy compared to sternotomy-based approaches with no significant differences in outcome. The main reasons attributed to lower costs were earlier hospital discharge and reduced use of blood products. Ghanta et al [27] noted that exclusion of rehabilitation costs could alter this finding. A review by Glauber et al [13], based on uncontrolled studies, noted that higher cost of instruments and devices in mAVR could be offset by economic advantage gained by shorter hospital stay and lower complication rates. The Mini-Stern trial assessed cost-effectiveness using a range of sensitivity analyses, but only the complete case analysis showed MS to be cost-effective, suggesting lower costs but slightly worse outcomes with MS. However, this analysis used a potentially unrepresentative sample of just 90 patients. Our analysis was restricted to the first year following operation without long-term analysis beyond 1 year.

This RCT is robust with many merits including on-table randomisation, comprehensive and independent outcome assessment without physician-bias, longer-term clinical assessment, HRQoL analysis and economic analysis. However there were some limitations. Although we report on secondary endpoints, this trial was powered only to address the primary endpoint. A total of 14 patients (12%) allocated to MS received FS, which could be another limitation. However, only 6 patients (5%) had true conversion after an attempted MS, while 8 patients (6.7%) went on to FS for safety reasons. Although this RCT took place in only two centres, thereby limiting generalisability, recruitment by eight surgeons improves generalisability. A total of 1024 patients were screened to recruit 222 (21.7%) patients. Although this potentially suggests selection bias, only 125 eligible patients (12.2%) failed recruitment while the remaining 667 patients (65.1%) did not meet inclusion criteria. Blinding was not
practical as sternotomy dressings were usually changed 48 hours after surgery and patients became aware of the approach. This could have caused bias in self-reported outcomes. Missing ‘pain at rest’ data were unlikely to be missing at random, and therefore imputation might not have addressed all potential biases. Despite having two primary outcomes, we did not adjust for multiple testing. However, as neither showed a significant difference between groups, this would not have affected our conclusions.

In conclusion, MS for AVR did not result in quicker recovery or earlier hospital discharge. MS resulted in longer operations, increased costs, and resulted in more SAEs than FS. Overall, this pragmatic RCT did not provide evidence that MS results in better clinical or quality of life outcomes, or that MS is cost-effective compared to FS in the first year after AVR.

Acknowledgement:

Prof Linda Sharples was part-funded by the MRC, UK. We thank Dr Matt Glover, Ms Jacinta Nalpon and Mr Chelliah Paramasivam for their contributions.
Central Picture Legend: Duration of hospital stay after AVR: FS versus MS.

Video Legend: MS approach for AVR.

Figure 1. Trial flow diagram.

Figure 2. Kaplan-Meier curves for primary endpoints. Points indicate censoring and dashed lines represent 95% confidence intervals.

Figure 3. Forest plot of HRs and 95% confidence intervals from Cox models.

Figure 4. Cost-effectiveness planes. Proportion of points below each threshold gives the probability that MS is more cost-effective than FS. This probability is 3.7% for willingness to pay £20,000/QALY and 5.1% for willingness to pay £30,000/QALY.
Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>MS (n = 118)</th>
<th>FS (n = 104)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) - Mean (SD)</td>
<td>71.3 (12.3)</td>
<td>72.1 (10.9)</td>
</tr>
<tr>
<td>BMI (kg/m²) – Mean (SD)</td>
<td>26.6 (3.2)</td>
<td>27.7 (3.7)</td>
</tr>
<tr>
<td>Sex - frequency (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>53 (45%)</td>
<td>57 (55%)</td>
</tr>
<tr>
<td>Male</td>
<td>65 (55%)</td>
<td>47 (45%)</td>
</tr>
<tr>
<td>Valve type - frequency (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>15 (13%)</td>
<td>14 (13%)</td>
</tr>
<tr>
<td>Tissue</td>
<td>103 (87%)</td>
<td>90 (87%)</td>
</tr>
<tr>
<td>EuroSCORE (%) - Mean (SD)</td>
<td>5.9 (2.1) *</td>
<td>6.1 (2.1)</td>
</tr>
</tbody>
</table>

* EuroSCORE was missing for one MS patient.
Table 2. Kaplan-Meier medians (quartiles) for time-to-event endpoints

<table>
<thead>
<tr>
<th></th>
<th>MS (n = 118)</th>
<th>FS (n = 104)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to discharge (days)</td>
<td>7 (6, 10)</td>
<td>7 (6, 10)</td>
<td>0.6924</td>
</tr>
<tr>
<td>Censored</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Time until fit for discharge (days)</td>
<td>6 (5, 10)</td>
<td>6 (5, 9)</td>
<td>0.5597</td>
</tr>
<tr>
<td>Censored</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Time to independent mobilisation (days)</td>
<td>4 (3, 7)</td>
<td>4 (3, 6)</td>
<td>0.5819</td>
</tr>
<tr>
<td>Censored</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Time to mediastinal drain removal (hours)</td>
<td>26.1 (20.6, 53.3)</td>
<td>22.5 (19.4, 37.8)</td>
<td>0.0157</td>
</tr>
<tr>
<td>Censored</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Time to extubation (hours)</td>
<td>9.2 (7.8, 12.1)</td>
<td>8.3 (6.8, 11.7)</td>
<td>0.5488</td>
</tr>
<tr>
<td>Censored</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Theatre time (minutes)</td>
<td>191 (172, 225)</td>
<td>176 (152, 203)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Censored</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CPB time (minutes)</td>
<td>80 (70, 95)</td>
<td>66 (52, 85)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Censored</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cross-clamp time (minutes)</td>
<td>65 (53, 76)</td>
<td>49 (39, 64)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Censored</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Surgery duration (minutes)</td>
<td>163 (139, 190)</td>
<td>149 (114, 167)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Censored</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

*Log-rank test. Seven surgery durations were not recorded and censored at 1 minute.
Table 3. Costs, QALYs and Cost-effectiveness

<table>
<thead>
<tr>
<th>Cost and QALYs</th>
<th>FS (n = 118)</th>
<th></th>
<th>MS (n = 104)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(with imputation)</td>
<td>Mean Cost per patient</td>
<td>SD</td>
<td>Mean Cost per patient</td>
<td>SD</td>
</tr>
<tr>
<td>Primary Admission Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theatre use</td>
<td>£3,824</td>
<td>£1,243</td>
<td>£4,422</td>
<td>£2,053</td>
</tr>
<tr>
<td>Additional surgical items</td>
<td>£16.52</td>
<td>£0.0</td>
<td>£52.0</td>
<td>£0.0</td>
</tr>
<tr>
<td>Critical care (ITU)</td>
<td>£1,834</td>
<td>£3,023</td>
<td>£2,934</td>
<td>£5,030</td>
</tr>
<tr>
<td>Cardiac ward</td>
<td>£2,744</td>
<td>£1,664</td>
<td>£2,676</td>
<td>£1,500</td>
</tr>
<tr>
<td>Physio- and Occupational Therapy</td>
<td>£77</td>
<td>£55</td>
<td>£78</td>
<td>£68</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>£384</td>
<td>£1,878</td>
<td>£263</td>
<td>£1,621</td>
</tr>
<tr>
<td>Acute hospital</td>
<td>£347</td>
<td>£1,919</td>
<td>£298</td>
<td>£1,971</td>
</tr>
<tr>
<td>Sub-total cost</td>
<td>£9,226</td>
<td>£6,511</td>
<td>£10,724</td>
<td>£8,850</td>
</tr>
<tr>
<td>Post primary admission costs to 12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital Re-admission</td>
<td>£418</td>
<td>£1,475</td>
<td>£575</td>
<td>£1,863</td>
</tr>
<tr>
<td>Follow up tests</td>
<td>£224</td>
<td>£258</td>
<td>£282</td>
<td>£279</td>
</tr>
<tr>
<td>Follow up healthcare visits</td>
<td>£373</td>
<td>£359</td>
<td>£311</td>
<td>£263</td>
</tr>
<tr>
<td>Sub-total cost</td>
<td>£1,015</td>
<td>£1,778</td>
<td>£1,168</td>
<td>£2,079</td>
</tr>
<tr>
<td>Drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>£379</td>
<td>£548</td>
<td>£441</td>
<td>£977</td>
</tr>
<tr>
<td>Total cost over 12 months</td>
<td>£10,620</td>
<td>£7,624</td>
<td>£12,333</td>
<td>£9,864</td>
</tr>
<tr>
<td>Incremental cost-effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(probabilistic analysis with baseline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incremental cost at 12 months (MS-FS)</td>
<td>£2,154.0</td>
<td>(SE £36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incremental EQ-5D-3L QALYs (MS-FS)</td>
<td>-0.0122</td>
<td>(SE 0.0008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS dominated by FS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMB (at WTP £20,000/QALY)</td>
<td>-£2,397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMB (at WTP £30,000/QALY)</td>
<td>-£2,519</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
adjustment)

References

