Woodhall, SC; Gorwitz, RJ; Migchelsen, SJ; Gottlieb, SL; Horner, PJ; Geisler, WM; Winstanley, C; Hufnagel, K; Waterboer, T; Martin, DL; +6 more... Huston, WM; Gaydos, CA; Deal, C; Unemo, M; Dunbar, JK; Bernstein, K; (2018) Advancing the public health applications of Chlamydia trachomatis serology. The Lancet infectious diseases. ISSN 1473-3099 DOI: https://doi.org/10.1016/S1473-3099(18)30159-2

Downloaded from: http://researchonline.lshtm.ac.uk/4648485/

DOI: https://doi.org/10.1016/S1473-3099(18)30159-2

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Advancing the public health applications of Chlamydia trachomatis serology

Sarah C Woodhall, Rachel J Gorwitz, Stephanie J Migchelsen, Sami L Gottlieb, Patrick J Horner, William M Geisler, Catherine Winstanley, Katrin Hufnagel, Tim Waterboer, Diana L Martin, Wilhelmina M Huston, Charlotte A Gaydos, Carolyn Deal, Magnus Unemo, J Kevin Dunbar, Kyle Bernstein

Genital Chlamydia trachomatis infection is the most commonly diagnosed sexually transmitted infection. Trachoma is caused by ocular infection with C trachomatis and is the leading infectious cause of blindness worldwide. New serological assays for Chlamydia trachomatis could facilitate improved understanding of C trachomatis epidemiology and prevention. C trachomatis serology offers a means of investigating the incidence of chlamydia infection and might be developed as a biomarker of scarring sequelae, such as pelvic inflammatory disease. Therefore, serological assays have potential as epidemiological tools to quantify unmet need, inform service planning, evaluate interventions including screening and treatment, and to assess new vaccine candidates. However, questions about the performance characteristics and interpretation of C trachomatis serological assays remain, which must be addressed to advance development within this field. In this Personal View, we explore the available information about C trachomatis serology and propose several priority actions. These actions involve development of target product profiles to guide assay selection and assessment across multiple applications and populations, establishment of a serum bank to facilitate assay development and evaluation, and development of technical and statistical methods for assay evaluation and analysis of serological findings. The field of C trachomatis serology will benefit from collaboration across the public health community to align technological developments with their potential applications.

Introduction

Chlamydia trachomatis is an obligate intracellular bacterium that can cause both genital and ocular infections. Genital C trachomatis infection is the most common, curable STI worldwide, with an estimated 131 million new cases each year.1 Most infections are asymptomatic, but if left untreated can cause scarring of the upper reproductive tract in women and lead to serious complications in women, including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility.1 Trachoma is caused by ocular infection with C trachomatis and is the leading infectious cause of blindness worldwide.1 WHO estimates that around 190 million people are at risk of blindness from trachoma, with most of these people living in Africa. There has been substantial investment in the past decade in public health programmes to control both genital and ocular infection due to C trachomatis. Control efforts for genital chlamydia have largely focused on enhanced detection and treatment of C trachomatis among young adults, and for trachoma control efforts have focused on improved access to water, sanitation, and hygiene, and mass drug administration with azithromycin in affected communities.1 However, several important questions remain about C trachomatis epidemiology, the most effective means of control, and optimal models of surveillance.15,16 Given the ongoing control efforts and the promise of new C trachomatis vaccines,1 robust methods are needed to allow monitoring of and insight into the prevalence and incidence of chlamydia infection,7 and the progression to scarring sequelae. Measures of current infection based on DNA or RNA detection (ie, using nucleic acid amplification tests) provide an inadequate understanding of these features of C trachomatis infection. Therefore, alternative approaches are required, and in recent years interest in the use of serological assays within the fields of genital chlamydia and trachoma has been increasing.

Methods to detect C trachomatis antibodies in serum have been available for several decades.1 However, use of serological assays has been limited by C trachomatis cross-reactivity with other Chlamydia spp.,12,13 suboptimal sensitivity of many assays,12,13 an incomplete understanding about the longevity and clinical implications of C trachomatis antibodies, and the relationship between C trachomatis infection and antibody response.14 Consequently, the widespread use of chlamydia seroepidemiology decreased among researchers for several years, as did funding. Following the development of novel, sensitive, and more specific C trachomatis serological assays,15–17 there is now growing interest in the use of these assays as an epidemiological tool. For example, assays have been developed with the capability to detect antibodies against a range of C trachomatis antigens, lateral flow assays are being evaluated for field use, and dried blood spots have been used to facilitate specimen collection, transport, and storage (table 1).

The current understanding of mucosal immunity and C trachomatis immunology suggests that urogenital and ocular infections with C trachomatis lead to detectable IgG response with use of appropriate serological assays in most confirmed infections.15–21 Several factors affect the magnitude of IgG response and the ability of serological assays to detect a previous C trachomatis infection, including the target antibody, assay used, time since infection, and patient characteristics such as age, sex, and the number of previous C trachomatis infections.15–21 In a UK-based study15,17 that compared several assays in the same population, the sensitivity to detect a previous known chlamydia infection ranged...
Table 1: Chlamydia trachomatis serological assays and examples of their public health applications to date

<table>
<thead>
<tr>
<th>Platform or format</th>
<th>Antigens detected (antibody class or subclass)</th>
<th>Examples of public health applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measure seroprevalence or estimate incidence</td>
<td>Investigate association with disease</td>
</tr>
<tr>
<td>ELISAs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wills et al</td>
<td>Indirect ELISA</td>
<td>Pgp3 (IgG)</td>
</tr>
<tr>
<td>Geisler et al</td>
<td>Indirect ELISA</td>
<td>Elementary bodies from Chlamydia trachomatis serovars D/UW-3, F/ICCal-33, and Jl/UW-36 (IgG1, IgG3)</td>
</tr>
<tr>
<td>Horner et al</td>
<td>Double-antigen ELISA</td>
<td>Pgp3 (IgG, IgA, IgM)</td>
</tr>
<tr>
<td>Winstanley et al</td>
<td>Indirect ELISA</td>
<td>Pgp3 (IgG)</td>
</tr>
<tr>
<td>Albritton et al</td>
<td>Indirect ELISA</td>
<td>Elementary bodies from Chlamydia trachomatis serovars D/UW3/Cx and E/UWS/Cx (IgG, IgA)</td>
</tr>
<tr>
<td>Miechels et al</td>
<td>Indirect ELISA on dried blood spots</td>
<td>Pgp3 (IgG)</td>
</tr>
<tr>
<td>Menon et al</td>
<td>Multi-peptide indirect ELISA</td>
<td>12-mer peptides derived from HtrA, hsp60, and Ct443 (IgG)</td>
</tr>
<tr>
<td>Commercially available</td>
<td>ELISA or EIA</td>
<td>MOMP and hsp60 (IgG, IgA)</td>
</tr>
</tbody>
</table>

Multiplex bead arrays

Goodhue et al	Multiplex bead array	Pgp3 and CT694 (IgG, IgA)	32	32	32
Willhauck-Fleckenstein et al	Multiplex bead array	Pgp3 and CT694 (IgG, IgA)	33	33	33

Near-patient testing

| | | | |
| Gwyn et al | Lateral flow | Pgp3 (IgG, IgA, IgM) | 40-41 | 40-41 | 40-41 |

Whole proteome microarray

Budrys et al	ELISA-based proteome array	Representing 908B proteins of Chlamydia trachomatis strain D/UW3/Cx (IgG)	47	47	47
Lu et al	Whole proteome microarray	Representing 908B genomic and plasmid open reading frames of Chlamydia trachomatis strain D/UW3 (IgG, IgA, IgM)	48, 49	48, 49	48, 49
Hufnagel et al	Whole proteome microarray	Representing 895B proteins of Chlamydia trachomatis strain D/UW3/Cx (IgG, IgA, IgM)	50	50	50

Immunofluorescence

Chernesy et al	Whole-cell inclusion immunofluorescence	L2 serovar (IgG, IgA, IgM)	51	51	51
Commercially available	Micro-immunofluorescent assay	Elementary bodies from Chlamydia trachomatis serovars D-K (IgG, IgA, IgM)	52	52	52
Wang et al	Modified micro-immunofluorescent assay protocol	Elementary bodies from Chlamydia trachomatis (IgG)	53	53	53

This table is not intended to be a comprehensive review. ELISA=enzyme-linked immunosorbent assay. HtrA=high temperature requirement A protease. hsp60=heat shock protein 60. EIA=enzyme immunoassay. MOMP=major outer membrane protein. TARP=translocated actin-recruiting phosphoprotein. *Chlamydieng IgG ELISA medac assay, medac, Wedel, Germany, Chlamydia trachomatis EIA assay kit, Pathetech, Melbourne, Australia; and SeroCT RT kit, Savyon Diagnostics, Ashdod, Israel. † Chlamydia MIF IgG, Focus Diagnostics, Cypress, USA and SeroFIA, Savyon Diagnostics, Ashdod, Israel.

MD, USA (C Deal PhD) and WHO Collaborating Centre for Gonorrhea and Other Sexually Transmitted Infections, Örebro University, Örebro, Sweden (M Unemo PhD) Correspondence to: Dr Sarah C Woodhall, Centre of Infectious Disease Surveillance and Control, Public Health England, London NW9 5EQ, UK s.woodhall@nhs.net

from 46% (IgG pELISA plus medac assay, medac, Wedel, Germany) to 83% (Pgp3 double-antigen) in women and 40% (SeroCT; Savyon Diagnostics, Ashdod, Israel) to 54% (Pgp3 double-antigen) in men when compared with a previous C trachomatis diagnosis by nucleic acid amplification tests. Seroreversion (ie, loss of detectable antibodies) has been shown in some cases but varies by infection history and assay, with minimal loss of detectable antibody reported in one study using a Pgp3 double-antigen ELISA. In a study of C trachomatis seroprevalence in the context of mass azithromycin treatment for trachoma prevention in a high prevalence area, no instances of seroreversion were observed after 6 months. C trachomatis serological assays can therefore be used to measure age-specific cumulative incidence, despite representing a lower bound estimate due to potentially incomplete seroconversion and loss of detectable antibodies over time. C trachomatis antibody response has also been found to correlate with a known history of scarring sequelae. For example, titres of C trachomatis antibodies have been found to be higher in women with tubal factor infertility than in women without this disease and some specific antibodies have been found to be more common in women with known disease than in those without disease. Thus, serological assays might be used as a potential biomarker of disease.
Because the sensitivity of serological assays is inadequate, *Chlamydia trachomatis* serology has limited diagnostic value; in the absence of genetic diagnostic methods it is an accepted tool for presumptive diagnosis of lymphogranuloma venereum,6,9 but it is not used for diagnosis of other biovars. Instead, *Chlamydia trachomatis* serological assays have a potential role in monitoring and surveillance by providing a measure of history of *Chlamydia trachomatis* exposure among individuals tested. When applied to appropriate samples, such measures might be useful to inform resource allocation and possible clinical need by indicating the size of the population affected, and the effect of population-based interventions such as screening or mass drug administration.

Therefore in this Personal View, we explore the potential public health applications of *Chlamydia trachomatis* serology, discuss key challenges of its use, and finally propose priorities for research and development that might help advance the field of *Chlamydia trachomatis* control. This work grew out of an expert meeting convened by Public Health England in September, 2016 (The Public Health applications of *Chlamydia trachomatis* serology; London, UK), and subsequent discussions of studies relating to different assays presented at the 2016 European Society for Chlamydia Research meeting (Oxford, Sept 6–9, 2016).

Public health applications of *Chlamydia trachomatis* serology

Chlamydia trachomatis serology provides a means of quantifying the prevalence and incidence of chlamydia infection. A thorough understanding of population-level *Chlamydia trachomatis* prevalence and incidence is crucial to identify unmet needs for screening and treatment services and to evaluate the impact of *Ch. trachomatis* control interventions. However, obtaining reliable estimates of *Chlamydia trachomatis* prevalence and incidence is challenging. In the case of genital chlamydia, most *Chlamydia trachomatis* infections are asymptomatic, so an increase in screening would lead to an increase in reported diagnoses.61 As a result, surveillance is often centred on only case-based reporting, with scarce information about numbers of patients tested, resulting in an underestimate of the true incidence of *Chlamydia trachomatis* infection.62 Furthermore, comparability of surveillance data between countries is limited by differences in testing recommendations, performance characteristics of diagnostic tests, and reporting policies and practices.63,64 Even when the total number of people tested in a given country is known, interpreting estimates of the proportion of people who test positive for chlamydia infection is difficult, because the tested population has a different underlying risk from the general population. Therefore, the proportion testing positive will often present a biased measure of prevalence.64,65 Few countries have undertaken surveys of prevalence in samples of the general population, and when they have been done,66–68 the surveys were resource-intensive and unlikely to be feasible in many countries, because of the costs involved.

Chlamydia trachomatis seroprevalence as a marker of cumulative incidence has been used in several countries,7,20,21,32,52,74 to assess *Chlamydia trachomatis* epidemiology, and in some cases to investigate population effect of control interventions. In the field of trachoma, mass drug administration programmes have been successful in reducing *Chlamydia trachomatis* infection and *Chlamydia trachomatis*-related ocular disease.7,64,65 Longitudinal *Chlamydia trachomatis* serology monitoring has strong potential as a tool for post-elimination surveillance,46–48 and so provides an opportunity to evaluate programme effectiveness and possibly a further understanding of the public health response needed in countries where trachoma has not been eliminated.70,71 Subject to certain assumptions about the population sampled, *Chlamydia trachomatis* incidence can be estimated from repeated, cross-sectional *Chlamydia trachomatis* seroprevalence surveys,71 although it would be necessary to adjust for imperfect assay sensitivity and specificity (Ades AE, personal communication). *Chlamydia trachomatis* serology can also be used to detect step changes in exposures by birth cohort, which would be expected in the context of control measures.46,72 Distinguishing between recent and past or long-standing infections would also help determine the incidence of disease, and methods are already being developed to enable *Chlamydia trachomatis* serology to be used for this purpose.73

Another potential application of *Chlamydia trachomatis* serology is as a measure of diseases related to chlamydia infections, such as pelvic inflammatory disease or ectopic pregnancy. Because the end goal of *Chlamydia trachomatis* control is to reduce the incidence of disease, monitoring of disease biomarkers and not just of infection might improve understanding of whether *Chlamydia trachomatis* control is leading to a reduction in reproductive sequelae, even in the absence of substantial reductions in transmission. A *Chlamydia trachomatis*-specific biomarker of disease would be particularly useful, because *Chlamydia trachomatis*-related diseases might occur many years after the causative infection and *Chlamydia trachomatis* is not the only cause of long-term reproductive complications such as pelvic inflammatory disease, ectopic pregnancy, and tubal factor infertility.74 Measures of the proportion of long-term sequelae that are attributable to *Chlamydia trachomatis* infection (the so-called population excess fraction) are also essential to determine the need for and cost effectiveness of control interventions.

Serological methods have been used to investigate the relationship between *Chlamydia trachomatis* infection and sequelae as well as to estimate the proportion of long-term sequelae attributable to genital *Chlamydia trachomatis* infection.49,53,55,74 Novel approaches also offer some promise in this area; for example, Ades and colleagues55 have developed a method using finite mixture modelling of antibody titre to estimate the population excess fraction of tubal factor infertility caused by chlamydia
infection. Additionally, proteomic arrays are also being assessed as a means of identifying serological fingerprints to indicate the presence of disease related to genital *C trachomatis* infection and scarring following ocular infection.19

Another potential application of *C trachomatis* serology is development and evaluation of *C trachomatis* vaccines. The joint WHO and National Institutes of Health (NIH) sexually transmitted infection vaccine roadmap7 has set out the need for an effective *C trachomatis* vaccine.10 Substantial progress towards this vaccine has been made in recent years, with candidate vaccines now in the preclinical and clinical testing phases.7 Several priority action areas set out in the WHO and NIH roadmap might be addressed through the development and application of serological assays. This includes using serological assays to obtain better epidemiological data, improve understanding of the natural history of *C trachomatis* and burden of sequelae, and expedite clinical development and evaluation of candidate vaccines, thereby encouraging investment in *C trachomatis* vaccine development. Specifically, if acting as biomarkers for disease *C trachomatis* serological assays could be used to obtain more complete and precise estimates of the global burden of *C trachomatis*-associated sequelae, which are important for establishing the public health rationale for vaccination and for potential investors to assess the possible effect of investing in any successful vaccine candidate.7

When a safe vaccine candidate does enter a phase 3 clinical trial, *C trachomatis* serology could help identify *C trachomatis*-naive participants for recruitment, and help develop vaccination strategies through an understanding of age-specific exposure. Vaccine evaluation would also benefit from a biomarker of tubal damage for use as part of a clinical endpoint for assessing vaccine efficacy, because of the current diagnostic inaccuracy for *C trachomatis*-related outcomes such as pelvic inflammatory disease.1 The time and resources needed for a clinical trial of candidate *C trachomatis* vaccines with pelvic inflammatory disease or tubal factor infertility as outcomes might also be prohibitive. It is unclear whether serology will be able to provide such a biomarker of tubal damage, and serological methods might need to be used in combination with cellular markers or radiological findings. However, serology is an important area of research given the need for such measures in any future vaccine evaluation. Because *C trachomatis* infections (with the exception of lymphogranuloma venereum) are localised in the columnar epithelium, detection of antibodies from genital secretions has been proposed as a means of investigating correlates of immune protection against *C trachomatis*,21 which might complement serological investigations. Assessment of vaccine-induced immune responses will depend on the vaccine’s mechanism of action. Assays that distinguish between the natural and vaccine-induced antibody response will therefore be needed.

Key challenges to the use of Chlamydia trachomatis serology in public health

Although progress has been made in recent years, some important challenges remain within the field of *C trachomatis* serology that need to be addressed to improve the use and value of new serological assays in a public health context. Interpretation of *C trachomatis* seroprevalence is difficult; several complexities exist and include the following: not everyone exposed to *C trachomatis* will become infected, some individuals with this infection might not develop antibodies, women are more likely to develop detectable antibodies than men following urogenital *C trachomatis* infection,11,18,28 *C trachomatis* antibodies are not specific to the infection site (ie, ocular or urogenital), and seroprevalence can vary with the number of previous infections and time since infection as antibodies develop or wane.28 These complexities require careful consideration when planning studies and doing statistical analyses.

Determining assay sensitivity and specificity in the absence of universal guidelines is also challenging. The population that will be tested should be carefully considered when selecting positive and negative controls (ie, those with or without infection or disease) and setting assay thresholds. For example, a study aimed at investigating *C trachomatis* infection might need a different definition of positive and negative controls than a study aimed at investigating *C trachomatis*-associated disease. A further challenge involves the choice of thresholds that define *C trachomatis* antibody response in different populations, because serological assays might be affected by differences in cross-reactivity and background antibody concentrations, which can vary for example by country or ethnicity, or both.

The relative performance of different tests cannot easily be determined without evaluation against the same reference sera. Some laboratory-developed assays have been compared with commercial assays or other laboratory-developed assays,13,15,45,46 but there are few data available to show how different assays perform within the same population. To establish performance characteristics of *C trachomatis* serological assays for different applications and populations, large numbers of serum samples linked to well characterised clinical and demographical information are needed. Serum samples from previous studies (eg, human papillomavirus vaccine trials77 and HIV unlinked anonymous testing78) or residual samples from clinical testing22 could be used, but they often have limited clinical or demographical information, and varying access arrangements mean that assays have not been evaluated on comparable samples.

Optimal test characteristics might vary between different applications of *C trachomatis* serology,
suggesting that different characteristics might be prioritised. For example, a test to measure whether someone has had *C trachomatis* infection will need to detect antibodies that persist over time at relatively low concentrations with high specificity. However, a test that is used to estimate the population excess fraction would ideally be able to distinguish between complicated and uncomplicated *C trachomatis* infections (eg, by identifying high versus low concentrations of antibody in serum, or antibodies specifically associated with complications).

Similarly, the context in which an assay is to be deployed will influence prioritisation. For example, in a research setting, tests could be more operator-intensive and less cost-effective than tests used for ongoing surveillance given limited government budgets. Furthermore, a test requiring high volume of sera might be acceptable in a setting where additional blood can be collected from consenting patients, whereas surveillance systems relying on leftover sera from routine testing might have an inadequate volume available. Applications of *C trachomatis* serological assays in a surveillance context might be more tolerant to some reduced precision than when used within a vaccine trial, where previous infection needs to be ruled out to precisely define populations for inclusion in any efficacy analysis.

Priority actions for research and development

To address these challenges, we suggest three priority actions for research and development (panel).

Generating target product profiles

Target product profiles originated in the field of drug development to focus discussions between regulatory authorities and research sponsors. They allow the drug development process to be directed with the end goal in mind, so that both patient and market needs are met. The process of establishing target product profiles is now commonly used in drug and vaccine development and their use has also extended into the field of diagnostics—eg, for tuberculosis and point-of-care diagnostics for sexually transmitted infections. Target product profiles for *C trachomatis* serological assays should establish the minimal and optimal assay requirements for the different applications previously described. Table 2 sets out some of the initial considerations that can be used to inform target product profiles. A target product profile requires broad technical consultation across clinical, microbiological, and epidemiological fields, as well as representation from vaccine and diagnostic development companies, research groups, public health agencies, and funders.

Establishing a serum bank

A well defined serum bank focused on the evaluation of *C trachomatis* serology will be an invaluable resource. The value of serum banks in research of infectious diseases was recently set out in an Editorial in *The Lancet*, which highlighted the role serological studies could play in understanding worldwide distribution of disease and argued for the establishment of a World Serology Bank. The development of a *C trachomatis*-specific serum bank would enable clear and fair access to specimens and relevant epidemiological and clinical data (eg, age, sex, and a history of *C trachomatis* infection).

Panel: Priority actions to further develop the public health applications of *Chlamydia trachomatis* serological assays

Generate target product profiles for *C trachomatis* serological assays

- What are the minimal or optimal characteristics of *C trachomatis* serological assays for different purposes (eg, design and evaluation of genital *C trachomatis* control programmes, design and evaluation of trachoma or ocular *C trachomatis* control programmes, or vaccine development and evaluation) and measures (eg, seroprevalence of *C trachomatis* antibodies as a measure of prevalence and incidence, measure of population excess fraction of disease such as pelvic inflammatory disease or tubal factor infertility, biomarker of disease either alone or in combination with other measures, measure of being *C trachomatis*-naïve, or measure of vaccine-induced immune response)?
- What are the minimal or optimal characteristics of the aforementioned purposes and measures in different countries?

Establish a serum bank

- Adequate volumes of well characterised serum samples from individuals who have had *C trachomatis* infection and sera from those who have not had this infection should be included. Samples should be stored from individuals of a variety of ages and ethnicities, including children who might still have the maternal antibody, with different characteristics including the numbers of known infections, time since treatment, and presence of known reproductive tract or ocular complications.
- Standardised assessments of clinical outcome and epidemiological data should be incorporated
- The serum bank should be established with appropriate access arrangements.

Develop methods for assay evaluation and analysis of serological findings

- Define how sensitivity and specificity be estimated for different purposes
- Define how positive and negative controls should be selected for different test applications?
- Better understand what thresholds should be used for each assay for different test applications or test settings
- Define how head-to-head comparison studies be done
- Explore and assess what statistical methods should be used to measure epidemiological parameters (eg, incidence of infection and population excess fraction)?

www.thelancet.com/infection
Some applications of *C trachomatis* serology, such as the identification of biomarkers of scarring sequelae or developing serological assays to distinguish between infection and exposure, might also benefit from simultaneous assessment of cellular immunity. Therefore, collections that incorporate both serum and whole blood specimens would be particularly valuable, although it would require different regulatory permissions in some settings and would incur additional expenses for collection and storage arrangements.

Developing methods for assay evaluation and analysis

Shared protocols to guide assay evaluation would allow for comparability of estimates with use of *C trachomatis* serological methods across assays and increase consistency of reporting. Evaluation protocols should incorporate a consensus position on optimum methods of estimating sensitivity and specificity of *C trachomatis* serological assays, and recognise the need for selection of controls and assay thresholds to be determined according to the intended application while also considering the potential for cross-reactivity. Future efforts should also focus on development and application of statistical methods to appropriately analyse *C trachomatis* serological findings.

Conclusions

As the reported incidence of reported cases of *C trachomatis* infection remains high or continues to increase in many developed countries, the use of *C trachomatis* serology in several areas of public health is likely to be effective, and has already provided further insight into *C trachomatis* epidemiology and natural history. We explored the available information about *C trachomatis* serology and identified three priority actions that we believe would directly benefit public health and advance knowledge within the *C trachomatis* field.

As public health agencies continue to address the high rates of *C trachomatis* infection and the considerable morbidity that arises as a result, a more data-driven approach to programmatic decision making at the country, state, and municipality level is essential. Promising interventions, including vaccines, do and will need robust measures for estimating the population at risk and for determining the potential effect of prevention measures.

Contributors

SCW, RJG, JKD, and KB organised and delivered the expert meeting, which was attended by all the authors. SCW and SJM did the literature searches. SCW wrote the first draft of the manuscript. All authors commented on the manuscript and approved the final version.

Declaration of interests

WMG has received grants from Genocea Biosciences and Moderna Therapeutics, outside the submitted work. WMH has a pending patent for *Chlamydia trachomatis* diagnostic peptide and method (PCT/AU2013/001333). PJH has received personal fees from the Crown Prosecution Service, the British Association for Sexual Health and HIV, grants from Mast Group, and non-financial support from Hologic, outside the submitted work. Additionally, PJH has a patent for a sialidase spot test to diagnose bacterial vaginosis issued to the University of Bristol, Bristol, UK. All other authors declare no competing interests.

Acknowledgments

We thank all participants at the Public Health England expert meeting for their contribution to the discussions. We also thank Paula Blomquist and Nastassy Chandara (Public Health England, London, UK) for their assistance with organising and delivering the meeting. The meeting was supported by funds from Public Health England. SCW thanks Anne Johnson (UCL, London, UK). Anthony Nardone and Kate Soldan (Public...
Health England, London, UK) and Myra McClure (Imperial College London, London, UK) for mentorship, supervision and expert advice received during her PhD and her work with Public Health England, which informed many of the ideas discussed at the meeting and provided motivation for its inception. All authors wish to acknowledge support from the National Institute of Health Research Health Protection Research Unit (NIHR HPRU) in Evaluation of Interventions at the University of Bristol and the NIHR HPRU in Blood Borne and Sexually Transmitted Infections at University College London in partnership with Public Health England. The views expressed are those of the authors and not necessarily those of the National Health Service, the NIHR, the UK Department of Health, Public Health England, the US Centers for Disease Control and Prevention, or WHO.

References

Miller WC. Epidemiology of chlamydial infection: are we losing ground? Sex Transm Infect 2008; 84: 82–86.

© 2018 Elsevier Ltd. All rights reserved.