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Abstract

Health economics studies with missing data are increasingly using approaches

such as multiple imputation that assume that the data are “missing at random.”

This assumption is often questionable, as—even given the observed data—the

probability that data are missing may reflect the true, unobserved outcomes,

such as the patients' true health status. In these cases, methodological guidelines

recommend sensitivity analyses to recognise data may be “missing not at ran-

dom” (MNAR), and call for the development of practical, accessible approaches

for exploring the robustness of conclusions to MNAR assumptions.

Little attention has been paid to the problem that data may be MNAR in health

economics in general and in cost‐effectiveness analyses (CEA) in particular. In

this paper, we propose a Bayesian framework for CEA where outcome or cost

data are missing. Our framework includes a practical, accessible approach to

sensitivity analysis that allows the analyst to draw on expert opinion.

We illustrate the framework in a CEA comparing an endovascular strategy

with open repair for patients with ruptured abdominal aortic aneurysm, and

provide software tools to implement this approach.

KEYWORDS
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1 | INTRODUCTION

Health economic evaluations use evidence from multiple sources including meta‐analyses, single randomised controlled
trials (RCTs), and observational studies. A general concern is missing data, for example, because patients are lost to fol-
low‐up or fail to provide complete responses to questions about their health status or resource use. Multiple Imputation
has been widely recommended for handling missing data (Briggs, Clark, Wolstenholme, & Clarke, 2003; Faria, Gomes,
Epstein, & White, 2014; Gomes, Diaz‐Ordaz, Grieve, & Kenward, 2013; Hunter et al., 2015; Hughes et al., 2016), but typ-
ically assumes that data are “missing at random” (MAR).1
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Broadly speaking, the MAR assumption can be expressed in two ways (Carpenter & Kenward, 2013, Ch. 1). First, the
probability that data (e.g., on health outcomes) are observed is independent of their true value, conditional on the fully
observed data (selection perspective). A second perspective and one we use in this paper is that given the fully observed
data, the distribution of potentially missing data does not depend on whether those data are observed (pattern‐mixture
perspective).

Unfortunately, the MAR assumption cannot be verified from the data collected within the study. Therefore, it is
important to assess the robustness of conclusions to plausible departures from MAR—in other words to plausible Miss-
ing Not At Random (MNAR) mechanisms. Thus, methodological guidelines for handling missing data recommend that
studies undertake sensitivity analyses to recognise that the data may be MNAR (Little et al., 2012; Sterne et al., 2009),
and call for the development of relevant, accessible methods for such sensitivity analysis.

This is particularly relevant for studies that report self‐reported outcomes, such as health‐related quality of life (QoL;
Faria et al., 2014; Fielding, Fayers, McDonald, McPherson, & Campbell, 2008), where the chance of observing the
patient's QoL and their true QoL are both likely to be driven by their health status at that time, which is unobserved.
However, although there have been numerous papers in the general econometrics and biostatistics literatures proposing
MNAR models, recent reviews of published economic evaluations found that these methods are rarely adopted (Gabrio,
Mason, & Baio, 2017; Leurent, Gomes, & Carpenter, 2018; Noble, Hollingworth, & Tilling, 2012). This limitation in the
way missing data are handled in cost‐effectiveness analyses (CEA) extends to other empirical health economics studies
that rely on information collected from patients and the public, such as comparisons of provider performance (Gomes,
Gutacker, Bojke, & Street, 2016), evaluations of health policies (Grieve, Sekhon, Hu, & Bloom, 2008), or studies that
elicit patient preferences (Ryan, Gerard, & Amaya‐Amaya, 2008).

This paper aims to address this issue by proposing and illustrating a practical Bayesian framework for the analysis of
CEA data with a nontrivial proportion of missing values. Our framework makes use of our recently developed web‐
based tool for eliciting information about missing values from experts (Mason et al., 2017), and we further provide anno-
tated WinBUGS code to allow others to implement the approach.

An advantage of undertaking the analysis from a Bayesian perspective is it naturally allows uncertainty about the
missing data mechanism to be propagated through into the eventual measures of decision uncertainty. In particular,
a fully Bayesian MNAR analyses can directly incorporate expert opinion about differences between those with missing
versus observed outcome data (Garthwaite, Kadane, & O'Hagan, 2005; O'Hagan et al., 2006) through specifying prior
distributions; see, for example, White, Carpenter, Evans, and Schroter (2007) and Smuk, Carpenter, and Morris
(2017). Although fully Bayesian methods for handling MNAR have not been previously considered in health economics
studies, this approach builds on Bayesian approaches to CEA more generally (Baio, 2014; Grieve, Nixon, & Thompson,
2010; Nixon & Thompson, 2005; O'Hagan & Stevens, 2001; Thompson & Nixon, 2005). In particular, Lambert,
Billingham, Cooper, Sutton, and Abrams (2008) discussed Bayesian models for dealing with incomplete costs, but
assumed the data were MAR.

A common barrier to the use of fully Bayesian approaches is the lack of practical tools for eliciting expert opinion
(Cooper, Spiegelhalter, Bujkiewicz, Dequen, & Sutton, 2013; Hadorn, Kvizhinadze, Collinson, & Blakely, 2014). Elicita-
tion methods previously developed for single parameters in decision models (Leal, Wordsworth, Legood, & Blair, 2007)
are not applicable to settings, such as CEA, that use patient‐level data. In such settings, it is necessary to recognise that
parameters may differ by treatment groups, and may be correlated with one another. Previous elicitation studies have
used group consensus, for example, Delphi methods, but these are relatively time consuming and difficult to implement
(Sullivan & Payne, 2011). However, we have recently addressed this by developing a practical web‐based tool for
eliciting the expert opinion required for CEA that use RCT data (Mason et al., 2017).

We now build on this to present a practical Bayesian framework for the analysis of data from a health economics
study with missing data. We illustrate this framework in the analysis of CEA data from a multicenter RCT (IMPROVE)
that compared an emergency endovascular strategy (eEVAR) with open repair for patients with ruptured abdominal
aortic aneurysm (Grieve et al., 2015). This study found that the eEVAR strategy was cost‐effective, due to improvements
in average QoL, but these data were missing for 20% (3 months follow‐up) and 24% of patients (12 months). Although
Grieve et al. (2015) used Multiple Imputation, assuming values were MAR, it is unclear whether the conclusion that
eEVAR is relatively cost‐effective is sensitive to alternative assumptions about the missing data. Hence, this study exem-
plifies the more general requirement for a framework for addressing missing data in CEA.

The remainder of the paper proceeds as follows. Section 2 describes the strategy for the sensitivity analysis, illus-
trated using the IMPROVE study in Section 3. Section 4 discusses the findings and provides some suggestions for further
research.
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2 | FRAMEWORK FOR SENSITIVITY ANALYSIS

Our proposed framework follows general methodological recommendations (Little et al., 2012; White, Horton, Carpen-
ter, & Pocock, 2011) tailored to the particular requirements of CEA that use data from a RCT. Figure 1 summarises the
key steps of our proposed strategy. Briefly:

1 At the design stage, use previous studies and expert opinion to anticipate the extent, pattern, and causes of missing
data. Identify predictors of the missing data and incorporate into the data collection, and minimise the potential for
missing data.

2 Formulate the statistical model for the analysis.
3 In the protocol, specify a contextually plausible assumption about the missing data for the base case analysis.
4 Specify the scope of sensitivity analyses for themissing data, and collect prior information from experts to inform these.
5 When the data are available, perform the base case and sensitivity analysis.
6 Report the results of the base case analysis, and discuss the extent to which they are robust under the sensitivity

scenarios.
2.1 | A flexible statistical model to facilitate sensitivity analysis

We extend Bayesian approaches for CEA that use RCTs to settings with missing data (Baio, 2013; Nixon & Thompson,
2005). At baseline, and at scheduled times over the course of the trial follow‐up, we observe QoLij, from patient i=1,…,n
at follow‐up visit j=1,…, J, where patient i is randomised to intervention arm k=1,…,K, where k=1 is the reference, or
control, arm. We also observe a vector of baseline covariates xi for each patient.

We assume that the cost is the aggregate cost calculated over the requisite time horizon, and denote this by Costi. To
construct the quality‐adjusted life year (QALY), a generic outcome measure typically required by decision makers, QoL
measurements are combined with patient's survival. This weighted process is often described as

QALYi ¼ ∑
J

j¼1
QoLij×tij (1)
FIGURE 1 Key steps in our proposed sensitivity analysis framework for addressing data that are MNAR in cost‐effectiveness analysis. CEA:

cost‐effectiveness analyses; MAR: missing at random; MNAR: missing not at random [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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where tij is the duration of the jth follow‐up assessment expressed as a fraction of 1 year (Manca, Hawkins, & Sculpher,
2005).

The general statistical model has two parts: (a) a multivariate model for the repeated QoL scores measured on the
individual patients over time and (b) a bivariate model of costs and effects, allowing the calculation of treatment effects.
For ease of exposition, the first part is specified as an arm‐specific unstructured multivariate normal model, but the
framework allows for alternative distributions (e.g., Basu & Manca, 2012, propose using a Beta distribution).
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(3)

where k=1,…,K indexes the intervention arm. Treatment contrasts can be estimated as differences between the γ
parameters.

Model (3) is our substantive model, which may be extended to include covariates, from which inferences for quan-
tities such as the incremental net benefit can be directly derived. Model (2) is essentially an imputation model for miss-
ing QoL values. The covariates are included to reduce the variability of the imputed data and increase the plausibility of
the MAR assumption. For the fully Bayesian approach adopted in our framework, both models are fitted simultaneously
by linking νq and Ω in (3) to μj and Σ in (2). An example of this is provided in the discussion of the statistical model for
our application in Section 3.

We can choose vague priors for the regression parameters, and in general a Wishart prior with minimum degrees of
freedom for Σk. For bivariate data, we show in Appendix A how to specify (3) using a conditional step; this allows us
more flexibility over the prior for the elements of Ω, and facilitates extensions to gamma models for costs.
2.2 | Sensitivity analysis model

Methodological guidelines suggest three broad approaches to sensitivity analysis for missing data, that is, exploring the
robustness of inferences to the possibility that the distribution of the missing values may differ from that of the observed
ones. These are latent variable models, selection models, and pattern‐mixture models (Molenberghs et al., 2015, Ch. 15).
Here, we focus on the pattern‐mixture approach, because this approach —which looks at each pattern of missing data
in turn—allows us to make relevant, accessible assumptions to explore plausible departures from MAR.

For our general sensitivity analysis model, we modify μij and νci from Equations 2 and 3 as follows:

μij ¼ xTi βjk þ ð1−RijÞΔjk

νci ¼ γck þ ð1−SiÞΓ
(4)

where Rij=1 if QoLij is observed and 0 otherwise; Si=1 if patient i's cost is observed and 0 otherwise, and k as before.

Writing Δk=(Δ1k,…,ΔJk)
T, and Λ ¼ ðΔT

1 ; ⋯;ΔT
K ;ΓÞT ; we can assume the sensitivity parameters are distributed

Λ∼MVNðμΛ;ΣΛÞ (5)

Each of the Δijk parameters represents the average (marginal) difference between the observed and missing values of
QoLijk. However, the distribution implied for any individual missing value will also be influenced by the observed QoLs
for that individual, through the covariance matrix Σk.
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2.3 | Choosing sensitivity parameters

The number of sensitivity parameters can quickly become large with increasing time‐points. Because none of these
parameters are observed, a sensible strategy is to discuss with subject‐matter experts which of the parameters are most
relevant, and how to plausibly inform the choice of values. For example, researchers may decide to focus on sensitivity
parameters early in the follow‐up, where clinical experts have more frequent interaction with patients and are more
likely to recall possible (unmeasured) reasons for the missing data. Also, if the intervention is for an acute illness,
the researchers may anticipate that the results will be relatively sensitive to any change in short term outcomes, whereas
for a chronic illness, longer term outcome may be of greater importance. In addition, one may wish to focus on specific
outcomes that are more likely to be MNAR, such as QoL, and assume MAR for others such as costs.

Our approach for determining the choice of values for the sensitivity parameters is to elicit information about the Λ's
from experts. A particular strength of this approach is that it allows us to quantify how experts would interpret the
study, taking into account their (often implicit) understanding of the differences between the observed and missing
QoL values.

There are alternatives (Carpenter, Roger, & Kenward, 2013; Carpenter & Kenward, 2013, Ch. 10), and here we
briefly describe two. The first, often known as the “delta” method (Faria et al., 2014; Leurent, Gomes, Faria, et al.,
2018), sets ΣΔ=0 and typically all the Δjk to be equal. Sensitivity analysis then proceeds by increasing Δ until a “tipping
point”, Δtip, is reached (e.g., the intervention is no longer cost‐effective) and then discussing the plausibility of Δtip. Var-
iants of this include only the first of a patient's missing values to be changed by Δ, or changing the first missing value by
Δ, the second by 2Δ, and so on, thus reflecting the time of dropout. Although this approach can be justified in some
settings, a general criticism is that it is implausible that ΣΔ=0. A second approach is to specify the Δ's implicitly, by
reference to other arms or groups of patients within the study. For instance, active patients with missing values can
be imputed as if they belong to the reference arm. One limitation of the reference‐based approach is that it is not very
intuitive/straightforward for intermittent missing data, because it is more challenging to make plausible references to
other treatment arms intermittently over time. Our approach has the potential to make more plausible assumptions
about the missing data compared with the delta method and the reference‐based approach, because it provides the flex-
ibility to incorporate external/additional information (e.g., expert opinion) about the reasons for the missing data.

A “strategy” to simplify the number of sensitivity parameters has been already outlined above. In the simplest set-
ting, focusing on one outcome (QoL), a two‐arm trial and one time point (J=1), there will be five parameters to elicit:
the two components, μ1,μ2 of μΛ, and the three components (σ1,σ2,ρ) of ΣΛ.

In practice, further challenges arise eliciting information for these parameters for J>1 time points. An alternative is
to use the information elicited about Δ at a single time‐point to inform the sensitivity parameters at other follow‐up
assessments, for example, by drawing from the same distribution or using (possibly varying) multiples of Δ.
2.4 | Elicitation

Eliciting expert opinion involves (a) identifying experts whose knowledge about the prognosis and outcomes of the
patients in the RCT with missing data exceeds the information in the available data, (b) developing a suitable approach
for eliciting expert opinion, and (c) conducting the elicitation and synthesising the responses.

With individual elicitation, each expert gives their view independently, and these views are expressed numerically
and then appropriately aggregated. For sensitivity analysis, this approach is desirable because (a) the purpose is to elicit
probability distributions for sensitivity parameters, rather than agreeing on a single value, and (b) it encourages more
experts to participate; see O'Hagan et al. (2006) and White (2015) for further details. The alternative, group elicitation,
allows experts to debate and reach consensus about the elicited values, but is more time consuming and limits the num-
ber and range of experts included.

Using individual elicitation, sensitivity analysis can be based on different priors, including distinct individual priors
to retain diversity of opinion and one or more pooled priors that combine the opinion of multiple experts. Our mathe-
matical aggregation method is linear pooling (O'Hagan et al., 2006).

To convert expert opinion about the differences between patients with observed and missing outcomes into an infor-
mative prior, we must elicit an expected value or point estimate, which corresponds to the value that the expert believes
is most likely, together with the expert's uncertainty about this estimate. In the context of a CEA that uses RCT data,
estimates are required by randomised arm, together with an estimate of the correlation between treatment arms. We
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have recently developed, piloted, and made available a web application to do this, which successfully elicited prior dis-
tributions for μ1,μ2 and the three components σ1,σ2,ρ (Mason et al., 2017).
3 | APPLICATION TO THE IMPROVE STUDY

Using the IMPROVE study, we now illustrate how to use our elicitation tool and implement the proposed sensitivity
analysis framework using a fully Bayesian approach.
3.1 | Overview

IMPROVE was a multicenter RCT and CEA that investigated whether eEVAR was effective and cost‐effective versus
open repair for patients with suspected ruptured aortic aneurisms (see Grieve et al., 2015 for details). The published
CEA reported that eEVAR led to an increase in average QoL (EQ‐5D‐3L) at both 3 and 12 months post randomisation,
and a reduction in average costs up to 12 months, leading to a positive incremental net benefit (INB) of £3877 (95% CI:
£253, £7,408) assuming a willingness‐to‐pay of 30,000GBP per QALY gain.

However, the IMPROVE trial illustrates a number of typical missing data issues in CEA. Although all deaths are
recorded, of the 301 eligible patients who survived to 12 months, 20% and 24% of patients failed to return their QoL
questionnaires at 3 and 12 months, respectively. In addition, some patients were missing data for costs (over 40%)
and for a baseline prognostic covariate, the Hardman index (a disease‐specific morbidity score; over 10%). Overall, of
the eligible patients who survived to 12 months, only 138 (46%) had complete data for costs, QoL, and the Hardman
index.
3.2 | Step 1: Anticipate and reduce the extent of missing data at the design stage

At the design stage of the IMPROVE trial, missing data were anticipated for the QALY and cost endpoints because clin-
ical trials often fail to collect all intended information about QoL and resource use variables. Regarding the costs, data
on the main resource use components such as hospital length‐of‐stay and medical devices were planned to be collected
using case‐report forms. In this context, costs were anticipated to be Missing Completely At Random because any miss-
ing data were expected to be due to administrative errors unrelated to patients' incurred costs. Questionnaires for com-
munity care use were expected to lead to a higher proportion of missing costs, but these community costs were a very
small component of the total cost.

On the other hand, QoL measures were reliant on patient‐reported questionnaires administered at 3 and 12 months
follow‐up, and hence we anticipated a higher proportion of missing data. In discussion with clinical experts and trial
coordinators, it was recognised that the MAR assumption would be less plausible for the QoL endpoint, because the
chance of completing the EQ‐5D‐3L questionnaires might be related to the patient's true health status. However, there
was little evidence about a clear MNAR mechanism in this context (literature and/or expert opinion). As a result, we
carefully considered the collection of important patient characteristics, such as age and Hardman Index that were antic-
ipated to be strong predictors of both QoL and the probability of observing the data. By measuring and including such
variables in the analysis, this would help make the MAR assumption more plausible for the base case analysis.

In addition, we have taken a number of active steps to reduce the extent of missing data. For example, we have
encouraged patients to complete their resource use and QoL questionnaires during follow‐up appointments and pro-
vided assistance when requested. In addition, patients were sent reminders (phone calls) whenever they have failed
to return their completed questionnaires.
3.3 | Step 2: Statistical model

We illustrate our approach with the 12 month survivors from the IMPROVE trial, eligible for follow‐up. For these
patients, QALY is calculated as a combination of two QoL scores (at 3 and 12 months), QoLi1 and QoLi2. Therefore,
including covariates, the base case analysis models for the QoL (2) and cost‐effectiveness endpoints (3) are refined as
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(6)

where η are treatment specific intercepts, k=1,2 indexes the eEVAR and open repair groups, and hardman(i)=1,…,5 is
the Hardman index indicator for individual i. All other parameters, including σc, are given vague priors.

To enable a fully Bayesian approach, the joint models for the QoL imputation and substantive models are directly
linked through the parameters for the QALY distributions. Three covariates are included in both models: age and sex
are fully observed, but hardman is incomplete, requiring the addition of a covariate imputation model (see Supporting
Information for details).

This model is fitted using the WinBUGS software (Lunn, Thomas, Best, & Spiegelhalter, 2000), and for ease of imple-
mentation is specified using a conditional formulation for the bivariate data. Details are provided in Appendix A,
including prior specification.
3.4 | Step 3: Missing data assumption for the base case analysis

Drawing on the protocol for the CEA analysis, discussed in Step 1, the base case analysis assumed both costs and QoL
were MAR. We started by investigating missing data patterns and observed predictors of missing data across both cost‐
effectiveness endpoints, in order to better understand the actual reasons for the missing data and the need to assess
possible departures from the MAR assumption. Table 1 reports the overall proportion of missing data in the 1‐year
cost‐effectiveness endpoints, which is slightly higher for the open repair arm. As typical in CEA, the IMPROVE study
reported an intermittent missing data pattern (Table S1), for example, with some patients having missing QoL at 3‐
months but not at 12‐months, and vice‐versa.

There was evidence from an analysis of the IMPROVE data that the missing data predictors differed between cost‐
effectiveness endpoints and over time. For example, there was some evidence that the chance of observing QoL at
3 months was related to patients' hospital length‐of‐stay, whereas at 12 months, other patient characteristics, such as
age and blood pressure, were also predictive of missingness. As anticipated at the design stage, the probability of observ-
ing costs seemed to be unrelated to patients' baseline characteristics.
TABLE 1 Level of missing data by treatment arm for eligible patients who survived to 12 months in the IMPROVE trial

eEVAR Open repair Total

Number of patients 161 140 301
Outcomes: n (%) missing
EQ‐5D at 3 months 27 (17) 33 (24) 60 (20)
EQ‐5D at 12 months 34 (21) 38 (27) 72 (24)
Costs at 12 months 72 (45) 69 (49) 141 (47)

Baseline covariates: n (%) missing
Hardman Index 16 (10) 20 (14) 36 (12)

Note. Age, sex, and time to death are also used in the cost‐effectiveness analyses, but are excluded from this table as they are fully observed
where required. eEVAR: endovascular strategy.
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3.5 | Step 4: Sensitivity analysis

We allow the QoL endpoint to be MNAR and modify the statistical model in (6) to include treatment specific sensitivity
parameters in the specification of μi1 and μi2 as described in Section 2.2, with the simplifying assumption that theΔ are time
invariant. To inform the priors for these sensitivity parameters, for the IMPROVE trial we designed a questionnaire to elicit
opinion from clinical experts. A full description of the elicitation is reported elsewhere (Mason et al., 2017). Briefly, the
main purpose of the elicitation was to quantify differences in the mean QoL score between patients who did, and did
not, complete QoL questionnaires at 3 months, across the eEVAR and open repair arms. To allow for the possibility that
the elicited values in the two arms are correlated, for example, expert belief in a high QoL score for the open repair arm
maymake a high score in the eEVAR armmore likely, we also asked experts about the score in the eEVAR arm conditional
on a given score for the open repair arm. The questionnaire followed general recommendations for the design of elicitation
surveys (Johnson, Tomlinson, Hawker, Granton, & Feldman, 2010; O'Hagan et al., 2006).

We developed a web‐based elicitation tool, in which the questionnaire was embedded, using a web application
framework (Shiny package) within the widely used statistical software, R (Chang, Cheng, Allaire, Xie, & McPherson,
2015; RStudio, Inc, 2015). We framed the main questions in terms of “typical” IMPROVE patients and asked the expert
for their most likely QoL and to indicate graphically their uncertainty about this level. We represented the distribution
of their views according to a normal distribution. We invited 46 experts, comprising trial investigators and coordinators
(including surgeons and vascular nurses) from the IMPROVE trial to complete the questionnaire either online or face‐
to‐face at The Vascular Society Annual Scientific Meeting (2015).

Twenty‐six experts completed the survey, 15 face‐to‐face, 11 online, of whom 17 were doctors and 9 nurses. Figure 2
a,b shows the range of expert belief about plausible values for patients with missing QoL data randomised to the eEVAR
and open repair treatment arms respectively. The grey lines represent the views of individual experts, and the thick
black lines their combined views. Figure 2c shows the pooled prior based on all experts as a series of contours, with
the underlying marginal distributions superimposed on the axes. This pooled prior is an average of the individual dis-
tributions, based on linear pooling with equal weights, and specified as a mixture of the bivariate normal distributions
for each expert.

We also formulated pooled priors according to the expert's background (doctors vs. nurses), and mode of completion
(face‐to‐face vs. online). We explored the sensitivity of the results to individual priors, namely, the most sceptical and
enthusiastic experts (believed QoL score 0.2 higher for open repair and 0.29 higher for eEVAR, respectively), the most
and least certain experts.
3.6 | Step 5: Analysis

All the models were run with two chains initialised using diffuse starting values to produce a sample of 50,000 after con-
vergence for posterior inference. Convergence is assumed if the Gelman–Rubin convergence statistic (Brooks & Gelman,
1998) for individual parameters is less than 1.05 and a visual inspection of the trace plot for each parameter is
satisfactory.
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Table 2 reports the results of the sensitivity analysis, MAR, and complete case analysis. The incremental QALYs and
costs include decedents and patients ineligible to follow‐up, as well as 12‐month survivors (see Supporting Information
for model details).
3.7 | Step 6: Interpretation of results

Most MNAR scenarios reported a somewhat higher incremental QoL at both 3 and 12 months, and wider 95% credible
intervals, compared with the MAR scenario. The combined opinion from nurses led to a smaller incremental QoL than
that of doctors. Experts elicited at conference and online produced similar results. The MAR and MNAR scenarios pro-
vided similar incremental QALY, but the latter provided greater uncertainty. The different assumptions about the miss-
ing QoL data led to similar incremental costs across scenarios.

We also report the INB (assuming a willingness‐to‐pay of 30,000GBP per QALY gain) and the probability of eEVAR
being cost‐effective, across the different scenarios. Figure 3 shows the full posterior distribution of INB as a density strip,
with the mean and 95% credible interval marked (Jackson, 2008). The probability that eEVAR is cost‐effective (i.e., the
INB is positive) remains above 0.75 across the alternative departures from MAR, including the scenario where the priors
are based on the most sceptical expert.
4 | DISCUSSION

This paper proposes and illustrates a flexible Bayesian framework for conducting sensitivity analysis to potential depar-
tures from MAR, allowing more realistic assumptions to be made about missing data in health economic evaluation. As
part of this framework, we develop a fully Bayesian pattern‐mixture model to allow for potential departures from MAR.
We provide a strategy, and accompanying web‐based tool, to elicit expert opinion and use this to define the requisite
priors within the Bayesian model. This sensitivity analysis strategy is considered within the IMPROVE trial, where
we find that the conclusion, that eEVAR is relatively cost‐effective, is robust to a wide range of departures from the
assumption that QoL data are MAR. More widely, this framework can help future CEA and health economics studies
communicate the impact of alternative assumptions about the missing data to decision makers and health policy
makers, for whom concern about missing data may lead to the study's findings being misinterpreted or disregarded.
These may include settings where a wider range of endpoints including costs, but also survival or no events are liable
to be MNAR.

This paper extends standard Bayesian approaches developed for CEA that use clinical trials (Baio, 2013; Nixon &
Thompson, 2005) to address the typical concern that data are likely to be MNAR in this setting. Here, a fully Bayesian
approach has several advantages. First, the uncertainty about the missing values is automatically and coherently prop-
agated through the model and reflected in the quantities calculated for decision making. Second, Bayesian models pro-
vide scope for incorporating expert information about the missingness through the priors, while accommodating typical
features in CEA such as bivariate endpoints and covariate adjustment. Software code to implement these models is pro-
vided to encourage future CEA studies to perform sensitivity analysis to alternative missing data assumptions. Third,
these models naturally extend to more complex settings, for example, to allow for MNAR for other endpoints (e.g.,
costs), to allow for clustering, or to adjust for observed confounding in CEA that use observational data.

An essential element of the proposed framework is the elicitation tool, which was specifically tailored to address key
features in the CEA setting. In particular, the elicitation questionnaire had to recognise the scale and form of the QoL
endpoint in question, and to recognise that the expected value and uncertainty about the missing value may differ by
treatment arm. Our elicitation approach also provided the flexibility to address a major challenge in elicitation studies,
which is to allow for correlation in the elicited values across the treatment arms. The elicitation tool developed as part of
this research complements the tools already available for eliciting expert opinion for the parameters required in CEA.
For example, the Sheffield Elicitation Framework is designed primarily for facilitating face‐to‐face meetings with groups
of experts and behavioral (consensus) approaches to synthesise expert beliefs (Oakley & O'Hagan, 2010). Previous elic-
itation exercises in CEA using face‐to‐face meetings have resulted in relatively small sample sizes (five or fewer experts;
Bojke et al., 2010; Garthwaite, Chilcott, Jenkinsdon, & Tappenden, 2008). Further, reaching a group consensus tends to
impose a considerable burden on the experts and analysts, and may lead to relatively narrow uncertainty intervals (over-
confident judgements; Soares et al., 2011). Our approach can be fully implemented online, and with a mathematical
approach to combine individual, independently elicited beliefs. This practical approach enables the study to minimise
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FIGURE 3 INBs across different departures from MAR. Each shaded rectangular strip shows the full posterior distribution of the

incremental net benefits, valuing quality‐adjusted life year gains at 30,000GBP per quality‐adjusted life year. The darkness at a point is

proportional to the probability density, such that the strip is darkest at the maximum density and fades into the background at the minimum

density. The posterior mean and 95% credible interval are marked. eEVAR: endovascular strategy; INBs: incremental net benefits; MAR:

missing at random; MNAR: missing not at random [Colour figure can be viewed at wileyonlinelibrary.com]
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the burden on experts, and facilitates the elicitation exercise across a reasonable number and range of experts. We rec-
ognise that in some settings, for example, technologies within the same therapeutic area, it would be unnecessary to
repeat the full elicitation exercise. The questions in our elicitation exercise were framed to inform priors for sensitivity
parameters about alternative missing data mechanisms, but the proposed tool has a broader application, for example, to
elicit priors for other parameters as part of sensitivity analyses to address parameter or structural uncertainty in CEA
that do not have access to individual patient data.

The proposed sensitivity analysis framework has some limitations. Although the Bayesian framework can accommo-
date different levels of complexity, the presence of missing covariates complicates the sensitivity analysis considerably.
Within our motivating example, one incomplete covariate, the Hardman index, was accommodated. However, in clin-
ical trials or indeed observational studies with many incomplete covariates, computational issues may arise, particularly
if both incomplete outcomes and covariates lead to a small proportion of complete cases. Additionally, we have focused
on eliciting expert opinion for a single time point. In practice, QoL is likely to be measured (and missing) at several
points in time. “Longitudinal” settings raise further challenges for the elicitation because the sensitivity parameters
are likely to be correlated over time, and the experts may be subject to recall biases.

This research has advanced methods for handling missing data in CEA, with relevance to health economics studies
that use patient‐reported outcomes more widely, and has opened up new research directions. First, our approach jointly
models the cost‐effectiveness endpoints, assuming bivariate normality. However, QoL data is typically left skewed,
bimodal, and with spikes at 0 and/or 1, and in future, the proposed pattern‐mixture model can be extended to allow
for these features. Second, we plan to extend our elicitation tool to allow for greater flexibility in the distribution of pos-
sible values elicited, for example, by using nonparametric approaches (Chaloner, 1996). Third, although the framework
extends to a longitudinal setting, it becomes increasingly complex where there are many time‐points. The elicitation of
all the required quantities to allow for different, correlated Δ over time is challenging, and may require the analyst to
make some simplifying assumptions. Further, although the proposed model is very general, it does not allow the Δs
to vary with dropout time. Selection models can offer an alternative approach for addressing these challenges, and work
in this area is underway. Nevertheless, we have demonstrated that our proposed framework is accessible to experts,
computationally feasible and hence provides a broad practical framework for inference about cost‐effectiveness when
a nontrivial proportion of data are missing.
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APPENDIX A

The specification of the joint model for the primary analysis of the data from the IMPROVE trial is implemented using
WinBUGS as follows.

First, a joint distribution for the QoL scores at 3 and 12 months (QoL1 and QoL2) is specified as the product of a
marginal distribution for QoL1 and a conditional distribution for QoL2 given QoL1. For QoL1

QoLi1∼Nðμi1; σ21Þ; μi1 as in ð6Þ: (A1)

The specification for QoL2 is

QoLi2 ∼Nðφi; σ
2
2ð1−ϱ2ÞÞ

φi ¼ μi2 þ
ϱσ2

σ1
ðQoLi1−μi1Þ; μi2 as in ð6Þ (A2)

where σ2 and ϱ represent the marginal standard deviation for QoLi2, and the correlation between QoLi1 and QoLi2,
respectively.

Second, the 12 month QALY is calculated from the observed/imputed QoL at 3 and 12 months assuming linear
interpolation, according to the “area under the curve” method (Equation 1).

QALYi ¼ ∑
J

j¼1
QoLij×tij ¼

QoLi1

2
×
1
4

� �
þ QoLi1 þ QoLi2

2
×
3
4

� �
:

As qalyi is a linear combination of two dependent normal distributions, QoLi1 and QoLi2, by properties of normal
distributions, it also has a normal distribution s.t.

QALYi ¼
1
2
QoLi1 þ

3
8
QoLi2∼Nð1

2
μi1 þ

3
8
μi2;

1
4
σ21 þ

3
8
ϱσ1σ2 þ 9
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σ22Þ ¼ Nðνqi ; σ2qÞ:

Third, 12‐month costs (Cost) are modeled assuming bivariate normality with the 12‐month QALYs by specifying a
conditional distribution of costs given QALYs:

Costi ∼Nðϕi; σ
2
cð1−ρ2ÞÞ

ϕi ¼ νci þ ρ
σc
σq
ðQALYi−ν

q
i Þ; νci as in ð6Þ:

All the regression coefficients are assigned normal priors, centered on 0 with large variance, the standard deviations
are given flat priors on the log scale over a range supported by the data ( logðσ1Þ∼uniformð−10; 5Þ,
logðσ2Þ∼uniformð−10; 5Þ and logðσcÞ∼uniformð−5; 50Þ) and the correlations, ϱ and ρ, are given uniform(− 1,1) priors.
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