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ABSTRACT 

Background: Outbreaks of infectious diseases may result in bed pressures, which are 

often mitigated by delaying new admissions due to beds being unavailable. This painfully 

illustrates to policy makers and the public what is meant by the economic notion of 

“opportunity costs”: The value of the next-best alternative forgone, or in this situation: 

The value of the beds for the displaced patients. These opportunity costs need to be 

captured adequately in economic analyses. 

Methods: Suitable approaches for estimating the opportunity costs of healthcare beds 

from the perspective of health-maximising decision makers were searched for in a 

literature review. Lack of adequate methods drove the development of a novel approach. 

Differences among approaches were explored using, as a case study, hospitalisations for 

norovirus-associated gastroenteritis. Its hospital burden was quantified nationally for 

England using statistical modelling. Afterwards, a stochastic mathematical model of 

hospital wards was built to explore the additional bed pressures on occupancy levels due 

to transmission-dynamic norovirus outbreaks. 

Results: Health-maximising decision makers should approximate the opportunity costs 

of healthcare beds by considering the net benefit of the second-best admissions forgone. 

This novel approach estimated a loss of 6,300 quality-adjusted life years (QALYs) 

annually in England and economic costs of £190−£298 million due to norovirus, roughly 

2−3 times higher than the financial expenditures incurred of £108 million. During 

norovirus outbreaks, additional bed pressures arise 83.0% of the time, preventing a mean 

of 6.8 (range 0−44) new admissions that could have been admitted had there been no 

outbreak. 

Conclusions: Owing to market imperfections, the true value of healthcare beds differs 

from the value calculated using pragmatic conventions. In this thesis, these opportunity 

costs were estimated for the first time by explicitly including the wider health impact for 

other patients awaiting admission. The higher values obtained may impact the outcome 

of economic analyses. 

 

Word count (max. 300 words): 300
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1 INTRODUCTION 

“Economists, like doctors, are seeking to extend life and relieve misery. In the case 

of doctors, the premature mortality and the misery is due to disease. In the case of 

economists, it is due to scarcity. Health economics stands at the interface between 

those two important fields of human endeavour.” 

Alan Williams, Health and Economics, 1987.[1] 

 

 

This chapter establishes terminology and provides concise background information and 

context on the economic and epidemiological contents of this thesis. 

 

 

The true cost of infectious epidemic and outbreak diseases in hospital, and indeed in any 

healthcare setting, is not captured in expenditures alone.[2] One needs to account for health 

impact on different patients in terms of mortality and morbidity, too. This makes 

epidemics and outbreaks costly not only in monetary terms but also in terms of loss of 

health. 

In semi-enclosed settings like hospitals, infectious disease outbreaks easily lead to 

disruptions with infected inpatients staying longer and negative spill-over effects for other 

patients awaiting admission who cannot be treated due to beds being unavailable. As a 

result, hospitals and the healthcare system as a whole are negatively impacted financially, 

and patients may experience adverse health effects (including temporary or permanent 

decrements in health as well as fatal outcomes).[3] 

Estimations of the value of hospital beds should account for this alternative use forgone, 

that is, the use for other patients awaiting admission rather than the extended hospital stay 

of the current occupants, which is known in economics as the “opportunity cost”. More 

formally, opportunity costs can be defined as “the value of the forgone benefits because 

a resource is not available for its best alternative use”.[4] In practice, however, the forgone 

benefits are rarely considered; instead, the market price and financial accounting 

expenditures of the chosen alternative are simply taken, assuming that the resources spent 
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could have been used for another alternative up to the same value. From an economics 

perspective, analysts thereby make the implicit assumption that the supply and demand 

of resources are in equilibrium.[4,5] 

Hospital beds, however, are not in market equilibrium as demonstrated by e.g. bed 

pressures and waiting lists (more on this later in section 1.1.1).[6-8] This translates to an 

excess demand by patients for hospital beds that exceeds the supply of bed-days by the 

healthcare system (note: bed-days are a composite measure of the number of beds and the 

time they are occupied in terms of days). The disequilibrium means that the expenditure 

incurred does not approximate the value of the opportunity costs, unless this occurs purely 

by chance.[5] Therefore, the current convention of costing bed-days based on market 

prices or financial expenditures is not adequately capturing the opportunity costs from the 

forgone patients. 

In general, these opportunity costs for other patients only exist in situations where there 

is an excess demand of beds or a shortage of supply. Therefore, opportunity costs for 

other patients arise in settings with high rates of bed occupancy. This is the case in 

England, where acute care hospitals face very high bed occupancy levels above a mean 

of 90%,[7] but occupancy rates are also high internationally.[6] Patients who cannot be 

admitted due to beds being unavailable may therefore result in health and economic losses 

to the healthcare system and society on the whole. 

The situation may get worse during infectious disease outbreaks, which may cause 

exogeneous supply and demand shocks. During outbreaks, demand for beds increases 

temporarily due to the spread of infection, and infected inpatients stay longer than they 

would have without infection. Also, the supply of bed-days may decrease when beds and 

wards are closed precautionary for infection control, or healthcare staff is absent due to 

illness and cannot timely be replaced or their work compensated for by others. 

Given the importance of bed-days for the healthcare system, and given the fact that they 

are a main cost-driver in economic analyses involving hospitalisation,[4] it is important to 

address this gap between current methods and reality. As such, this thesis aimed to find a 

suitable approach of estimating the opportunity costs of bed-days by including the health 

impact for other patients, and quantifying the health and economic losses from 

unpredictable surges in bed demand for the healthcare system and society. 
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For illustration, norovirus infection in hospital was used as a case study of an infectious 

disease that leads to periodic bed pressures and is a recurring public health concern of 

hospitals in England, particularly during winter (more on norovirus is presented later in 

section 1.3). The cost of norovirus outbreaks is most likely being underestimated using 

currently prevailing costing approaches. 

1.1 OPPORTUNITY COSTS AND HEALTH ECONOMICS 

“The health administrator has usually equated ‘health economics’ with ‘money 

questions in the field of health.’ But, money is not the central problem of health 

economics. Health economics is concerned with the optimum use of scarce economic 

resources for the care of the sick and the promotion of health, taking into account 

competing uses of these resources. [Italics supplied] The basic problems are of two 

kinds: the organization of the medical market, and the net yield of investment in people 

for health.” 

Selma Mushkin, Toward a definition of health economics, 1958.[9] 

In 1958, Selma Mushkin published one of the first definitions of health economics,1 and 

she highlighted the idea of opportunity costs prominently.2 The concept is widely 

regarded as fundamental for economics3,[5,14] including the economic sub-discipline of 

health economics.[4,9,21,22] They are most often referred to within the framework of 

reimbursement decision-making, particularly when using micro-economic evaluations of 

healthcare interventions. In order to guide reimbursement decisions, some jurisdictions 

                                                 

 

1 The article of Selma Mushkin was published five years before the landmark publication of 

Kenneth Arrow in 1963,[10] which is widely recognised as having founded health economics as 

an economic sub-discipline.[11-13] For her definition, Mushkin adopted Lionel Robbins’s neo-

classical notion of economics from 1932 that prevails until today: “Economics is the science 

which studies human behaviour as a relationship between ends and scarce means which have 

alternative uses.”.[14: p.15] 
2 The concept was first named “alternative costs” by Friedrich von Wieser (who also coined the 

term “marginal utility”), and subsequently “Wieser’s law”, before the term “opportunity costs” 

prevailed.[15] The ideas have been expressed by scholars for centuries―with less catchy 

terms―, including most notably Adam Smith (1776), Frédéric Bastiat (1850), Léon Walras 

(1874), Friedrich von Wieser (1884), and Vilfredo Pareto.[5,16,17] 
3 The notion of opportunity costs is one of the cornerstones of economics, alongside the scarcity 

of resources, the need to make choices, and the push for efficiency (i.e., producing the desired 

products, goods and services at the lowest possible expenditure).[18-20] 
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like England have used incremental cost-effectiveness thresholds, which represent the 

value of a hypothetical second-best alternative displaced.[23,24] 

Most frequently, however, these principles are explicitly referred to when valuing 

resources for which no market price exists (e.g. time and informal care); a “shadow price” 

is then derived from the second-best alternative (e.g. paid employment).[21: p.1552] For other 

resources, market prices and average accounting expenditures are conventionally 

considered to approximate the opportunity costs in practice:[4] 

“Although the theoretical proper price for a resource is its opportunity cost (that 

is, the value of the forgone benefits because the resource is not available for its best 

alternative use), [Italics supplied] the pragmatic approach to costing is to take 

existing market prices unless there is some particular reason to do otherwise (for 

example, the price of some resources may be subsidized by a third party such as a 

charitable institution).” — Drummond et al., 2005.[4: p.57] 

Importantly, the meaning of the term “costs” differs between accountants and economists. 

Accountants measure historical expenditures for financial planning and reporting;[25] they 

are thus able to say what “costs” (i.e. expenditures) were incurred when a particular 

choice was pursued. Economists on the other hand focus on the costs of taking different 

courses of action, including the status quo (which may be to “do-nothing”). The economic 

perspective is thereby inherently linked to the concept of choice among mutually-

exclusive options.[5] In order to avoid ambiguity, this thesis will aim using the more 

accurate term “expenditures” when referring to accounting “costs”, and reserve the term 

“costs” to refer to the economic idea of opportunity costs. 

In the next section, the standard microeconomic market model of supply and demand 

will be briefly reviewed in light of the theoretically proven tendency of prices to converge 

to opportunity costs for markets operating under the conditions of perfect competition.[18] 

This background information will be used to establish the central critique within this 

thesis: the common practice of current costing conventions for pragmatic reasons. Only 

the key aspects of the standard microeconomic market model can be covered here; more 

details can be found elsewhere.[18,19] 
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1.1.1 Microeconomic model of supply and demand in perfectly competitive markets 

The microeconomic theory of supply and demand considers as benchmark the perfectly 

competitive market model, which is characterised by (at least) four conditions:  

I) many suppliers and demanders;  

II) perfect information for rational decision-making;  

III) free entry and exit to the market; and 

IV) identical products.[18,26] 

In such a perfectly competitive market, the model predicts that rational consumers will 

demand goods (or services like in healthcare markets) until the marginal benefit of each 

good (or service) equals the price to satisfy the consumers’ self-interest (note: the concept 

of marginality refers to the change in costs/benefits when providing one additional 

unit).[27] Likewise, producers will supply goods and services until the marginal costs of 

production for each unit is equal to the marginal revenue (i.e. the price) to maximise 

economic profits.[18,26,28] These self-regulating forces of supply and demand will lead to 

the establishment of an economic equilibrium price with an associated quantity of goods 

(or services);[18,29] see point P0,Q0 in Figure 1. 

Figure 1. Microeconomic model of supply and demand in perfectly competitive markets 
 

D: demand curve, P0: unit price at equilibrium point of supply and demand, Q0: quantity at equilibrium 

point of supply and demand, S: supply curve 
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This equilibrium price is equal to the “marginal opportunity costs”[5] as it is “Pareto 

efficient”, i.e. at this point nobody can be made better off without making someone else 

worse off, which has also been called “the first optimality theorem of welfare 

economics”.[10] Hence, there is no more-profitable alternative use of resources at the 

equilibrium point of supply and demand in perfectly competitive markets (see Figure 1). 

The market price would readily equal the marginal opportunity costs for both suppliers 

and demanders, and across resources. 

However, the assumptions of a perfectly competitive market cannot be met in reality 

due to externalities and information asymmetries.[30] The healthcare market is 

additionally characterised by market failures like: 

I) quasi-monopolies and quasi-monopsonies (i.e., few suppliers and 

collective demanders);  

II) moral hazard and supplier-induced excess demand (i.e., information 

asymmetries between patients and insurers, and care providers);  

III) barriers to freely enter and exit (e.g. due to patent-protection, professional 

licensing, first-mover advantages, high initial investment costs, and 

regulatory requirements); and  

IV) non-identical products and services (in part due to difficult, if not 

impossible, standardisation).[10,26,31,32]  

Moreover, consumers of healthcare (i.e., patients) frequently do not fully recognise the 

future benefit of interventions (for themselves and society) nor account for all external 

effects (positive and negative externalities) on third parties at the time of 

consumption;[18,33] both of which hold particularly for infectious diseases. Due to these 

market imperfections, the price mechanism will likely result in disequilibrium, and hence 

the market price and expenditure poorly reflect the “true” 4 costs of resources. 

                                                 

 

4 Note that the adjective “true” implies a normative valuation in terms of the opportunity costs, 

i.e. the “highest-valued” forgone alternative,[34] making the terms “true value/costs”, 

“opportunity costs”, and “economic costs” essentially synonymous from an economic 

perspective. Nuances among “opportunity costs” and “economic costs” are explained in 

chapter 2, section 2.5. 
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1.1.2 Remarks on market failures for hospital bed-days 

Although the market model of perfect competition has its limits, it still serves to 

illustrate three ideas about the marginal opportunity costs in cases of hospital outbreaks 

of an infectious disease (note: the following graphs merely serve for illustration and hence 

ignore for simplicity the known price-inelasticity of demand for non-elective care,[35] 

which would result in nearly vertical slopes of the demand curves). 

First, many hospitals need to operate with waiting lists due to a shortage of aggregate 

supply over aggregate demand for bed-days, at least in the National Health Service (NHS) 

in England.[8] Hence, the current price level cannot be assumed to reflect full capacity[36] 

as the service provision is in disequilibrium (to whatever degree; see for illustration the 

arbitrary price set at Pw in Figure 2, at which level the demand for bed-days, labelled 

with Qd, exceeds the supply of bed-days, Qs, by Qd-Qs). 

Figure 2. Shortage due to demand exceeding supply (illustrating waiting lists) 

 

D: demand curve, P0: unit price at equilibrium point of supply and demand, Q0: quantity at equilibrium 

point of supply and demand, S: supply curve 

 

Second, infectious epidemic and outbreak diseases may change the quantity of bed-days 

demanded and supplied temporarily (known as demand and supply shocks).[18] The 

demand for bed-days increases due to infected patients being newly treated plus staying 
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longer, shifting the demand curve to the right (see curve D2 in Figure 3). Likewise, the 

supply for bed-days may decrease temporarily due to beds being isolated and blocked or 

healthcare personnel becoming infected and absent (or worse, an entire ward being 

closed). If this cannot be adjusted for (by e.g. putting patients on trolleys or escalation 

beds, or by buying beds from the private sector), the supply decreases, indicated by the 

curve S1 shifting to the left, indicating a lower quantity provided (curve S2 in Figure 3). 

Figure 3. Demand (increase) and supply (decrease) shocks 

 

D: demand curve, P0: unit price at equilibrium point of supply and demand, Q0: quantity at equilibrium 

point of supply and demand, S: supply curve 

 

Moreover, both shocks may occur simultaneously. In a competitive market, the price 

levels would change accordingly and it seems that irrespective of supply and/or demand 

shocks, the equilibrium price/marginal costs would be higher than before according to the 

microeconomic model (which would be difficult to quantify if not knowing the exact 

supply and demand functions). Again, the assumption of the market price equalling the 

opportunity costs does not hold. It seems hence desirable from the perspective of 

hospitals, society and patients to quickly regain access to these resources and keep the 

bed-day closure as well as length of the outbreak short (or avoid them altogether) to 

minimise the capacity loss for treating other patients. 
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Third, infections have considerable external effects for others that are not considered by 

the price mechanism. Positive externalities for society from preventing infections 

(e.g. herd immunity through high levels of vaccination)[37] result in a higher marginal 

social benefit than the marginal private benefit of individuals (demanding vaccination; 

see curve MSB in Figure 4).[18] Likewise, negative externalities for society associated 

with the preventable spread of an infection (e.g. ward closures impacting other patients 

outside the hospital awaiting admission) result in higher marginal social costs than the 

marginal private costs for hospitals (see curve MSC in Figure 4). For instance, hospitals 

may “overproduce” bed-days for cases who could have been prevented through 

vaccination (= “excess” stays). 

Figure 4. Private versus social costs and benefits due to externalities 
 

MSC: marginal social costs, MPC: marginal private costs, MSB: marginal social benefit, MPB: marginal 

private benefit, P0: unit price at equilibrium point of supply and demand, Q0: quantity at equilibrium point 

of supply and demand. 

 

When taken together, these three market imperfections support the impression that in 

settings with an unmet, excess healthcare demand the “true” value, or shadow price, of 

bed-days will not converge to the financial expenditures. This follows from the imbalance 

of the supply and demand of bed-days, which do not reach the competitive market 

equilibrium, even in the long-run. Moreover, the three observations give reason to believe 
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that the economic costs of bed-days are likely to be higher than indicated by market prices 

or expenditures. 

However, the health impact for patients who cannot be admitted due to beds being 

unavailable have not yet been explicitly considered. This theme is central to the thesis, 

and I explore this issue by exploiting the special situation of recurrently occurring 

epidemic and outbreak diseases in hospitals; see next section 1.2. 

1.2 INFECTIOUS EPIDEMIC AND DISEASE OUTBREAKS 

An “outbreak” of an infectious disease can loosely be described as the sudden local 

emergence of new (incident) cases linked to a geographically limited setting like a school, 

hospital, street or district, often due to a common source of exposure.[38,39] Thereby, 

outbreaks are an escalation of an infrequent “sporadic” case through the occurrence of at 

least two cases linked in time and space by a common source.[40,41] 

An “epidemic” in turn describes the temporary increase in the incidence of a disease by 

more than what is naturally expected to occur in a more-widespread geographical area 

like the community or a region;[38,39] cf. the Severe Acute Respiratory Syndrome (SARS) 

epidemic in 2002/2003 that started as an outbreak in Hong Kong,[42,43] or the West-

African Ebola virus epidemic in 2013−2016 that began as an outbreak in the border region 

of Guinea.[44] 

When an epidemic further escalates widely across continents it is described as a 

“pandemic”, which is a large-scale epidemic of a disease with common source and 

“widespread geographic extension”;[45] cf. the 2009 H1N1 influenza virus pandemic.[46,47] 

An “endemic” refers to the constant prevalence of a disease in a population or 

geographical region;[38] such as viral gastroenteritis in the community.[48,49] 

The focus of this thesis will rest on epidemic and disease outbreaks of gastrointestinal 

illnesses, which form a prime example for the situation of supply and demand of 

healthcare beds being in disequilibrium. Moreover, outbreaks occur frequently, easily 

lead to disruptions in healthcare service provision and delivery, and the typically semi-

enclosed nature of healthcare settings and the close proximity of patients worsen the 

situation.[50,51] As such, the demand of bed-days regularly exceeds the supply during 

outbreaks due to longer staying inpatients and empty beds becoming unavailable for 

reasons of infection control (e.g. bay or ward closures to prevent further transmission). 
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From an economic perspective, outbreaks form a temporary exogenous shock in the 

short-run demand of bed-days as inpatients are likely to stay longer due to the infection 

than they otherwise would have without infection. In the long-run, the demand for bed-

days would be expected to return to equilibrium. However, negative spill-over effects like 

cancelling elective procedures may occur for other patients awaiting admission, and their 

health might be negatively impacted as a direct result of the outbreak through 

transmission dynamics. These consequences would likely not have occurred had the 

outbreak been avoided. 

This thesis will look specifically at hospitals of the NHS in England, which face 

recurring seasonal bed pressures in winter,[52] particularly due to outbreaks of infectious 

intestinal diseases (IID). In other countries like the USA, these outbreaks are a more 

pressing concern in long-term care facilities rather than hospitals.[53] Globally, the 

community burden is quite sizeable with an annual mortality of more than 1.3 million 

deaths (95% uncertainty interval, 95%-UI: 1.2−1.4 million),[54] which is reflected in terms 

of the indirect costs of forgone productivity (typically measured with wage rates and time) 

of $56.2 billion (95%-UI: $40.9−$78.3 billion) globally.[55] 

1.3 CASE STUDY: NOROVIRUS INFECTIONS IN HOSPITAL 

Infection of norovirus-associated gastroenteritis greatly fits the purposes of this thesis. 

It recurrently causes hospital outbreaks and disruptive bed pressures, particularly in 

winter.[52] Therefore, the supply and demand of hospital beds will not be in equilibrium 

(cf. section 1.1.1), and the financial expenditures incurred are unlikely to equal 

opportunity costs. 

Moreover, there are inevitable negative externalities and knock-on effect for others, 

including patients, staff and the wider community.[18] With demand for hospital care being 

high in England and mean occupancy rates above 90%,[7] outbreaks of norovirus place 

additional pressures on an otherwise already burdened system. As such, there is a real 

impact on other patients’ health, and economic losses occur for society. 

Lastly, there is no anti-viral treatment or vaccine currently available yet.[56,57] Other than 

monitoring patients and providing supportive therapies such as rehydration, there is not 

much a hospital can do for cases infected with norovirus, which is self-limiting and not 

requiring any special medical attention,[58] with a comparatively low mortality[58] and an 
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expected relatively low loss of quality-adjusted life years (QALYs). Furthermore, 

admitting infected individuals risks spreading the virus to other inpatients and causing 

outbreaks. Hence, Public Health England[59] and the National Health Service (NHS) in 

England advise otherwise healthy individuals with gastrointestinal symptoms to avoid 

visiting their general practicioner (GP) and healthcare facilities like care homes or 

hospitals.[60] 

In the following sections, a brief overview of this pathogen is given on its clinical and 

epidemiological characteristics in general (section 1.3.1), the situation of outbreaks in 

healthcare settings with a focus on hospitals (section 1.3.3), the status quo of the research 

and development in treatments and vaccines (section 1.3.2), and the existing decision-

analytical models (section 5.8.1). 

1.3.1 Clinical and epidemiological characteristics of norovirus 

One of the first accounts of gastroenteritis being caused by a non-bacterial pathogen 

came from the paediatrician John Zahorsky who published in 1929 an article entitled 

“Hyperemesis hiemis or the winter vomiting disease”.[61,62: p.668] It took until 1972 to 

clearly attribute a gastroenteritis outbreak in Norwalk, Ohio, USA in 1968 to a positive-

sense, single-stranded RNA virus for the first time, giving “norovirus”5 its name.[62,66]  

The Norwalk virus is the only species of the genus called Norovirus from the 

Caliciviridae family of viruses.[67] Six genogroups have been identified for Norovirus, 

with the genogroups GI, GII and GIV infecting humans.[64] The genogroups are further 

subdivided into genotypes based on mutations in the amino acid sequence of the capsid, 

i.e. the shell of a virus made of protein.[64] The specific capsid is the primary immunogenic 

component of the virus and drives the immune response.[58] 

The predominant human genotype has been GII.4 since 1995.[63] Since then, a new GII.4 

strain has emerged about every two to four years and replaced the previous variant in 

                                                 

 

5 Other, previous names for norovirus include “small round-structured viruses”, “gastric flu”, and 

“winter vomiting bug/disease”.[63,64] In the International Statistical Classification of Diseases 

and Related Health Problems, ICD-10, the Norwalk virus is coded in chapter I (“Certain 

infectious and parasitic diseases”) under block A08 “Viral and other specified intestinal 

infections” as A08.1 “Acute gastroenteropathy due to Norwalk agent, Small round structured 

virus enteritis”.[65] 
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response to population immunity (with the seven variants so far being Grimsby-

US1995/1996, Farmington Hills-2002, Hunter-2004, Yerseke-2006a, Den Haag-2006b, 

New Orleans-2009, Sydney-2012).[58,64] Although recent reports indicate that a new 

GII.17 genotype has emerged in parts of Asia and Australia,[68,69] the Sydney-2012-like 

GII.4 strain remains to be the most commonly detected one in England in laboratory 

reports and outbreaks.[70,71] 

Norovirus is highly contagious; ingestion of small doses of 18−1000 viral particles 

suffices for an infection.[58,72] Thereby, the average risk of infection is higher for norovirus 

than for any other virus.[72] The viral particles are also able to survive for some time ex-

vivo on surfaces,[58] with one report describing two workers getting infected after 

removing a previously dry-vacuumed carpet 12 days after a norovirus outbreak in a 

hospital ward.[73] Norovirus also resists low levels of chlorine disinfection and 

temperatures between 0−60 °C.[58] When analysing the sequential spread via fingers in 

four replicate experiments, it was shown that fingertips contaminated with faecal samples 

of norovirus would always transfer the virus to the first four clean typical surfaces (i.e., 

taps, door handles, and telephones), and in one replicate experiment even up to seven 

surfaces.[74] 

The primary mode of transmission is the oral-faecal route via direct person-to-person 

contact. However, transmission is also possible via contaminated food, water, 

environment, or aerosolized particles.[58,67] 

A dose-dependent incubation period of 0.5−2.0 days precedes the development of 

typical symptoms of acute gastroenteritis, including the characteristic projectile vomiting 

and diarrhoea, but also abdominal pain, headaches and fever.[58,75,76] Infected persons 

already shed the virus during this pre-symptomatic period,[77] but with lower levels of 

transmission than during the symptomatic period.[78,79] Moreover, about 20−30% of 

infected patients remain asymptomatic after incubating the virus, yet they can be 

potentially infectious.[58,80] In a study of 170 oyster- and food handler-associated 

outbreaks in Japan from April 2001 to January 2005, it was hypothesised that the 

norovirus GII.4 strain leads to more asymptomatic infections than other norovirus 

genotypes given its comparatively lower attack rate (median 41% vs. 56.9%).[81] 

In those patients who develop symptoms after incubation, they usually last for 0.5−2.5 

days in the healthy population,[40,75] for whom this infection is self-limiting and does not 
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require any special medical attention.[58] In England, such individuals are therefore 

advised to “avoid visiting GP surgeries, care homes, and hospitals if they have symptoms” 

by Public Health England[59] and the NHS.[60] On the other hand, vulnerable populations 

like young children, elderly and immunocompromised patients, who are frequently 

affected by hospital outbreaks of norovirus,[40,58,82] may experience symptoms lasting 

between 2−5 days,[40,67,83] partly due to it taking them longer to clear the virus and partly 

due to worsening existing conditions.[58] Chronic norovirus infections are rare but do 

occur particularly in the immunocompromised,[84,85] and they are a concern for being 

natural reservoirs of the virus with the potential for developing new variants that evolve 

through an accumulation of mutations.[86] 

After experiencing symptoms, the virus can still be shed for some time in another 

asymptomatic period,[78,79] which is why there is the general recommendation for staying 

at home for 48 hours after gastrointestinal symptoms resolved.[87] 

The mechanisms and extent of immunity to norovirus are not well understood.[53,79] 

About 20% of individuals in Europe are genetically resistant to infection and symptoms 

of the GII.4 norovirus strain through a mutation that disables the 1,2-fucosyltransferase 

(FUT2) gene (known as “non-secretors” or “secretor-negative).[88] However, some of the 

genetically susceptible “secretors” or “secretor-positive” individuals have also been 

shown to be immune, leading to overall immunity levels in challenge studies of between 

30% and 45%.[79,89] Moreover, the duration of immunity will impact the role of future 

vaccines as a longer-lasting immunity will reduce the need for re-vaccinations. Acquired 

immunity was long thought to last from six months up to two years based on challenge/re-

challenge volunteer studies in the 1970s and 1990s,[90,91] while a recent modelling study 

estimated that temporary immunity may last for up to 8.7 (95%-CI: 6.8−11.3) years.[79] 

Lastly, mortality associated with viral gastroenteritis in high-income countries is mostly 

an issue in healthcare settings and affecting the elderly.[58] In England and Wales, death 

certificates recorded by the Office for National Statistics (ONS) registered a mean (and 

identical median) number of 35 (range: 23−48) norovirus-associated deaths between 2010 

and 2016, where norovirus was classified as the underlying cause based on ICD-10 code 

A08.1.[92] One study investigated 43 deaths (24 in hospitals and 19 in elderly-care 

facilities) in 38 outbreaks in England and Wales between 1992 and 2000, which resulted 

in a case-fatality rate of 7.5/10,000 and mean deaths per outbreak of 0.07 (range: 0−2).[93] 

A comprehensive regression analysis of national data from hospitals and the community 
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in England and Wales between 2001 and 2006 found that, on average, approximately 80 

deaths of patients aged ≥65 years were associated with norovirus each year.[94] 

1.3.2 Treatment and vaccine development to prevent norovirus-infection in humans 

As of early-2018, no antiviral treatment or vaccine for norovirus is available.[56,57] The 

main reason for the delay has been the inability to culture norovirus in vitro in the past,[95] 

which is why most vaccine candidates have been based on virus-like particles (VLPs). 

Only recently in 2013 was the human norovirus successfully replicated in a small-animal 

(mouse) model,[96] and in 2016 a way was found to grow the virus ex vivo on the basis of 

using human stem cells.[97] These developments may impact future research and 

development efforts. 

Development of antiviral treatments have concentrated on monoclonal antibodies as 

well as interferons.[98] Most of these efforts have not reached (advanced) clinical trials 

yet.[57,98] For vaccines, there are already at least five vaccine-candidates in 

development,[56] with all but two undergoing pre-clinical trials as of early-2018. The 

pharmaceutical company Vaxart is currently developing a monovalent GI.1 vaccine based 

on an adenoviral-vector, which is undergoing phase I clinical trials.[99] The most advanced 

vaccine-candidate is being developed by the pharmaceutical company Takeda Vaccines, 

which further developed a monovalent GI.1 vaccine[100] into a bivalent GI.1/GII.4 

vaccine[101,102] that is currently in a phase IIb efficacy trial in healthy adults (due to be 

completed in February 2019).[103] The corresponding phase I-II vaccine efficacy 

challenge study with 50 vaccinees and 48 placebo controls was unable to show that the 

vaccine-candidate significantly reduced the number of cases, with 27 infections among 

vaccinees and 30 among controls, P=.420, and 13 symptomatic cases among vaccinees 

and 16 among controls, P=.509 (note: the study included only genetically susceptible 

secretor-positive individuals).[104] However, the vaccine-candidate was able to reduce the 

severity of the vomiting and/or diarrhoea of any degree by 52% (95%-CI: 8.3−74.9%; 

P=.028), of moderate-to-severe disease by 68% (95%-CI: -11.2−90.8%; P=.068) and 

severe disease by 100% (P=.054).[104] 
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1.3.3 Outbreaks of norovirus in hospitals 

“The introduction of SRSVs [author’s note: small round-structured viruses, one of 

the previous names for norovirus] into hospitals is inevitable since these infections 

lack a defined prodrome, the onset of symptoms is usually sudden and they commonly 

circulate widely in the community”.[105: p.499] Hence, “[…] attempts to circumvent their 

introduction into hospitals are unrealistic”.[106: p.1241] 

E. Owen Caul, J Hosp Infect, 1994,[105: p.499] and The Lancet, 1995.[106: p.1241] 

Norovirus causes more than 90% of viral gastroenteritis and 50% (range: 36–59%) of 

all-cause gastroenteritis outbreaks based on a review of six studies from different 

European countries.[67] Norovirus outbreaks occur frequently in (semi-)enclosed settings 

like hospitals and long-term care facilities, but also in prisons, hotels, 

schools/universities, restaurants, cruise ships, military camps, and private homes.[58,93] 

Thus, any infection in the community may potentially impact healthcare settings too, and 

vice versa, through being admitted as a patient, a visitor or staff working there.[86] 

Surveillance data in England and Wales between 1992 and 2000 showed that person-to-

person contact was the primary mode of transmission in 85.2% of 1,877 norovirus 

outbreaks across settings, and in 95.0% of outbreaks in hospital (716 of 754 in total; 1.3% 

were foodborne and 3.7% other/unknown).[93] Another study showed that transmission of 

the virus from one patient in hospital to another took on average 1.86 days.[50,58] 

Norovirus outbreaks are commonly identified through the occurrence of at least two 

cases (among patients or hospital staff) in a hospital functional care unit (e.g. a ward) that 

either experience similar symptoms due to an illness (excluding personal circumstances, 

incontinence and laxative drugs) or have a laboratory-confirmed infection.[40,41] Cases 

also need to be linked in time, ranging in different studies between two and seven 

days.[41,50,51,107,108] 

Norovirus outbreaks occur throughout the year but they peak during the winter between 

September to March.[109] The potential influence of environmental (e.g. temperature) and 

host behavioural factors on norovirus and its seasonality are not yet fully understood.[63] 

Figures from 1,877 reported norovirus outbreaks in England and Wales between 1992–

2000 showed that 754 outbreaks (40.2%) occurred in acute care hospitals, with another 

724 (38.6%) in long-term care facilities.[93] 
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Typically, between 80−90% of hospital outbreaks in England result in ward or bay 

closures.[110] For the epidemiological season running from July 2014 to June 2015, 808 

(94%) of the 858 hospital outbreaks of norovirus in England led to ward/bay closures or 

restrictions to admissions.[111] 

For all hospitals of the NHS in England, the Hospital Episode Statistics (HES) database 

holds the records of patients. Between April 2009 to March 2016, a total number of 

43,735 cases were diagnosed with norovirus,6 which is the equivalent of 11.6/100,000 

people in England using end-year population estimates.[113] Of these, 9,635 (22%) cases 

had a primary norovirus diagnosis and 34,100 (78%) had a secondary norovirus 

diagnoses, with a clear increase in secondary diagnoses by age (i.e., above 50 years old; 

Figure 5). 

Figure 5. Age-stratified number of hospital diagnoses of norovirus (ICD-10: A08.1) in 

England, mid-2009 to mid-2016. Left: primary or secondary diagnosis; right: sex. 

                                                 

 

6 These statistics are based on the ICD-10 code A08.1, “Acute gastroenteropathy due to Norwalk 

agent, Small round structured virus enteritis” [65], and Finished Consultant Episodes (FCEs): 

One FCE “is a continuous period of admitted patient care under one consultant [note: a 

consultant is a senior physician or surgeon in hospital with completed specialist training and 

overall responsibility for patient care] within one healthcare provider. FCEs do not represent 

the number of [individual] in-patients, as a person may have more than one period of care within 

the year” [112]. 
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Moreover, when separating these cases by age and sex and standardising per 100,000 

people in England,[113] most hospital cases were recorded in the elderly population above 

60 years of age, with a dramatic increase in the number of cases above the age of 90 years 

of up to 253.44 cases per 100,000 males and 225.57 cases per 100,000 females (Figure 5). 

The difference in sex is negligible for most age groups except for the very old population 

above 90 years of age (Figure 5). The reasons for the difference in this age group are 

unclear, and they cannot be explained by a generally higher proportion of men being 

admitted than women above 90 years of age as the opposite is true.[114] 

In general, the quality of the hospital diagnosis coding can be questioned due to A) 

miscoding norovirus as another form of gastroenteritis e.g. in the absence of laboratory 

confirmation, potentially even as a non-infectious intestinal disease,[115,116] and B) coding 

practices of secondary diagnoses being known to vary between data providers.[117] 

Moreover, previous studies on rotavirus vaccination have reported that of all 

gastroenteritis diagnoses more than 70% across ages (and more than 80% in children aged 

<5 years) were coded as “unspecified viral intestinal infection” (ICD-10 code A08.4) or 

as “diarrhoea and gastroenteritis of presumed infectious origin” (A09).[118,119] Hence, 

other techniques for estimating the hospital burden of norovirus in England are necessary 

to yield more accurate estimates. 

1.4 RESEARCH AIMS AND QUESTIONS 

This thesis explores the true value of bed-days, in particular during epidemic and disease 

outbreaks in hospital. For illustration, the ideas are applied to patients with norovirus. 

The guiding research questions are as follows: 

1. How should the value of the resource “bed-days” be calculated during epidemic 

and disease outbreaks in hospital, i.e. temporary supply and demand shocks? 

2. What is the hospital burden of disease for norovirus in England using different 

approaches to estimating bed-day costs, including those addressed in research 

question 1? 

3. What is the impact of norovirus outbreaks in hospital on bed pressures and 

occupancy levels of wards in England? 

Research question 1 addresses the methodological part of this thesis, while research 

questions 2 and 3 apply the new methodology to norovirus outbreaks in hospital. 
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1.5 OUTLINE OF THE THESIS 

In order to answer the research questions in this thesis, I integrate a qualitative literature 

review with statistical, mathematical and economic modelling techniques. 

Research question 1 is explored by means of a scoping literature review of the different 

approaches used to estimate the value of the opportunity costs of resources in general, 

and of bed-days in particular (chapter 2). In the absence of an adequate existing approach 

from the perspective of a decision maker who aims to maximise population health, I also 

propose a novel approach for estimating the value of bed-days. 

Answering research question 2 has required numerous steps. First, the number of bed-

days lost due to cases with acute gastroenteritis during winter is estimated by imputing 

non-randomly missing values for weekends and the Christmas period (chapter 3). Of 

particular interest here are the bed-days kept unoccupied for infection control, which are 

used for a comparison with the voluntary hospital outbreak surveillance data at Public 

Health England (chapter 4). The compulsory nature of the data collection allows for a 

comprehensive overview of the impact of acute gastroenteritis on bed pressures 

nationwide during winters (chapter 3). 

Second, a previously developed backward stepwise regression model[115,116] is applied 

to hospital episodes of gastroenteritis and various enteric pathogens to estimate the 

current norovirus-attributable national hospital burden (chapter 4). For an accurate 

representation of the resources used, the excess length of stay due to norovirus is 

estimated with a multi-state model for inpatients admitted for a different primary 

diagnosis than gastroenteritis (chapter 4). 

Third, the economic burden is quantified for the second-best admissions forgone. In 

order to use the novel approach for valuing opportunity costs, I modelled the forgone 

health gain from hospitalisation in terms of “quality-adjusted life years”, QALYs, which 

are a composite measure of “time” in terms of life years lived and the “quality” of that 

time (chapter 4).[120,121] Afterwards, the methods in research question 1 are used to cost 

the bed-days conventionally, and with the novel approach (chapter 4). 

Answering research question 3 involves building a transmission-dynamic 

compartmental model in order to simulate norovirus outbreaks in hospital. The model is 

nested within another mathematical model of typical hospital wards of the NHS in 

England with stochastic admissions and discharges to obtain bed occupancy levels at the 
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baseline without norovirus outbreaks (chapter 5). This model is then used to explore the 

daily risk of an inpatient becoming infected with norovirus for hospital wards per year, 

and the impact of norovirus outbreaks on bed pressures using the number of longer 

staying inpatients and the number of patients that would have been admitted had there not 

been any outbreak. 

Lastly, chapter 6 provides a general discussion and conclusion of the entire body of 

research presented in this thesis. 
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2 HOW TO ESTIMATE THE VALUE OF BED-DAYS 

 

This chapter expands on the concepts presented in the introductory chapter 1, section 

1.1, of how to adequately estimate (i.e., measure and value) costs from an economic 

perspective. The paper presented in this chapter begins with a historical outline of how 

opportunity costs have been estimated in the past for resources in general. Afterwards, 

the focus rests on bed-days given that they are one of the major cost factors of any 

economic analysis involving hospitalisation. 

The various applications for bed-days show how researchers have been using different 

estimation techniques to derive different results. A novel approach is developed that 

builds on the economic theory and the practical applications. 
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2.2 ABSTRACT 

Opportunity costs of bed-days are fundamental to understanding the value of healthcare 

systems. They greatly influence burden of disease estimations and economic evaluations 

involving stays in healthcare facilities. However, different estimation techniques employ 

assumptions that differ crucially in whether to consider the value of the second-best 

alternative use forgone, of any available alternative use, or the value of the actually 

chosen alternative. 

Informed by economic theory, this paper provides a taxonomic framework of 

methodologies for estimating the opportunity costs of resources. This taxonomy is then 

applied to bed-days by classifying existing approaches accordingly. Differences in 

valuation between approaches and the perspective adopted will be highlighted, and the 

framework will be used to appraise the assumptions and biases underlying the standard 

approaches that have been widely adopted mostly unquestioned in the past, such as the 

conventional use of reference costs and administrative accounting data. 

Drawing on these findings, a novel approach is presented for estimating the opportunity 

costs of bed-days in terms of health forgone for the second-best patient, but expressed 

monetarily. This alternative approach effectively re-connects to the concept of choice and 

explicitly considers net benefits. It is broadly applicable across settings and for other 

resources besides bed-days. 
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2.3 INTRODUCTION 

In healthcare settings, resources like personnel and beds are scarce. Hence, choosing to 

treat or care for one patient means a lost opportunity to treat or care for another patient in 

the presence of an unmet demand, as exemplified by waiting lists. It is such a trade-off 

that loosely embodies the economic notion of “opportunity costs”. 

Most economic textbooks define opportunity costs similar to “the value of the next-best 

alternative” forgone, while others consider “(the value of) what is given up”.[122, p.10,123, 

p.7] Although comparable, the second phrase lacks an explicit valuation ranking,[34] i.e. it 

is not clear whether to take the value of the second-best alternative use, of any available 

alternative use, or of the actually chosen use. Moreover, the understanding of “costs” also 

differs between disciplines, with economists focusing on choosing between different 

possible courses of action given limited resources, and accountants focusing on 

recovering historical expenditures for financial planning and reporting.[25] For 

economists, only factors relating to a sacrifice from making a particular decision are 

relevant “pain costs” (i.e., costs “felt” by the decision maker), while factors not associated 

with a sacrifice from that decision are irrelevant “sunk costs”.[5] This is most obvious for 

factors fixed in time due to contractual obligations, which cannot be significantly reduced 

in the short-term, with variable cost factors becoming the sacrifice of a choice to be made. 

Major health economic textbooks endorse valuing opportunity costs with the second-

best alternative forgone,[4,18,124] particularly for resources without a market price. A 

“shadow price” is then derived to represent the “true social value (or opportunity cost) of 

non-marketed resources, such as time and informal care”.[125, p.1552] For marketable 

resources, however, the market price, reference costs and average accounting expenditure 

of the chosen alternative are conventionally considered to approximate the opportunity 

costs for pragmatic reasons.[4] Explicit consideration of the second-best alternative is 

hence dropped and although common practice, this is only adequate under the idealistic 

market conditions of perfect competition.[5,36] 

Given the well-known market failures in healthcare,[10,126] this paper scrutinises the 

estimation techniques that have been adopted in the past mostly without questioning the 

underlying assumptions and biases. Healthcare beds may be considered as prime example 

of an imperfectly-marketed resource whose opportunity costs may in fact diverge from 

the values calculated using conventional methods, not least because hospitals are 
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multiproduct firms with a complex production function in which different units may 

operate internally as individual profit centres. Bed-days are also a highly influential cost 

component of any analysis involving stays in healthcare facilities.[4] Therefore, it was 

investigated in this paper how to adequately estimate the economic value of bed-days, 

with a special focus on decision-making agents aiming to maximise health. 

The paper is structured as follows: The methods and sources are outlined next. In the 

results a general taxonomy is compiled of methodologies for estimating the opportunity 

costs of resources. Then, the focus turns on the resource “bed-day” and co-existing 

approaches are presented that were classified according to the taxonomy. To distinguish 

the theoretical methodologies for resources from the practical applications for bed-days 

the terms “methodology” and “approach” were used, respectively. The approaches were 

illustrated and appraised before proposing a novel alternative. The proposal and paper are 

then discussed before offering concluding remarks. 

2.4 METHODS 

First, theoretical methodologies of estimating opportunity costs were categorised in a 

taxonomy based on (reviews of) economic textbooks [4,34,122,123,127,128] as well as James 

Buchanan’s treatise on the concept’s origins up to the late 1960s and diverging views 

among orthodox (neo-classical) and heterodox (subjectivist) schools of economics.[5] 

Second, existing applications for the valuation of bed-days were identified through a 

scoping review of the health and economics literature. Relevant articles were initially 

searched for up to 28th November 2014 in two bibliographic databases: PubMed (NLM) 

and EconLit (Ovid). Additionally, the reference lists of all articles screened in full-text 

were subsequently checked for relevance. The search was last updated on 02nd December 

2016, using the following search terms: “bed day” AND (costs OR demand* OR valu*); 

“opportunity costs” AND (“bed day” OR health* OR hospital*); for details of the syntax 

see Table 4 in the Appendix (section 2.9). All articles were included that directly applied 

an approach to estimate the opportunity costs of bed-days or one suitable for bed-days. 

Records were excluded that did not entail any approach of estimation or any suitable 

approach for bed-days; were not written in English; or did not include a full-text article. 

Articles using wage rates were also excluded although their relevance to this work is 

discussed later and the general idea of multiplying time with a monetary value is 
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incorporated in one of the approaches. The identified applications in the articles were then 

generalised and clustered into different approaches, which in turn were classified 

according to the taxonomic framework. 

Third, the different approaches were compared and appraised to explore their impact on 

bed-day values. Drawing on these findings, a novel approach was developed for valuing 

the opportunity costs of bed-days in line with economic theory and from the perspective 

of a decision maker aiming to maximise health with limited resources. 

2.5 RESULTS 

2.5.1 General taxonomy of methodologies to estimate the opportunity costs of 

resources 

Early economic theorists initially interpreted opportunity costs in terms of units of a 

displaced alternative product: “If among a nation of hunters […] it usually costs twice the 

labour [time] to kill a beaver which it costs to kill a deer, one beaver should naturally 

exchange for or be worth two deer”.[17] In this simplified example, hunting deer is the 

second-best alternative for the hunters, and the relative costs of production reflect the true 

opportunity costs of the hunters’ labour time.[5] 

Departing from natural units was seen as necessary by economists to account for the 

monetary value used in almost all kinds of exchange.[5,14] Opportunity costs should then 

be represented by the net benefit (i.e., benefit minus expenditure; also called the natural 

or accounting profit) to account for different benefits and expenditures associated with 

alternative options.[34,127] The second-highest net benefit, i.e. the second-best alternative 

to choose, constitutes the true opportunity costs,[122,123] with all other alternatives 

comprising trade-off costs.[34] Moreover, the opportunity costs should not be confused 

with the economic profit, which is the difference of the highest and second-highest net 

benefits.[34] 

For reasons of practicality, orthodox neo-classical economists then moved to an 

interpretation of the value of the displaced product being approximated by the expenditure 

on the alternative chosen. Its costs of production are assumed to reflect the value of a 

forgone alternative that could have been produced had the same amount of money been 

spent on it instead.[4,5] This interpretation is valid for perfectly competitive markets as 
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there will be no alternative, more profitable use of resources at the equilibrium price of 

supply and demand (i.e., it is “Pareto efficient”; see the first optimality theorem of welfare 

economics).[18] It is thus a special situation where the values of all alternatives converge, 

making net benefits irrelevant in the absence of profitable alternatives as their benefits 

equal their expenditures. 

Due to externalities and information asymmetries, most markets fail to reach the 

competitive equilibrium,[30] including healthcare.[10] Expenditures will then not readily 

reflect opportunity costs as profits/losses indicate a better use of resources existing 

elsewhere. Thus in case the optimal alternative is not chosen, the opportunity costs will 

need to include the optimal profit forgone.[5] A recent proposal generalised this as adding 

the incurred expenditure (the “explicit cost”) and the highest net benefit forgone (the 

“implicit cost”) as opportunity costs,[128] which is broadly considered equivalent to 

“economic costs”.[34,128] Yet, this fails to adequately correct for any competitive 

disequilibrium of the optimal alternative. 

Altogether, four different methodologies have evolved over time and comprise the 

taxonomy presented here: 

A) Opportunity costs in terms of units of the second-best alternative forgone 

B) Opportunity costs as the net benefit of the second-best alternative forgone 

C) Opportunity costs as the expenditure of the alternative chosen 

D) Opportunity costs as the expenditure of the alternative chosen plus the net benefit 

of the alternative forgone with the greatest value 

Illustrated with two options i and j, where j is the next-best alternative to i, the value of 

the marginal opportunity costs of option i, OCi, can be formulated. Marginality[18] refers 

here to the change in costs and benefits (or units of option j) when providing/treating one 

more unit of option i. Also, “next-best” here means “second-best” when referring to 

methodologies A and B, but it means the alternative with the greatest value when referring 

to Methodology D. The four methodologies then read: 

OCi = uj     (1) 

OCi = uj ∙ (Bj − Cj)   (2) 

OCi = Ci     (3) 

OCi = Ci + uj ∙ (Bj − Cj)   (4) 

 

where uj denotes the number of units of the next-best alternative forgone, the net benefit 

is calculated by subtracting the marginal expenditure of the next-best alternative, Cj, from 
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its marginal gross benefit, Bj, and Ci is the marginal expenditure of the alternative chosen. 

Generally, expenditures are a sacrifice, typically of money, and benefits a gain, typically 

valued as the minimum willingness to trade-off, i.e. pay or sell depending on the 

perspective, also known as the marginal rate of substitution,[123,128] or expressed in health 

outcomes like the quality-adjusted life year, QALY. 

As can be seen, Equation (2) extends Equation (1) with the net benefit of the number of 

units of the second-best option j forgone, and Equation (4) is the sum of Equations (3) 

and (2). 

2.5.2 Existing approaches to estimate the opportunity costs of bed-days 

The scoping review of existing applications suitable to estimate the opportunity costs of 

bed-days identified 2,273 records. After the screening and review procedure, 101 relevant 

articles remained; see Figure 6 in the Appendix (section 2.9). Applications were 

generalised and clustered into nine approaches, each of which could be classified under 

one of the four methodologies of the taxonomy. Sixteen articles applied multiple 

approaches; for a complete list of included references see Table 5 in the Appendix 

(section 2.9). 

An overview of the nine existing approaches applied for an option (read: patient) i is 

shown in Table 1, together with the results of a numerical illustration and the new 

proposals presented later. Note that all approaches require information on an alternative 

option except for those following Methodology C. 

2.5.2.1 Methodology A: Opportunity costs in terms of units of the second-best 

alternative forgone 

Two approaches used the first methodology by expressing units of the second-best 

alternative as patient-equivalents (approach 1) or treatment-equivalents (approach 2). 

Patient-equivalents were calculated in terms of the number of alternative patients that 

could have been treated using the same resources, e.g. bed-days, differently. Frequently, 

the alternative patient was (implicitly) approximated by the average patient population 

likely to occupy that bed. One article additionally adjusted for an occupancy rate of 

0.75.[129] 
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Treatment-equivalents were calculated in terms of the number of alternative treatments 

that could have been paid for using the same expenditure incurred differently. Resources 

like beds are hence assumed to be monetised and the money spent elsewhere within 

healthcare. 

Based on Equation (1), approach 1 and 2 can be written as: 

OCi = LOSi ∙ 1

𝐿𝑂𝑆𝑗
 

(∙ OCR)  (1.1) 

        

OCi = Ci ∙ 1

𝐶𝑗
 

  (1.2) 

 

where LOSi is the incurred resource consumption of bed-days, LOSj is the resource 

consumption of the forgone alternative patient, OCR is the (optional) occupancy rate of 

bed-days, Ci is the expenditure incurred, and Cj is the expenditure of the forgone 

alternative use (e.g. treatments). For didactic reasons, fractions have been separated into 

two terms to demonstrate how to value the units consumed by patient i. 

2.5.2.2 Methodology B: Opportunity costs as the net benefit of the second-best 

alternative forgone 

The second methodology was used by four approaches that valued the units measured 

either monetarily (approach 3) or in terms of the health benefit, usually QALYs, using 

patient-equivalents (approach 4) and/or local cost-effectiveness thresholds (approach 5 

and 6). Not all articles using patient-equivalents reported them separately. 

Monetary values took on providers’ forgone gross expenditures, payment losses (mostly 

diagnosis-related groups), or net revenue losses. One article adjusted the revenue in 

sensitivity analyses by 0−25% to account for an occupancy rate of 0.75−1.00.[130] 

The health benefit was usually expressed as the expected number of QALYs lost as a 

result of not being able to treat patients using the resources expended. For the patient-

equivalents forgone, one study derived QALY-gain values from the published 

literature.[131] Another study recently aimed to estimate reimbursement tariffs by 

multiplying the marginal (gross) benefit with an assumed social value of a QALY of 

£50,000.[132] Others quantified the expected health benefit as the QALYs forgone of 

concurrently disinvested existing interventions,[133] or, more generally, by dividing the 
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incurred expenditure by the monetary value assigned to health effects, taking as reference 

a conversion factor representing the cost-effectiveness of marginal interventions paid for 

out of the same budget, i.e. the local cost-effectiveness threshold.[134,135] 

Based on Equation (2), approach 3(a-c), 4, 5 and 6 can be written as: 

OCi = LOSi ∙ 𝐶𝑗

𝐿𝑂𝑆𝑗
 

  (2.1a) 

        

OCi = LOSi ∙ 𝑅𝑗

𝐿𝑂𝑆𝑗
 

(∙ OCR)  (2.1b) 

        

OCi = LOSi ∙ (𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

  (2.1c) 

        

OCi = LOSi ∙ 𝐵𝑗

𝐿𝑂𝑆𝑗
 

  (2.2) 

        

OCi = LOSi ∙ 𝐵𝑗 ∙ 𝜆

𝐿𝑂𝑆𝑗
 

  (2.3) 

        

OCi = Ci ∙ 1

𝜆
 

  (2.4) 

 

where Rj is the revenue of the forgone alternative patient, Bj the health gain from 

treatment in terms of QALYs for the forgone alternative patient, and λ is the monetary 

value assigned to health effects as e.g. expressed in local cost-effectiveness thresholds. 

2.5.2.3 Methodology C: Opportunity costs as expenditure of the alternative chosen 

The third methodology was used by two approaches, mainly differing in whether to 

multiply results (approach 7) or present them separately (approach 8). 

The (health) economic convention of valuing the actually chosen alternative was widely 

followed by taking either market prices, national tariffs and payment sources, average 

expenditures from budgets and accounts, or reference costs. Stated-preference techniques 

like willingness-to-pay surveys were also used to elicit values. 

Given that the opportunity costs of fixed resources like bed-days or clinic slots are not 

always adequately reflected by the monetary value of prices and payments, especially in 

the short run, they may be separated from the variable costs related to other consumables. 
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In the short term, variable costs better indicate cost changes according to changes in 

resource consumption as no cash savings will be realised for the fixed costs 

proportion.[136] 

Based on Equation (3), approach 7 and 8 can then be written as: 

OCi = LOSi ∙ 𝐶𝑖

𝐿𝑂𝑆𝑖
 

  (3.1) 

        

OCi = LOSi ∙ 𝑉𝐶𝑖

𝐿𝑂𝑆𝑖
 

 & LOSi (3.2) 

 

where VCi is the variable cost proportion of the expenditure incurred. 

2.5.2.4 Methodology D: Opportunity costs as the expenditure of the alternative 

chosen plus the highest net benefit forgone 

The fourth methodology was used by one approach (approach 9). Opportunity costs 

were represented as the (total) economic costs for providers, even though most articles 

identified “opportunity costs” as only the forgone net revenues; for instance: “The sum 

of opportunity cost and total cost defines the true cost of a surgical device.”.[137, p.1076] 

Based on Equation (4), approach 9 can be written as: 

OCi = LOSi ∙ 
(

𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

  (4.1) 
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Table 1. Overview of approaches to value the opportunity costs of bed-days used for patient i 

Approach Description Equation Results for 

patient i 

Methodology A: Units of the second-best alternative forgone   

1 Patient-equivalents (of second-best patients j) forgone 
𝐿𝑂𝑆𝑖 ∗

1

𝐿𝑂𝑆𝑗
  (∗ 𝑂𝐶𝑅) 

2 

2 Treatment-equivalents forgone for the second-best patients j 
𝐶𝑖 ∗

1

𝐶𝑗
 

1.4 

Methodology B: Net benefit of the second-best alternative forgone   

 Valuation in terms of money   

3a Expenditure forgone on the second-best patient-equivalents 
𝐿𝑂𝑆𝑖 ∗

𝐶𝑗

𝐿𝑂𝑆𝑗
 

£10,000 

3b Revenue forgone from the second-best patient-equivalents 
𝐿𝑂𝑆𝑖 ∗

𝑅𝑗

𝐿𝑂𝑆𝑗
  (∗ 𝑂𝐶𝑅) 

£12,000 

3c Net revenue forgone from the second-best patient-

equivalents 𝐿𝑂𝑆𝑖 ∗
(𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

£2,000 

5 Gross monetary benefit forgone for the second-best patient-

equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 ∗ λ)

𝐿𝑂𝑆𝑗
 

£24,000 

New1 Net monetary benefit forgone for the second-best patient-

equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

£14,000 

New2 Net monetary benefit forgone for the second-best treatment-

equivalents 𝐶𝑖 ∗
(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐶𝑗
 

£9,800 

 Valuation in terms of health benefit (typically QALYs)   

4 Gross health benefit forgone for second-best patient-

equivalents 
𝐿𝑂𝑆𝑖 ∗

𝐵𝑗

𝐿𝑂𝑆𝑗
 

1.2 

6 Health benefit forgone for expected second-best use 
𝐶𝑖 ∗

1

𝜆
 

0.35 

New3 Net health benefit forgone for the second-best patient-

equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 − (

𝐶𝑗

𝜆
))

𝐿𝑂𝑆𝑗
 

0.7 

New4 Net health benefit forgone for the second-best treatment-

equivalents 𝐶𝑖 ∗
(𝐵𝑗 − (

𝐶𝑗

𝜆
))

𝐶𝑗
 

0.49 

Methodology C: Expenditure of the alternative chosen   

7 Expenditure for the resource consumption incurred 
𝐿𝑂𝑆𝑖 ∗

𝐶𝑖

𝐿𝑂𝑆𝑖
 

£7,000 

8 Separating variable expenditure and non-monetary resource 

consumption 
𝐿𝑂𝑆𝑖 ∗

𝑉𝐶𝑖

𝐿𝑂𝑆𝑖
 & 𝐿𝑂𝑆𝑖 

£3,500 & 10 

Methodology D: Expenditure of the alternative chosen + highest net benefit forgone 

9 Expenditure incurred + highest net revenue forgone 𝐿𝑂𝑆𝑖

∗ (
𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

£9,000 
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2.5.3 Illustrative comparison of approaches for valuing bed-days 

To highlight differences between the approaches, an illustrative example with three 

patients P1, P2 and P3 is presented. To clarify the concept of making a choice between 

multiple alternative options, more than two patients are presented here following previous 

recommendations to avoid framing opportunity costs as binary decision problems.[122] 

Also, the second-best use of bed-days is assumed to not lie outside the healthcare sector. 

Table 2 contains hypothetical values required for the illustration. Following an agent’s 

objective of e.g. health or income maximisation, the known case-mix is ranked as 

specifically as possible (e.g. on a ward level) to identify the patient with the highest net 

value. The existing approaches express the benefit as either monetary revenue or QALYs, 

which were chosen to be the highest for patient P1 here; it is the optimally chosen patient 

i. Where applicable, this patient is compared to the second-best alternative patient j (more 

precisely: patient group); in this example patient P2 and not P3. Note that the highest 

valued patient and the second-best patient are unlikely to be each other’s second-best 

alternative; this is only true for the special case of identical marginal opportunity costs. 

  

New5 Expenditure incurred + highest net monetary benefit forgone 𝐿𝑂𝑆𝑖

∗ (
𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

£21,000 

The last column illustrates the marginal opportunity costs of patient i consuming 10 bed-days based on the input data 

in Table 2. Not all articles used LOS. The equations were rearranged to show how the resource consumption of patient 

i should be valued; LOSi was thus included in approach 7 and 8 to make this valuation clearer. The new proposals are 

labelled with “New”; “New1” (and “New5”, depending on whether the chosen alternative was the sub-optimal choice) 

are favoured given the minor impact of monetary inflation compared to treatment-equivalents. 

 

Bj: (health) benefit gained per second-best patient, Ci: total expenditure incurred for i, Cj: expenditure incurred per 

second-best patient, λ: monetary value assigned to QALYs in local cost-effectiveness thresholds, LOSi: total bed-day 

consumption of i, LOSj: length of stay per second-best patient, OCR: occupancy rate, QALY: quality-adjusted life year, 

R: revenue per patient, VC: variable cost proportion of the expenditure. 
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Table 2. Input data to illustrate the approaches to value opportunity costs 

Occupancy rate 1.0a   

Cost-effectiveness threshold (£) 20,000/QALY   

    

Patient(s) P1 P2 P3 

Units (bed-days per patient) 10b 5 5 

Expenditure (£ per patient) 7,000 (variable: 3,500) 5,000 5,000 

Benefit (£ revenue per patient) 9,000 6,000 5,500 

Benefit (QALY gain per patient)c 1.3 0.6 0.4 

Note that all values are illustrative. Based on the highest (net) benefit expressed either monetarily or in QALYs, 

patient P1 is the optimally chosen patient i, patient P2 is the second-best patient j, and patient P3 is the third-best patient. 

QALY: quality-adjusted life year. 

a: assumes full capacity and that freed beds are efficiently redeployed[4] 

b: excess consumption (not necessarily the total length of stay) 

c: attributable to the treatment 

 

The value of the opportunity costs for the 10 bed-days consumed by treating one 

patient i (i.e., what treating that patient is “worth”) according to the nine approaches is 

shown in Table 1. The results vary widely, even within the same methodology and when 

standardising the unit of outcome, suggesting that further appraisal of the approaches is 

needed. 

2.5.4 Appraisal of existing approaches 

The approach used to value bed-days, and consequently the units in which their costs 

are expressed, must be chosen to match the decision-making agent’s objective(s). In the 

illustration based on the existing approaches, different agents like providers, payers, or 

society may seek to maximise natural units, expenditures, revenues, net revenues, or 

health outcomes. 

Approach 1 and 2 lend themselves for analyses of natural units, e.g. to maximise 

throughput. Expressing the relative costs of production as the exchange rate between 

natural units (approach 1) reflects the true value of competing resource consumptions 

more accurately than the exchange rate between the expenditures associated with the 

natural units (approach 2) given the independence of monetary inflation. In fact, if the 

expected exchange value differs from the expected cost value, a change in the optimal 

choice may occur.[5] In the example presented in this paper, the expenditure of the 2 

patient-equivalents forgone is only valued as 1.4 treatment-equivalents. Hence, an agent 
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aiming to maximise throughput regards treating patient i less favourable, which likely 

distorts the bed-days’ true value. 

Providers aiming to maximise income can readily calculate net benefits in the form of 

net revenues using Equation (2.1c) of approach 3. The other Equations of approach 3, as 

well as approach 7 and 8, take merely the expenditure or payment, which makes the strong 

assumption of prices being at the equilibrium point of the perfectly competitive market 

model, requiring fulfilment of all conditions characterising such markets.[18,26] This is 

unlikely given market imperfections in healthcare of e.g. quasi-monopolies and price 

controls, information asymmetries, patents and licensing requirements, and non-identical 

products.[10,26,31,138] Hence, spending £1 is unlikely to generate a benefit (revenue) 

equivalent to £1. This is illustrated in Table 2 for patients P2 and P3, for which the bed-

day consumption and expenditures were kept identical but the benefits varied, which 

determined P2 as second-best patient j and P3 as third-best patient. Approaches 7 and 8 

additionally do not explicitly consider the second-best alternative forgone. Approach 9 

aims to correct for alternatives being in competitive disequilibrium, but requires 

identifying options as optimal and non-optimal. It also does not correct for distortions of 

the optimal alternative’s price, still producing flawed results then. 

For payers and societies aiming to maximise health, health outcomes form the relevant 

benefit. The conversion of expenditures into QALYs (approach 6) has been criticised for 

the missing link to actually displaced or unfunded services.[135] More importantly, 

approach 4, 5 and 6 do not calculate net benefits and may be less suitable for subsequent 

economic studies; more on this in the discussion. Hence, no approach currently exists that 

calculates net benefits for bed-days using health outcomes. 

2.5.5 Proposing an alternative to valuing bed-days 

Expressing the health benefit in monetary terms is exactly what is captured with the net 

monetary benefit, NMB,[139,140] which is defined incrementally as: 

NMB = ΔB ∙ λ − ΔC    (5) 

 

where ∆B is the incremental benefit between two healthcare interventions, λ the 

monetary value per unit of health benefit gained as e.g. defined by a local cost-

effectiveness threshold, and ∆C the incremental expenditure between two healthcare 
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interventions. Note that the NMB calculates the net benefit as required in Equation (2) of 

Methodology B. For the purposes here, the idea of valuing health gains monetarily with 

conventional cost-effectiveness thresholds was exploited as shown in Equation (5). Thus, 

decision makers aiming to maximise health can account for the net benefit of patient j 

forgone as follows: 

OCi = LOSi ∙ (𝐵𝑗 ∙ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

∙ 𝑂𝐶𝑅 (2.5) 

 

where Bj is the marginal health gain from hospital treatment for the second-best patient 

and Cj denotes the marginal expenditure incurred on the hospital treatment of the second-

best patient, for payers thus the reimbursement payment. Note that the health benefit 

ought to account for the marginal gain of patients from treatment to avoid the 

contradictory conclusion that patients in no need of care will benefit the most from a 

hospital bed (e.g. a perfectly healthy individual with a utility score of 1), and to capture 

any changes in health occurring without the treatment; cf. discussion. In healthcare 

settings operating near full capacity and in the presence of an unmet demand from 

otherwise treated patients awaiting admission, the term OCR is to be omitted. 

Applied to the data in Table 2 the opportunity costs of the bed-days consumed by patient 

i equal £14,000 in terms of net benefits forgone for the second-best patients j. By 

considering health maximisation as objective and the net monetary value of the forgone 

QALYs, this differs from the values calculated with the existing approaches of 

Methodology B, i.e. providers’ expenditures of £10,000, revenue of £12,000, net revenue 

of £2,000, gross monetary benefit of £24,000, and 1.2 gross QALYs forgone. Moreover, 

if the chosen alternative had not been optimal, Methodology D would need to be used: 

OCi = LOSi ∙ 
(

𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝐵𝑗 ∙ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

  (4.2) 

 

However, P1 was the optimal choice as indicated in Table 3; it had the highest net benefit 

of all three alternatives, and only for P1 were the sum of the expenditure and the highest 

net benefit forgone smaller than the benefit incurred. The true value of the opportunity 

costs for the 10 bed-days is here thus the forgone second-best net benefit of £14,000. 
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Table 3. Opportunity cost results of the 10 bed-days used for patient P1 for decision makers aiming to maximise 

health. 

Patient(s) P1 (n=1) P2 (n=2 forgone) P3 (n=2 forgone) 

Expenditure (£ in total) 7,000 10,000 10,000 

Benefit (GMB, £ in total) 26,000 24,000 16,000 

NMB (benefit-expenditure, £ in total) 19,000 14,000 6,000 

Expenditure + highest NMB forgone 21,000 29,000 29,000 

GMB: gross monetary benefit, NMB: net monetary benefit, QALY: quality-adjusted life year.  

Based on the highest (net) benefit expressed either monetarily or in QALYs, patient P1 is the optimally chosen 

patient i, patient P2 is the second-best patient j, and patient P3 is the third-best patient. Figures in bold correspond 

to approaches (and values) covered in the overview table.  

 

2.6 DISCUSSION 

This paper explored different estimation techniques for valuing the opportunity costs of 

resources. Although seen as fundamental in defining economics[5,14,34] and health 

economics,[4,125,141] the concept’s underlying assumptions are frequently disregarded for 

reasons of pragmatism. As a result, the special case of perfect competition has become a 

widespread standard, despite it effectively disconnecting the choice problem from the 

mutually-exclusive, second-best use forgone. It is hence unsurprising to us that this 

definition made it into numerous economic textbooks as the convention for estimating 

opportunity costs,[34] fuelling the confusion of professional economists and others 

alike.[122] 

When assigning cost values to resources it is important for researchers to make their 

assumptions explicit, including on the aim, perspective, the associated consequences, and 

“any adjustments made to approximate to opportunity costs”.[142] Incorrectly attaching 

high cost values may give decision-makers the illusion of potentially large cost savings 

of a programme that reduces resource consumption, while the actual cost savings may be 

more modest due to only being realisable on the variable cost components and if the freed 

fixed resources were almost immediately re-deployed.[4,143] This is especially true for the 

short run, during which a high proportion of fixed costs will not change and hence should 

not influence the value of a particular choice from an economic viewpoint.[143,144] 

As for the imperfectly-marketed resource “bed-days”, the existing approaches to costing 

produce results that differ widely. When using the framework to appraise the underlying 

assumptions, it was revealed how approximations of the true value of bed-days may be 
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flawed and violate economic theory, depending on the chosen perspective. This includes 

the conventional use of reference costs, as the second-best alternative is usually not 

explicitly accounted for. Moreover, average costs are unlikely to represent the marginal 

costs of producing one more unit (i.e., bed-day) as the bulk of treatment costs can be 

expected to occur towards the beginning of a stay.[4] More generally, it can be questioned 

whether it is appropriate to adopt the ideas valid for the competitive market model to the 

imperfect healthcare market.[144] Nonetheless, many applications resorted to consider 

merely expenditures or payments. None of the existing approaches valued the health gain 

associated with bed-days in terms of the net benefit. Consequently, a novel approach was 

developed using the net monetary benefit of second-best patients, which are asserted to 

be the most suitable for decision makers aiming to maximise health within a fixed 

healthcare budget, such as the National Health Service in the United Kingdom and its 

counterparts in other healthcare systems. 

To value health outcomes monetarily, the idea of using local cost-effectiveness 

thresholds was followed.[139,140] Although controversial,[145] these thresholds are used in 

actual healthcare decision making.[146,147] Such thresholds can also be estimated based on 

displaced services at a system level either theoretically based on the decision maker’s 

preference [148,149] or empirically based on the opportunity costs of healthcare 

spending.[150] When assuming that expenditures not spent on bed-days could be spent 

elsewhere in the healthcare system, which is the assumption behind reference costs, a 

general threshold should be used; otherwise a disease-specific threshold may be more 

sensible when beds saved have to be filled by alternative patients within the same 

specialty or setting. 

As an alternative to the NMB one could use the net health benefit, NHB;[151] see Table 1 

for the additional Equations. Although illustrative to quantify the expected health benefits 

forgone, the outcome is then converted to units such as QALYs, which do not have an 

equivalent expression for other resources and outside the health sector. Hence the NMB 

as in Equation (2.5) was preferred, whose monetary units also underline its character of 

being an alternative to conventional methods. Likewise, next to patient-equivalents one 

could resort to treatment-equivalents, bearing in mind that expenditures encounter 

monetary inflation and may result in distorted bed-day values (cf. section 2.5.4). 

Ideally, the novel approach is used by observing actually displaced treatments or 

patients in a particular setting. For instance, if Table 2 showed three actual patients, not 
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patient groups, the 10 bed-days consumed by P1 could have been used to treat both 

displaced patients P2 and P3 as each consumed 5 bed-days. However, it needs to be 

acknowledged that such observations are not always practical or indeed possible, e.g. 

when actual patients do not even present at a healthcare facility given their pre-existing 

knowledge that they cannot be treated there (e.g. for capacity constraints). To enhance 

generalisability, a pragmatic compromise may be to use patient groups from the regular 

patient population awaiting admission to a particular ward. Potential heterogeneity of 

patients should be taken into account by e.g. considering patient sub-groups. From a payer 

perspective, specific reimbursement payments may be taken as expenditure for the 

different patient groups, possibly adjusted for price distortions like subsidies [4] or 

excessively high taxes.[152] In settings with local cost-effectiveness thresholds, the 

marginal length of stay, expenditure and health benefit of the forgone patients then need 

to be determined. These could e.g. be approximated context-specifically with an average 

from national or local studies. Note that from the healthcare payer perspective the 

marginal expenditure and length of stay are equivalent to the actual reimbursement 

payment and length of stay given that without hospitalisation, there is no hospital 

treatment to pay for nor will patients have consumed any hospital resources. Conversely, 

the marginal health gain of patients from a particular hospital treatment will depend on 

the condition analysed in order to account for changes in health without treatment, 

including e.g. death for otherwise fatal conditions if not medically attended in hospital, 

and the alleviation and prevention of symptoms or disease for non-life-threatening 

conditions. Health benefit estimations could be based on the natural history of diseases, 

representative health data like disability weights from the Global Burden of Disease Study 

[153] or quality-of-life scores for diseased and healthy populations,[150] and potentially even 

standard care for conditions for which it would be impracticable or unethical to determine 

the natural course; see the Appendix for two illustrations of such implementations 

(section 2.9.1). 

Special consideration may be needed for temporary decreases in supply and increases 

in demand for bed-days following exogenous shocks (i.e., unplanned events) like 

infectious disease epidemics,[154] heat waves, cold weather, natural disasters, strikes of 

healthcare personnel or sudden reductions in funding. For example, for infectious disease 

outbreaks calculations of total length-of-stay may be subject to time-dependent biases 

with only a proportion being an “excess” stay,[143] and the isolation or closure of bays and 
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wards may lead to additional bed-days lost unoccupied. Altogether, all beds lost 

attributable to the exogenous shock should be added to the number of bed-days consumed 

by treating patients during an avoidable event. Adjusting bed occupancy to account for 

capacity should only be done in situations where there is no excess demand (i.e. no 

shortages or waiting lists). No opportunity costs will then be attached to the empty beds 

in terms of health forgone for other patients, and other than the cash value of reducing the 

idle capacity in the long-term (with associated consequences on marginal expenditures 

and revenues). However, full capacity does not mean all beds being occupied; besides, 

there may be other limiting factors than the occupancy rate, e.g. the theatre use rate for 

surgical patients. 

2.6.1 Strengths and Limitations 

The taxonomy of methodologies were based on extensive reviews of the concept of 

opportunity costs, including 22 well-known economic textbooks [34] as well as James 

Buchanan’s comprehensive treatise.[5] Existing applications to value bed-days were 

searched for in a scoping review due to the aim of this study and the paucity of relevant 

and consistently used search terms. Included articles covered a wide range of journals, 

interventions and disease areas, which may point towards the general relevance of and 

interest in the topic among healthcare professions, as well as the broad applicability for 

the novel approach. 

Although indirect costs using wage rates as proxy for opportunity costs were not 

explicitly considered, these applications are addressed in approach 3 as the time loss is 

simply multiplied with a wage rate. Also, in reporting the results of the review the number 

of articles or applications of each approach was not stated. The intent was to focus on the 

differences per approach and not on the number of applications per approach, which in 

any case may be biased towards those that are practical given the data available to authors 

rather than those based on sound theoretical methodology. 

Focusing on “bed-days” has advantages as it is a broadly used resource across 

indications, a major cost driver and hence influential for all kinds of analyses involving 

patient stays, relatively easy to measure through “length of stay”, and universally used 

(across countries, time and settings like hospitals, long-term care and mental health 

facilities). Additionally, the opportunity costs of bed-days lost due to isolation or closure 

of wards can be calculated on the same scale as those directly consumed by patients. By 
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identifying bed-days as resources this paper concentrated on the last two steps of costing 

of identification, measurement, and valuation.[4,25] As such, the novel approach anchors 

on the identified resource itself as the most important unit to measure costs. Then 

continuing to value the resources with the marginal net benefit is important to account for 

the different health benefits and expenditures associated with alternative options (cf. 

Methodology B), although a disaggregated presentation may facilitate a broader and more 

explicit multi-criteria decision analysis framework, e.g. when thinking about the value of 

reducing waiting lists, or when incorporating non-pecuniary decision factors like 

emotional distress. Moreover, one could also try to elicit the preferences for bed-days to 

patients and providers; see e.g. Stewardson et al. (2014)[155] for a study on the willingness-

to-pay of 11 hospital administrators. 

Despite the focus on bed-days, the concepts presented in this paper can be readily 

adapted to other goods and resources used to treat patients, such as operating theatre slots 

or time spent in a general practitioner clinic, as well as to evaluations with other economic 

perspectives and optimisation objectives. As the illustration was based on existing 

applications it considered either health, throughput, or (net) revenue maximisation but not 

equity concerns. 

While the novel approach values opportunity costs with the NMB, it is not used 

incrementally here to evaluate two or more different healthcare interventions.[4] A full 

economic evaluation requires additional input parameters for different interventions, 

including at least their expenditures and effectiveness. Also note that a broader 

perspective for the opportunity costs across indications was considered (e.g. the second-

best alternative patient for specific wards), while economic evaluations typically compare 

a new intervention to standard care within indications (which is presumed to be the 

second-best alternative treatment for specific diseases). 

Lastly, adequate costing may be quite complex but attempting to identify the second-

best patients improves the existing pragmatic convention as it enhances applied research 

and decision making by coming closer to the theoretical ideal of how to estimate the true 

costs of resources. Nonetheless, the confidence one has in the opportunity cost estimates 

will depend largely on how well the actual second-best use has been defined and 

measured. 
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2.7 CONCLUSION 

This paper has highlighted an underrated issue in costing whose consequences are often 

not apparent to decision makers, and which has been shown to confuse professional 

economists too. To summarise, opportunity costs are inherently linked to choice in 

economics and the net trade-off cost of the second-best use forgone. 

Bearing these theoretical considerations in mind when aiming to estimate the 

opportunity costs of resources adequately is crucial for sound economic research and 

decision making. Various methodologies were developed in the past that rely on different 

assumptions. When using the framework that was developed in this paper to appraise the 

underlying assumptions, it was found that opportunity costs are often applied to valuing 

bed-days in ways that are flawed and violate economic theory. For pragmatic reasons, the 

special case of perfect competition has become a convention for estimating opportunity 

costs, as is demonstrated through the common use of reference costs and administrative 

accounting data. By relying solely on the incurred resource consumption, cost factors are 

effectively disconnected from choice and the second-best alternative use forgone. 

Researchers should i) be aware of the underlying assumptions and resulting biases when 

applying these approaches, which frequently remain unmentioned and unquestioned; ii) 

carefully consider the adequate costing approach dependent on an agent’s objective and 

perspective; and iii) explicitly state any potential implications in a manner that is 

comprehensible to decision makers. For decision makers aiming to maximise health, a 

novel alternative for bed-days was proposed that effectively re-connects to the concept of 

choice and explicitly considers net benefits. 
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2.9 SUPPLEMENTARY MATERIAL 

 

Table 4. Search syntaxes used for the scoping literature review of existing applications suitable to 

estimate the opportunity costs of bed-days (last search on 02nd December 2016). 

PubMed (NLM) 

# Searches Records 

1 (“bed day” OR “bed days”) AND (cost OR costs) 701 

2 (“bed day” OR “bed days”) AND demand* 90 

3 (“bed day” OR “bed days”) AND valu* 139 

4 (“opportunity cost” OR “opportunity costs”) AND (“bed day” OR “bed days”) 6 

5 (“opportunity cost” OR “opportunity costs”) AND health* 808 

6 (“opportunity cost” OR “opportunity costs”) AND hospital 254 

EconLit (Ovid) 

# Searches Records 

1 (bed day* and cost*).af. 10 

2 (bed day* and demand*).af. 1 

3 (bed day* and valu*).af. 2 

4 (opportunity cost* and bed day*).af. 0 

5 (opportunity cost* and health*).af. 239 

6 (opportunity cost* and hospital*).af. 23 

NLM: National Library of Medicine 
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Figure 6. Flowchart of the scoping literature review of existing applications suitable to 

estimate the opportunity costs of bed-days. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

PubMed (NLM) = 1,998 

EconLit (Ovid) = 275 

n = 2,273 

Duplicate records excluded 

n = 424 

Title/abstract screened 

n = 1,859 

Records excluded 

 No opportunity costs = 969 

 No opportunity costs approach = 156 

 No suitable approach for bed-days = 89 

 Focussing on time with wage = 224 

 Not in English = 79 
n = 1,517 

Full-text articles assessed for 

eligibility 

n = 342 

Records excluded 

 No opportunity costs approach = 159 

 No suitable approach for bed-days = 37 

 Focussing on time with wage = 38 

 Not in English = 1 

 Merely abstract/presentation = 2 

 No access (through British Library) = 4 
n = 241 

Relevant articles 

n = 101 

Additional records identified 

through other sources 

n = 10 

Records identified 

n = 2,283 
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Table 5. Overview of relevant papers detailing existing applications suitable to estimate the 

opportunity costs of bed-days. 

Approach Description Records 

Methodology A: Units of the second-best alternative forgone 

1 Patient-equivalents (of 

second-best patients j) 

forgone 

[129,131,156-167] 

2 Treatment-equivalents 

forgone for the second-

best patients j 

[135,164,167-170] 

Methodology B: Net benefit of the second-best alternative forgone 

Valuation in terms of money 

3 Monetary value 

forgone on the second-

best patient-equivalents 

[130,156,159,161,162,171-183] 

5 Gross monetary benefit 

forgone for the second-

best patient-equivalents 

[132] 

Valuation in terms of health benefit (typically QALYs) 

4 Gross health benefit 

forgone for second-best 

patient-equivalents 

[131] 

6 Health benefit forgone 

for expected second-

best use 

[22,133-135,184] 

Methodology C: Expenditure of the alternative chosen 

7 Expenditure for the 

resource consumption 

incurred 

[130,137,138,143,171,173,175,185-235] [155,236-240] 

8 Separating variable 

expenditure and non-

monetary resource 

consumption 

[136,225,241] 

Methodology D: Expenditure of the alternative chosen + highest net benefit forgone 

9 Expenditure incurred + 

highest net revenue 

forgone 

[137,189,191,192,242] 

QALY: quality-adjusted life year 
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2.9.1 Two real-life examples to illustrate the opportunity cost estimation 

The following two examples illustrate how implementation of the approaches that were 

outlined could look like in practice. Some simplifying assumptions were made to ensure 

clarity. 

2.9.1.1 Example 1: Value of bed-days used for patients with acute gastroenteritis in 

England 

Hospital admission of otherwise completely healthy individuals for an episode of acute 

gastroenteritis is discouraged in England due to the self-limiting nature of symptoms, the 

limited treatment options, and the risk of admitted patients causing outbreaks of infectious 

intestinal disease potentially leading to severe service disruptions.[87] If for instance 40 

patients with acute gastroenteritis stayed each 2 days in an acute hospital, the excess 

resource consumption would have been 80 bed-days. The mean costs for gastroenteritis 

cases staying in hospital in England in 2015/16 was £1,594 per patient according to the 

average standard costs list of the National Health Service (NHS).[243] In order to be able 

to determine whether treating the gastroenteritis cases in hospital was the optimal 

alternative, cf. Methodology D, information on their health benefit gained from the 

treatment was also needed, which was operationalised as the reduction of disutility using 

the Global Burden of Disease Study: The disability weights for mild, moderate and severe 

diarrhoea were 0.074, 0.188 and 0.247.[153] If hospital treatment led to alleviating the 

gastrointestinal distress symptoms of patients from severe to mild, there would be a gain 

in health benefit for the patients for the 2 days of experiencing symptoms of 

(0.247−0.074)/365*2=0.001 (the length of stay may also be reduced when shortening the 

duration of a disease, which were ignored here for simplicity). 

Turning to the second-best patients forgone, it was first assumed that their 

characteristics can be approximated with the average of those for the regularly admitted 

non-gastroenteritis patient population. Their length-of-stay (LOS) is assumed to be the 

mean hospital LOS of patients in England in 2015/16 of 5 days,[244] while the mean costs 

for all non-gastroenteritis cases was £2,627 per patients.[243] In addition, a hypothetical 

hospital revenue (i.e. payments from healthcare payers, i.e. local authorities, to the 

hospital) of 10% of the expenditure were assumed; i.e. £2,627*1.1=£2,890. On average, 

inpatients will gain much more in terms of health restored and/or maintained when treated 
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for other conditions than acute gastroenteritis. For instance, the disability weight for the 

most severe forms of stroke with long-term consequences plus cognition problems is 

0.588, while the least severe forms of a mild stroke with long-term consequences is 

0.019.[153] In case timely accessing a free hospital bed for treatment thus prevents or 

alleviates the most severe forms of a stroke, there would be a potential health benefit gain 

of 0.588−0.019=0.569; cf. the estimated 0.472 QALYs gained per patient over ten years 

for acute stroke unit care vs. standard care in a general medical ward.[245] Even higher 

health gains may be achievable for patients with potentially fatal conditions if they were 

to die without treatment. For instance, acute myocardial infarction is associated with 

disability weights of 0.432 on day 1-2 and 0.074 on day 3-28;[153] if patients thus were to 

die without treatment but otherwise survived and lived healthy for at least one year, the 

health gain would be equivalent to (1−0.432)/365*2 + (1−0.074)/365*26 + 

(1−0)/365*(365−2−26) = 0.992. Clinicians may rightfully argue that there will always be 

a bed made available for emergency patients, or that a constant flow of acute myocardial 

infarctions will not present themselves even at the largest of emergency departments. 

Therefore, this illustration will be continued by taking the exemplary health gain of the 

stroke patients of 0.569. 

Furthermore, full capacity was assumed since most NHS hospitals in England operate 

at full capacity and face waiting lists. As monetary value for the health benefit gained the 

reference case of the local cost-effectiveness threshold of £20,000/QALY for England 

and Wales was taken.[246]  
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All inputs are shown in Table 6 below, based on Table 2 in the paper: 

 

Table 6. Input data to illustrate the approaches to value the opportunity costs: gastroenteritis cases 

Occupancy rate 1.0a  

Cost-effectiveness threshold (£ per QALY) 20,000b  

   

Patient(s) P1 (acute gastroenteritis 

cases, n=40) 

P2 (regularly admitted, non-

gastroenteritis patient) 

Units (bed-days per patient) 2 (total for 40 patients=80) 5e 

Expenditure (£ per patient) 1,594 (variable: 239)c 2,627f 

Revenue (£ per patient) - 2,890g 

Benefit (QALY gain per patient) 0.001d 0.569h 
NHS: National Health Service, NICE: National Institute for Health and Care Excellence, QALY: quality-adjusted life year. 

a: assumes full capacity and that freed beds are efficiently redeployed.[4] 

b: local cost-effectiveness threshold value of the reference case in England and Wales.[246] 

c: Mean NHS reference costs of gastroenteritis cases staying in hospital in England in 2015/16, activity-weighted.[243] 

d: Hypothetical mean health benefit gain from hospital treatment for gastroenteritis cases based on disability weights for 

diarrhoea and an alleviation of a potentially severe to a mild presentation.[153] 

e: Mean hospital length of stay of patients in England in 2015/16.[244] 

f: Mean NHS reference costs of non-gastroenteritis cases staying in hospital in England in 2015/16, activity-weighted.[243] 

g: Mean revenue of hypothetical 10% of the expenditure. 

h: Hypothetical mean health benefit gain from hospital treatment for non-gastroenteritis cases based on disability weights 

for stroke and an alleviation of a potentially severe to a mild presentation.[153] 

 

Based on this information, the direct expenditure incurred by the gastroenteritis cases 

was £63,760 (approach 7). When assuming that variable costs make up for 15% of the 

total costs, preventing the outbreak would have resulted in cash savings of £9,564 

(approach 8). 

In terms of displaced alternatives, the value of the 80 bed-days is equivalent to having 

forgone 16 non-gastroenteritis patients (approach 1), 24.3 treatments for the non-

gastroenteritis patients (approach 2), a QALY gain between 3.2 to 10.6 (approach 6 and 

New4), and a monetary value ranging from a forgone hospital profit of £4,203 (approach 

3c) to a forgone net monetary benefit for the treatment-equivalents of £212,444 (approach 

New2); for details see Table 7. 
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Table 7. Overview of approaches to value the opportunity costs of bed-days used for patients with acute 

gastroenteritis 

Approach Description Equation Results for 

patient i 

Methodology A: Units of the second-best alternative forgone 

1 Patient-equivalents (of non-gastroenteritis patients 

j) forgone 
𝐿𝑂𝑆𝑖 ∗

1

𝐿𝑂𝑆𝑗
  (∗ 𝑂𝐶𝑅) 

16.0 

2 Treatment-equivalents forgone for the non-

gastroenteritis patients j 
𝐶𝑖 ∗

1

𝐶𝑗
 

24.3 

Methodology B: Net benefit of the second-best alternative forgone 

 Valuation in terms of money   

3a Expenditure forgone on the non-gastroenteritis 

patient-equivalents 
𝐿𝑂𝑆𝑖 ∗

𝐶𝑗

𝐿𝑂𝑆𝑗
 

£42,032 

3b Revenue forgone from the non-gastroenteritis 

patient-equivalents 
𝐿𝑂𝑆𝑖 ∗

𝑅𝑗

𝐿𝑂𝑆𝑗
  (∗ 𝑂𝐶𝑅) 

£46,235 

3c Net revenue forgone from the non-gastroenteritis 

patient-equivalents 𝐿𝑂𝑆𝑖 ∗
(𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

£4,203 

5 Gross monetary benefit forgone for the non-

gastroenteritis patient-equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 ∗ λ)

𝐿𝑂𝑆𝑗
 

£182,080 

New1 Net monetary benefit forgone for the non-

gastroenteritis patient-equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

£140,048 

New2 Net monetary benefit forgone for the non-

gastroenteritis treatment-equivalents 𝐶𝑖 ∗
(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐶𝑗
 

£212,444 

 Valuation in terms of QALYs   

4 Gross health benefit forgone for non-gastroenteritis 

patient-equivalents 
𝐿𝑂𝑆𝑖 ∗

𝐵𝑗

𝐿𝑂𝑆𝑗
 

9.1 

6 Health benefit forgone for expected second-best 

use 
𝐶𝑖 ∗

1

𝜆
 

3.2 

New3 Net health benefit forgone for the non-

gastroenteritis patient-equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 − (

𝐶𝑗

𝜆
))

𝐿𝑂𝑆𝑗
 

7.0 

New4 Net health benefit forgone for the non-

gastroenteritis treatment-equivalents 𝐶𝑖 ∗
(𝐵𝑗 − (

𝐶𝑗

𝜆
))

𝐶𝑗
 

10.6 

Methodology C: Expenditure of the alternative chosen 

7 Expenditure for the resource consumption incurred 
𝐿𝑂𝑆𝑖 ∗

𝐶𝑖

𝐿𝑂𝑆𝑖
 

£63,760 

8 Separating variable expenditure and non-monetary 

resource consumption 
𝐿𝑂𝑆𝑖 ∗

𝑉𝐶𝑖

𝐿𝑂𝑆𝑖
 & 𝐿𝑂𝑆𝑖 

£9,564 & 80 

Methodology D: Expenditure of the alternative chosen + highest net benefit forgone 

9 Expenditure incurred + highest net revenue forgone 
𝐿𝑂𝑆𝑖 ∗ (

𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

£67,963 

New5 Expenditure incurred + highest net monetary 

benefit forgone 
𝐿𝑂𝑆𝑖

∗ (
𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

£203,808 
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The last column illustrates the marginal opportunity costs of gastroenteritis patients i consuming 80 bed-days. 

B: (health) benefit gained per patient, Ci: total expenditure incurred for i, Cj: expenditure incurred per patient, λ: monetary 

value assigned to QALYs in local cost-effectiveness thresholds, LOSi: total bed-day consumption of i, LOSj: length of stay 

per patient, OCR: occupancy rate, QALY: quality-adjusted life year, R: revenue per patient, VC: variable cost proportion 

of the expenditure. 

 

 

When comparing the conventional NHS reference costs to the net monetary benefit 

forgone for the second-best patients, this illustrative example shows a difference of 

£63,760 (approach 7) vs. £140,048 (approach New1), which is more than twice the value 

of the bed-days used for the gastroenteritis cases. This difference is largely driven by the 

forgone QALY gain and the monetary value assigned to QALYs; e.g. when using the 

upper-bound cost-effectiveness threshold of NICE of £30,000/QALY, the forgone net 

monetary benefit resulted in £231,088 or almost four times the figure with the 

conventional approach 7. 

While it may sound plausible that treating gastroenteritis cases is not the optimal choice 

for bed occupancy, one can investigate this more formally by comparing the net benefits 

achievable; the highest one determines the optimal choice. For decision makers aiming to 

maximise health, the net monetary benefit of the forgone non-gastroenteritis patients is 

already known of £140,048 (cf. approach New1); the net monetary benefit for the 

gastroenteritis cases (i.e., benefit minus expenditure) still needs to calculated: 

40*(0.001*£20,000) − £63,760 = £800 − £63,760 = -£62,960 (an economic loss); see 

Table 8 below. Thus, the higher net benefit would have been achieved with the non-

gastroenteritis cases, which renders the gastroenteritis cases a sub-optimal alternative. 

Consequently, Methodology D becomes the adequate estimation technique to apply for 

health-maximising decision makers, with the value of the opportunity costs of the 80 bed-

days used for the gastroenteritis cases being actually equivalent to £203,808 (approach 

New5), providing a strong economic argument for ideally avoiding (or reducing) these 

hospital stays due to acute gastroenteritis. 
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Table 8. Opportunity cost results of the 80 bed-days used for gastroenteritis cases using approach New5. 

Patient(s) P1 (acute gastroenteritis cases, 

n=40) 

P2 (forgone regularly admitted, 

non-gastroenteritis patients, n=16) 

Expenditure (£ in total) 63,760 42,032 

Benefit (GMB, £ in total) 800 182,080 

NMB (benefit-expenditure, £ in total) -62,960 140,048 

Expenditure + highest NMB forgone 203,808 -20,928 

GMB: gross monetary benefit, NMB: net monetary benefit, QALY: quality-adjusted life year. Figures in 

bold correspond to approaches covered in the overview table. 

The NMB is higher for P2 than for P1, and the “Expenditure + highest NMB forgone” is smaller than the 

“Benefit (GMB, £ in total)” for P2 while it is higher for P1. Everything indicates to that P1 is the sub-optimal 

alternative, and the value of the opportunity costs for the 80 bed-days is the “Expenditure + highest NMB 

forgone” of £203,808. 

 

 

2.9.1.2 Example 2: Value of bed-days used for competing surgical procedures in 

Australia 

In contrast to example 1 where it was looked at different patients (i.e. cases and 

displaced alternative patients), example 2 estimates the value of the bed-days used for 

two competing procedures in the same patients, thus forgoing the use of bed-days for 

treating patients with one procedure in favour of using a second procedure. 

This example is based on a study comparing total laparoscopic hysterectomy (TLH) to 

total abdominal hysterectomy (TAH) for the treatment of early stage endometrial cancer 

in two modelled cohorts of 1,000 patients each in Australia.[247] For simplicity it is 

assumed that i) these two constitute the only alternatives and ii) resources for operations 

were at full capacity. Thus, the value of the bed-days used for the laparoscopic procedures 

are estimated in terms of the forgone abdominal procedures. The study used a higher 

monetary value of AU$64,000/QALY for Australia, and the results published for 6-month 

post-surgery were used; see Table 9. No information on the revenue was provided, which 

is why the corresponding approaches 3b, 3c, and 9 were omitted. 
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Table 9. Input data to illustrate the value of the opportunity costs: total laparoscopic hysterectomy in 

terms of total abdominal hysterectomy. 

Occupancy rate 1.0a  

Cost-effectiveness threshold (AU$ per QALY) 64,000b  

   

Patient(s) P1 (TLH, n=1,000) P2 (TAH) 

Units (bed-days per patient) 3.76 (total for 1,000 

patients=3,760) 

7.31 

Expenditure (AU$ per patient) 12,124 15,870 

Revenue (AU$ per patient) - -c 

Benefit (QALY gain per patient) 0.86 0.82 
AU$: Australian dollar, EQ-5D: EuroQol five dimensions, LOS: length of stay, QALY: quality-adjusted life 

year, TAH: total abdominal hysterectomy, TLH: total laparoscopic hysterectomy. 

All values were reflecting the situation as of 6-month post-surgery (i.e., including the LOS of readmissions, 

expenditure on all health services used, and the EQ-5D scores at month 6). 

a: assumes full capacity and that freed beds are efficiently redeployed.[4] 

b: Estimated for Australia. 

c: Not provided. 

 

For the 1,000 laparoscopic procedures, 3,760 bed-days were used in total at direct 

expenditures of AU$12.1 million (approach 7). The forgone abdominal procedures would 

have resulted in net monetary benefits of AU$18.8 million (approach New1); about 1.55 

times the value of the direct expenditure incurred. 
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Table 10. Overview of approaches to value the opportunity costs of bed-days for total laparoscopic hysterectomy 

surgery 

Approach Description Equation Results for 

patient i 

Methodology A: Units of the second-best alternative forgone 

1 Patient-equivalents (of TAH patients j) forgone 
𝐿𝑂𝑆𝑖 ∗

1

𝐿𝑂𝑆𝑗
  (∗ 𝑂𝐶𝑅) 

514.4 

2 Treatment-equivalents forgone for TAH patients 

j 
𝐶𝑖 ∗

1

𝐶𝑗
 

764.0 

Methodology B: Net benefit of the second-best alternative forgone 

 Valuation in terms of money   

3a Expenditure forgone on TAH patient-

equivalents 
𝐿𝑂𝑆𝑖 ∗

𝐶𝑗

𝐿𝑂𝑆𝑗
 

AU$8,162,955 

3b Revenue forgone from the TAH patient-

equivalents 
𝐿𝑂𝑆𝑖 ∗

𝑅𝑗

𝐿𝑂𝑆𝑗
  (∗ 𝑂𝐶𝑅) 

n/a 

3c Net revenue forgone from the TAH patient-

equivalents 𝐿𝑂𝑆𝑖 ∗
(𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

n/a 

5 Gross monetary benefit forgone for the TAH 

patient-equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 ∗ λ)

𝐿𝑂𝑆𝑗
 

AU$26,993,817 

New1 Net monetary benefit forgone for the TAH 

patient-equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

AU$18,830,862 

New2 Net monetary benefit forgone for the TAH 

treatment-equivalents 𝐶𝑖 ∗
(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐶𝑗
 

AU$27,968,471 

 Valuation in terms of QALYs   

4 Gross health benefit forgone for TAH patient-

equivalents 
𝐿𝑂𝑆𝑖 ∗

𝐵𝑗

𝐿𝑂𝑆𝑗
 

421.8 

6 Health benefit forgone for expected second-best 

use 
𝐶𝑖 ∗

1

𝜆
 

189.4 

New3 Net health benefit forgone for the TAH patient-

equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 − (

𝐶𝑗

𝜆
))

𝐿𝑂𝑆𝑗
 

294.2 

New4 Net health benefit forgone for the TAH 

treatment-equivalents 𝐶𝑖 ∗
(𝐵𝑗 − (

𝐶𝑗

𝜆
))

𝐶𝑗
 

437.0 

Methodology C: Expenditure of the alternative chosen 

7 Expenditure for the resource consumption 

incurred 
𝐿𝑂𝑆𝑖 ∗

𝐶𝑖

𝐿𝑂𝑆𝑖
 

AU$12,124,000 

8 Separating variable expenditure and non-

monetary resource consumption 
𝐿𝑂𝑆𝑖 ∗

𝑉𝐶𝑖

𝐿𝑂𝑆𝑖
 & 𝐿𝑂𝑆𝑖 

AU$1,818,600 & 

80 

Methodology D: Expenditure of the alternative chosen + highest net benefit forgone 

9 Expenditure incurred + highest net revenue 

forgone 
𝐿𝑂𝑆𝑖

∗ (
𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

n/a 
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New5 Expenditure incurred + highest net monetary 

benefit forgone 
𝐿𝑂𝑆𝑖

∗ (
𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

AU$30,954,862 

The last column illustrates the marginal opportunity costs of patients i consuming 3,760 bed-days.  

AU$: Australian dollar, B: (health) benefit gained per patient, Ci: total expenditure incurred for i, Cj: expenditure incurred 

per patient, λ: monetary value assigned to QALYs in local cost-effectiveness thresholds, LOSi: total bed-day consumption 

of i, LOSj: length of stay per patient, n/a: not available, OCR: occupancy rate, QALY: quality-adjusted life year, R: revenue 

per patient, TAH: total abdominal hysterectomy, TLH: total laparoscopic hysterectomy, VC: variable cost proportion of 

the expenditure. 

 

Moreover, if looking at the different net benefits achievable again (see Table 11), the 

net monetary benefit for the forgone TAH procedures is lower than for TLH, and for the 

TLH procedures the “Expenditure + highest NMB forgone” is lower than the “Benefit 

(GMB, AU$ in total)” (while higher for the TAH procedure). The TAH procedures are 

thus a sub-optimal alternative compared to TLH, leaving TLH as the optimal choice here 

and the value of the opportunity costs for the 3,760 bed-days being equivalent to the 

second-best net monetary benefit forgone of AU$18.8 million (approach New1). 

 

Table 11. Opportunity cost results of the 3,760 bed-days used for total laparoscopic hysterectomy 

procedures using approach New1. 

Occupancy rate 1.0a  

Cost-effectiveness threshold (AU$ per QALY) 64,000b  

   

Patient(s) P1 (TLH, n=1,000) P2 (forgone TAH procedures, 

n=514.4) 

Expenditure (AU$ in total) 12,124,000 8,162,955 

Benefit (GMB, AU$ in total) 55,040,000 26,993,817 

NMB (benefit-expenditure, AU$ in total) 42,916,000 18,830,862 

Expenditure + highest NMB forgone 30,954,862 51,078,955 
AU$: Australian dollar, GMB: gross monetary benefit, NMB: net monetary benefit, QALY: quality-adjusted life 

year, TAH: total abdominal hysterectomy, TLH: total laparoscopic hysterectomy. Figures in bold correspond to 

approaches covered in the overview table. 

The situation is reversed here; the NMB is higher for P1 than for P2, and the “Expenditure + highest NMB forgone” 

is smaller than the “Benefit (GMB, AU$ in total)” for P1 while it is higher for P2. P2 is thus the sub-optimal 

alternative, and the value of the opportunity costs for the 3,760 bed-days is the forgone “Net monetary benefit (AU$ 

in total)” of AU$18,830,862. 
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3 COSTING THE WINTER BED PRESSURE DUE TO ACUTE 

GASTROENTERITIS 

 

Previously, chapter 2 developed the general idea of how to cost the resource “bed-

days” in healthcare settings, particularly from the perspective of a decision maker aiming 

to maximise population health. Next, chapters 3 to 5 turn towards the practical application 

of these ideas. 

For illustration, norovirus-associated gastroenteritis (in short: norovirus, NoV) is used 

as a case study given that it causes disruptive outbreaks in hospitals, and its recurring bed 

pressures during winter are a major public health concern (cf. section 1.3.3). In chapter 

3, the conventional costing technique is used by averaging accounting expenditures, that 

is, using NHS “reference costs”. This analysis utilises a routine dataset, but for the first 

time adjusts for its missing values. Given that the dataset records all bed-days lost due to 

“norovirus-like symptoms”, as the observations are called by NHS England, an attempt 

is made of inferring outbreaks from the data using conventional outbreak definitions for 

norovirus (of ≥ 2 cases limited in time and place). 

 

 

Title of paper, name of authors and affiliations: 

Burden, duration, and costs of hospital bed closures due to acute 

gastroenteritis in England per winter, 2010/11–2015/16. 

Sandmann F.G.1,2, Jit M.1,2, Robotham J.V.2, Deeny S.R.2,3 

1 London School of Hygiene and Tropical Medicine, Department of Infectious Disease 

Epidemiology, London, United Kingdom 

2 Public Health England, Modelling and Economics Unit, London, United Kingdom 

3 The Health Foundation, London, United Kingdom 

 

Publication status: published in Journal of Hospital Infection, 2017. Additional 

unpublished material is presented in sections 3.9.3 to 3.9.6.  
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3.1 COVER SHEET OF RESEARCH PAPER 2 
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3.2 SUMMARY 

Background: Bed closures due to acute gastroenteritis put hospitals under pressure each 

winter. In England, the National Health Service (NHS) has monitored the winter situation 

for all acute Trusts since 2010/11. 

Aim: To estimate the burden, duration, and costs of hospital bed closures due to acute 

gastroenteritis in winter. 

Methods: A retrospective analysis of routinely collected time-series data by NHS 

England of beds closed due to diarrhoea and vomiting was conducted for the winters 

2010/11 to 2015/16. Two key issues were addressed by imputing non-randomly missing 

values at provider-level, and filtering observations to a range of dates recorded in all six 

winters. The lowest and highest value imputed were taken as best and worst case 

scenarios. Bed-days were costed using NHS reference costs, and considering potential 

staff absence costs based on previous studies. 

Findings: In the best-to-worst case, a median 88,000−113,000 beds were closed due to 

gastroenteritis each winter. Of these, 19.6−20.4% were unoccupied, respectively. On 

average, 80% of providers were affected, and had closed beds for a median of 15−21 days 

each winter. Hospital costs of beds lost unoccupied were £5.7−£7.5 million, which 

increased to £6.9−£10.0 million when including staff absence costs due to illness. 

Conclusions: The median number of hospital beds closed due to acute gastroenteritis 

per winter was equivalent to all general and acute hospital beds in England being 

unavailable for a median of 0.88 to 1.12 days. Costs for hospitals are high but vary with 

closures each winter. 
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3.3 INTRODUCTION 

In healthcare settings, acute gastroenteritis (i.e., diarrhoea and vomiting) is a common 

source of disruption for routine care due to the sudden onset of symptoms, and the 

potential for enteric pathogens to cause outbreaks of infectious nature.[231] In 2004, 

hospital outbreaks of acute gastroenteritis have been estimated to cost the National Health 

Service (NHS) in England £115 million annually.[204] The main elements making up this 

cost were a decrease in the supply of available beds (when “closed” due to acute 

gastroenteritis, i.e. these beds have become unavailable for admissions) and staff absence 

due to illness. Between 2009−2011, Public Health England recorded a mean of 15,000 

bed-days lost and 3,400 cases among staff per year from voluntarily reported hospital 

outbreaks (primarily of norovirus).[174] This underestimates the national burden given 

regional variation in reporting leading to an estimated under-ascertainment of 

approximately 20%.[163] 

Due to increased demand each winter, the impact of reduced numbers of available beds 

supplied in hospitals is greater than in the rest of the year. In England, the NHS has been 

monitoring the performance of all acute hospital Trusts each winter since 2010/11, which 

includes mandatory reporting of any bed closed due to diarrhoea and vomiting on 

weekdays.[248] These compulsory reports thus allow for a comprehensive overview of the 

impact of all causes of acute (infectious and non-infectious) gastroenteritis on bed-days 

lost nationwide during six winters across seven years. 

This study aimed to provide updated estimates for the burden, duration and costs of all 

forms of acute gastroenteritis impacting hospital bed availability in England during 

winter. In addition to investigating the closure duration, it was also explored whether the 

outbreak duration of infectious gastroenteritis could be traced in the data by following 

conventional definitions for outbreaks of norovirus,[184,224,225] which has become the key 

enteric pathogen across all ages worldwide, particularly in countries that introduced 

rotavirus vaccination (like the USA).[164,220] Estimates were also compared across winters 

in order to provide insights into variation across the whole hospital system. 
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3.4 METHODS 

3.4.1 Data 

Using NHS England’s winter situation reports for 2010/11 to 2015/16, all available 

records were obtained of occupied and unoccupied beds closed due to diarrhoea and 

vomiting, and the total number of general and acute beds available (including escalation 

beds but excluding maternity and mental health beds).[248] Records were only available at 

the level of Trusts, which may contain multiple hospitals and/or wards within a hospital. 

Bed figures were reported on weekdays only (reflecting the number for the previous day), 

and figures for weekends and bank holidays reflect the last day of that respective 

period.[248] Suspected errors in reporting or mis-coding encountered in the data were 

treated as missing values (n=0.54%; see Discussion). 

3.4.2 Statistical analysis 

Two key issues in the data were addressed for a reliable comparison across winters. 

First, one-third of values were missing due to weekends and bank holidays. To account 

for this, values were imputed at provider-level through last-observation carried forward, 

LOCF, and next-observation carried backward, NOCB. Thereby, records for Thursdays 

were carried forward to inform the missing values for Fridays and Saturdays (with 

LOCF), and records for Sundays were carried backwards to impute values for Saturdays 

and Fridays (i.e., NOCB). To avoid biasing results systematically upwards when closed 

beds were recorded only before but not after the missing values (and vice versa), the 

lowest value imputed with either LOCF or NOCB was considered as conservative best 

case scenario. The highest value imputed with either imputation strategy was also 

considered, as worst case scenario. 

Second, recording lengths and periods are determined flexibly by NHS officials each 

winter and varied from 13 to 21 weeks between November to March. The analysis was 

restricted to an overlapping range of dates recorded in all six winters (30th November to 

20th February; i.e., 83 days or nearly 12 weeks) after imputing missing values. 

Descriptive statistics are provided with the median and interquartile range (IQR) to 

highlight variation between winters. In order to investigate the relationship between 

unoccupied and occupied beds closed per day Pearson’s correlation coefficient was 
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calculated. To visualise any trend across winters, locally weighted regression curves were 

fitted to the time-series of all beds closed (with lowest imputations) across all winters, 

and linear regression curves interrupted between the winters of 2012/13 and 2013/14. 

Data (with lowest imputations) were also scaled to the highest daily number per winter 

using the unadjusted periods (of between 13 to 21 weeks) to identify within-winter 

variations. 

3.4.3 Quantifying the duration of bed closures 

To analyse the duration of bed closures the length of consecutive days closed were 

counted per provider in the imputed datasets. 

In order to explore whether outbreaks of infectious gastroenteritis could be traced in the 

data, conventional definitions were followed for outbreaks of norovirus as the key enteric 

pathogen: >1 case for >1 day; symptom onset within ±48 hours.[184,224,225] First, records 

were removed of isolated occurrences of one bed closed for one day and no other closure 

within ±48 hours. Then, bed closures reported within ±48 hours were connected and 

analysed as part of one sustained outbreak. In scenario analyses, sequences were removed 

with beds being closed on the first or last day of recording, as well as on the second (to 

last) day to account for the ±48 hours period. Given that the removal of censored durations 

biases results when excluding the longest-lasting closures, it was also explored including 

the duration of outbreaks truncated to the overlapping range of dates from the raw data 

again, where possible, and only removed the remaining censored outbreaks (i.e. for those 

two winters that defined the start and end date of the filtered range of dates; see Appendix 

in section 3.9). 

3.4.4 Cost analysis 

The financial costs of acute gastroenteritis were estimated from the perspective of 

hospitals based on the number of unoccupied beds closed and staff absence costs. 

Financial costs for hospitals arise from revenue losses of beds closed unoccupied as no 

(additional) patients can be treated in the unused beds. Beds closed occupied do not 

represent a financial loss for hospitals in the same sense; this is discussed further in the 

Discussion. 
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Staff absence costs were also considered given their importance, although they are not 

recorded in NHS England’s winter situation reports. The proportion of staff absence costs 

on the total costs from previous studies of outbreaks of acute gastroenteritis in England 

and Scotland were 0.245 and 0.174, respectively.[204,249] 

The total financial and economic costs per winter was estimated as: 

TCi = (BDi ∙ C ∙ 1 / ( 1 − Si ) (Eq. 1) 

 

, where TC represents the total costs, BD the median total of all occupied and unoccupied 

beds closed, C the average NHS reference costs for elective and non-elective inpatient 

excess bed-days in 2014/15,[232] S the proportion of staff absence costs, and i takes on the 

lowest and highest value (read: imputation and proportion) for the best-to-worst case 

scenarios. 

All analyses were performed in R version 3.2.2 using RStudio.[126] 

3.5 RESULTS 

3.5.1 Winter burden of hospital beds closed due to acute gastroenteritis 

On average 80% of general and acute NHS hospital Trusts have closed beds due to 

diarrhoea and vomiting each winter. The median number of beds closed per winter was 

88,000 (IQR: 71,000−123,000) to 113,000 (IQR: 88,000−151,000) with the lowest-to-

highest imputation. Of these, 19.6−20.4% were unoccupied, respectively, with a median 

17,000 (IQR: 13,000−23,000) to 23,000 (IQR: 17,000−31,000) beds per winter. Occupied 

and unoccupied beds closed per day were strongly positively correlated (best case r = 

0.91, worst case r = 0.89). 

During winter, the daily total general and acute hospital capacity in England was 

reported as a median 100,000 (IQR: 99,500−101,000) to 101,000 (IQR: 99,900−102,000) 

bed-days with the lowest-to-highest imputation. Of these, 1.1−1.3% were closed due to 

diarrhoea and vomiting. 

The highest numbers of occupied and unoccupied beds closed was found for the winters 

in 2011/12 and 2012/13, irrespective of the imputation scenario (see Table 12). The 

number of beds closed has declined from a peak of 135,000−168,000 in 2012/2013 to 
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37,800−50,100 in 2015/2016, with a corresponding trend for unoccupied beds. Since 

2013/14, the level of the slope of the linear fit decreased and its direction became negative 

even for the data with the highest imputations (see Figure 7), representing a decline in 

bed closures due to diarrhoea and vomiting in recent winters. Furthermore, when scaling 

the data to the day with the highest number of beds closed each winter (for the unadjusted 

periods), a peak occurred either in December or February in most winters even when 

using the lowest imputations, occasionally with peaks in both months, next to an upwards 

linear trend for most winters (see Figure 9 in the Appendix, section 3.9.2). 

 



C o n v e n t i o n a l  c o s t i n g  o f  b e d - d a y s  

 

81 

 

Table 12. Hospital beds unavailable due do diarrhoea and vomiting in England, 2010/11 to 2015/16 

(November 30 to February 20) 

Winter season 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

 No. of Trusts closing beds, per winter 

Trusts affected (% of total) 129 (78.2) 138 (84.1) 134 (84.3) 127 (80.9) 128 (83.7) 101 (66.4) 

 No. of beds closed, per winter 

Best case 98,500 135,000 131,000 68,600 78,100 37,800 

Worst case 123,000 168,000 161,000 83,800 102,000 50,100 

 No. of unoccupied beds closed, per winter 

Best case 20,800 25,100 24,100 13,300 13,800 7,100 

Worst case 27,600 34,000 31,700 17,200 18,400 9,600 

 No. of sustained bed closures in total, per winter 

Best case 476 512 558 503 521 388 

Worst case 477 512 571 512 532 396 

 Duration of sustained bed closures in days, per winter 

Best case: mean (SD) 7.2 (10.0) 8.8 (12.0) 8.2 (11.9) 6.1 (8.6) 6.2 (8.4) 5.0 (7.7) 

Worst case: mean (SD) 8.5 (10.1) 10.1 (12.0) 9.3 (11.8) 7.1 (8.7) 7.3 (8.3) 6.1 (7.7) 

Best case: median (IQR) 3 (1−8) 4 (2−10) 4 (1−10) 3 (1−8) 3 (1−7) 2 (1−6) 

Worst case: median (IQR) 5 (3−10) 6 (3−12) 5 (3−11) 4 (3−8) 5 (3−8) 4 (2−7) 

 
No. of potential outbreaks of infectious gastroenteritis, per winter 

Best case 393 463 492 430 443 321 

Worst case 348 408 437 383 419 304 

 Duration of potential outbreaks of infectious gastroenteritis in days, per winter 

Best case: mean (SD) 8.8 (11.5) 9.7 (12.6) 9.4 (12.7) 7.2 (9.4) 7.4 (9.2) 6.2 (9.8) 

Worst case: mean (SD) 12.0 (13.9) 12.9 (14.5) 12.4 (14.0) 9.9 (11.3) 9.5 (10.7) 8.2 (10.7) 

Best case: median (IQR) 4 (2−11) 5 (2−12) 4 (2−11) 4 (2−10) 4 (2−9) 3 (1−7) 

Worst case: median (IQR) 7 (4−14) 8 (4−15) 6 (3−16) 6 (3−13) 6 (3−12) 5 (3−10) 

 
Financial costs of unoccupied beds closed in million £, per winter 

Best case (excl. staff absence) 8.2 (6.8) 10.0 (8.2) 9.5 (7.9) 5.3 (4.4) 5.5 (4.5) 2.8 (2.3) 

Worst case (excl. staff absence) 12.0 (9.0) 14.7 (11.1) 13.8 (10.4) 7.5 (5.6) 8.0 (6.0) 4.2 (3.2) 

 Economic value of occupied and unoccupied beds closed in million £, per winter 

Best case (excl. staff absence) 39.0 (32.2) 53.4 (44.1) 51.7 (42.7) 27.2 (22.5) 31.0 (25.6) 15.0 (12.4) 

Worst case (excl. staff absence) 53.5 (40.4) 73.1 (55.2) 69.7 (52.6) 36.3 (27.4) 44.2 (33.4) 21.7 (16.4) 

The total number of Trusts has been decreasing over time from 165 in 2010/11 to 152 in 2015/16 due to mergers 

and restructuring in the NHS. Results do not include the scenario analyses of removing censored durations (see 

Appendix, section 3.9.1). For the “No. of potential outbreaks of infectious gastroenteritis”, the best case is 

higher than the worst case given that fewer sustained closures were connected. Costs represent 2014/2015 values 

of pound sterling. 

IQR: interquartile range, NHS: National Health Service, SD: standard deviation. 



C h a p t e r  3  

 

82 

3.5.2 Duration of bed closures due to acute gastroenteritis 

The duration of 2,960−3,000 sustained closures were analysed across the six winters in 

the lowest-to-highest imputation. A median of three sustained closures per provider was 

found each winter with both imputations (full range 0–14). The median total of days with 

beds closed per provider was 15 and 21 (range 0–83). Each closure lasted between a 

median 3 (IQR: 1−8) to 5 (IQR: 3−10) days and a mean 7.0 (SD 10.1) to 8.2 days (SD 

10.1). 

Following the methodology to trace the potential outbreak duration of infectious 

gastroenteritis resulted in 2,540−2,300 sustained closures in the lowest-to-highest 

imputation. Durations were found of a median 4 (IQR: 2−10) to 6 (IQR: 3−13) days and 

a mean 8.3 (SD 11.1) to 10.9 days (SD 12.8). The scenario analyses of excluding censored 

durations did not change the median while the mean decreased to 8.0−10.6 or 6.7−9.1 

days, depending on whether or not the duration of truncated outbreaks from the raw data 

were included (see Appendix in section 3.9). 

3.5.3 Costs of unoccupied beds closed due to acute gastroenteritis for hospitals 

The financial cost for hospitals corresponding to the median of unoccupied beds closed 

was £5.7−£7.5 million in England per winter (with the range representing the lowest-to-

highest imputations). This increased to £6.9−£10.0 million when including staff absence 

due to illness; see Table 12. 
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Figure 7. Time trend of the daily number of hospital beds closed due to diarrhoea and 

vomiting in England across winters, 2010/11 to 2015/16 (November 30 to February 20). 

 

Black line represents the data (with highest imputations), red long-dashed line the locally weighted 

regression fit, and blue dashed line the linear regression fit (interrupted between winters 2012/13 and 

2013/14). 

 

3.6 DISCUSSION 

This study provides up-to-date estimates for the burden, duration and costs of all forms 

of acute gastroenteritis impacting hospital bed availability in England for six winters 

across seven years. Although only about 1.1−1.3% of all general and acute beds were 

closed due to diarrhoea and vomiting in the last six winters per day, the total of the median 

number of beds closed per winter equalled about the entire median total capacity in 

England per day (88,000/100,000 to 113,000/101,000 = 0.88 to 1.12 days). The data were 

subject to variation between winters: The burden of bed closures was highest in the first 
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three winters recorded, which coincided with rotavirus vaccine introduction in July 

2013,[180,227,233] and with the emergence of a novel norovirus strain mutation 

(2012/Sydney).[132,179] Fluctuation of numbers were saw also with the scaled data showing 

a second peak in mid-February in most winters (see Figure 9 in the Appendix, section 

3.9.2). 

Although occupied beds closed do not represent a financial revenue loss for hospitals, 

these beds are blocked for alternative patients and opportunity costs may arise from the 

lost opportunity to treat the patient who would have been admitted if the bed was 

available. Thus, if one was to assume that the entire period that a bed was closed due to 

diarrhoea and vomiting would have been avoidable, the economic value for hospitals of 

all beds closed occupied and unoccupied was £29−£37 million per winter (and £35−£49 

million when including staff absence costs). However, this estimation thus assumes that 

patients who occupied closed beds would have been discharged were the bed not closed, 

i.e. the length of stay of the patient would always be reduced, and that there are no other 

clinical or operational reasons that a discharge might be delayed; considering such time-

dependent biases and competing risks in the underlying discharge process was beyond 

the scope of this study.[221] 

3.6.1 Comparison with previous work 

The strong positive correlation between unoccupied beds closed and occupied beds 

closed is likely due to closures of bays with >1 bed, which supports previous research on 

the impact of physical proximity of cases and the structural design of wards.[176,224] 

Compared to the estimated potential outbreak duration of infectious gastroenteritis of a 

median 4−6 days and a mean 8.3−10.9 days in this paper, previous studies in England 

observed an average outbreak duration of 9.2 (95%-CI: 6.5−11.9) days per ward closure 

to new admissions in England in 2002/03,[175,204] and a median length of 6−7 days from 

Public Health England’s surveillance system of voluntarily-reported norovirus outbreaks 

in hospitals between 2009/10−2014/15.[174] Most differences may be explained by NHS 

England recording only the winter periods instead of annually, and records being made 

per Trust and not per outbreak despite that several distinct outbreaks may be occurring at 

the same time. Nonetheless, the short incubation and fast spread of many infectious forms 

of gastroenteritis may suggest local confinement.[228] 
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Previously, the costs of infectious gastroenteritis outbreaks in England were estimated 

in 2004 at £115 million per year based on a top-down approach using data from 1994/95 

and 2002/03.[204,219] Differences to the estimates in this paper may be explained by a 

calculation per annum instead of per winter, a top-down vs. bottom-up approach to 

costing, the baseline year being a high-incidence year for norovirus with novel strain 

emergence and unusually high summer activity that had a seemingly worse impact than 

the strain emergence in 2012.[174,222] Also, the number of laboratory reports for norovirus 

have declined in total numbers in recent years,[165] possibly because of milder winters, a 

decline in the natural year-to-year variability of the burden overall since the late 

1990s/early 2000s, or other unrelated factors like reporting practices. Also, although the 

actual opportunity costs may not be equivalent to the excess bed-day value, if one was to 

uprate the weighted average of the unit costs per bed-day for various medical specialties 

considered in Lopman et al.[204] to represent 2014/15 values,14 the estimates of the study 

presented here would increase by 12%; as such the values can still be considered 

conservative. 

3.6.2 Strengths and Limitations 

To the best of the authors’ knowledge, this study is the first to address both the missing 

values and different recording lengths in NHS England’s hospital data. Previous studies 

relied on raw data to estimate the number of beds closed due to diarrhoea and vomiting 

for four winters (2010/11−2013/14),[177] and to provide a comprehensive overview of 

hospital performance indicators for an overlapping range of weeks (week 45−6) for five 

winters (2010/11−2014/15).[178] 

The data analysed in this study are considered to be the best available information by 

NHS to monitor the NHS hospital performance during winters.[248] Nonetheless, the speed 

of collection allows only minimal validation of the raw data.[248] This may explain why a 

small fraction of cells in the spreadsheets were coded with a “-“ (n=163; 0.20% of all 

cells), and a “0” for the general bed availability (n=273; 0.34%). All of them were 

considered as missing values, and thus accounted for in the subsequent imputations. 

Despite these efforts, the estimated daily capacity of a median 100,000−101,000 general 

and acute hospital beds per day is 4% lower than the official number of a median 105,000 

for general and acute beds available daily in the quarters 4 and 1 for the winters 

2010/11−2015/16,[230] which may give an indication of the potential under-ascertainment. 
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Given that the data represent only a once-daily snapshot, it is possible for the status of 

beds to have changed within the same day (e.g. an occupied bed closed may have become 

an unoccupied bed closed when patients were discharged). Interestingly, when assuming 

that beds were not closed independently, the median number of beds closed occupied was 

higher for Sundays than for Thursdays (Wilcoxon signed-rank test: P=0.002), while the 

change in beds closed unoccupied was statistically insignificant (P=0.4). This increase in 

patients occupying beds due diarrhoea and vomiting towards the end of weekends while 

the numbers of unoccupied beds remain constant may thus be a further indication for an 

underlying infectious cause. 

Furthermore, when comparing central tendencies (mean, median) and measures of 

spread (SD, IQR) for the daily number of beds closed between the raw data and the 

imputations, the lowest imputation underestimated both central tendencies and measures 

of spread of the raw data while the highest imputation overestimated it (data not shown). 

With the information available, it is not possible to determine where exactly the number 

of beds closed lies on the range of the lowest to highest imputations; this inaccuracy is 

unavoidable though due to the values missing. 

Despite the declining trend in the number of beds closed per winter, the time-series may 

not be long enough to capture all relevant events given that e.g. cyclical norovirus strain 

emergence occurs only about every 3−4 years,15,16 with only the latest mutation in 2012 

captured in the dataset. There is also a known background circulation of norovirus in the 

summer.[165] 

In addition, cases of acute gastroenteritis seen in hospitals may potentially be 

community-acquired or of nosocomial origin.[250] Apart from in hospitals, substantial 

costs from infectious intestinal disease also arise in the community that have not been 

considered here.[167,229] 

3.7 CONCLUSIONS 

Bed closures due to acute (infectious and non-infectious) gastroenteritis put general and 

acute NHS hospitals under pressure each winter, with all hospital beds in England being 

unavailable for an equivalent of 0.88 to 1.12 days. About 19.6−20.4% of closed beds were 

lost unoccupied. If the data were collected daily over an identical time period, the 

imputation strategies of the analysis would have been superfluous and thus the data would 
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allow a more precise surveillance within and across years. Future research needs to 

quantify the opportunity costs for patients in the NHS, and account for time-dependent 

biases. 
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3.9 SUPPLEMENTARY MATERIAL 

3.9.1 Scenario analysis for the duration of bed closures (as proxy for outbreaks of 

infectious gastroenteritis) 

For bed closures that started or stopped on the first or last day of recording, as well as 

on the second (to last) day to account for the ±48 hours period, two approaches were 

applied: First, all these durations were removed. Second, given that more information is 

available on the duration of outbreaks due to truncating the raw data to an overlapping 

range of dates, it was possible to include the entire duration of bed closures for most 

seasons (other than those defining the start and end date, and durations extending to the 

start or end date of recording, which were still removed as censored). 

Figure 8 illustrates the differences between looking at i) the entire duration of the 

recording periods, ii) the duration of the overlapping range of dates (truncated), and iii) 

the duration of the overlapping range of dates (non-truncated) with 5 Trusts for 3 winters 

(for simplicity the durations were kept occurring at the same days across winters), in 

which winter 1 recorded the longest period (1 to 20 days), winter 2 recorded only day 1 

to 15 (defining the end date for the burden analysis for a fair comparison; corresponding 

to 20.02. of winter 2010/11 in the actual data), and winter 3 recorded only day 5 to 20 

(defining the start date for the burden analysis for a fair comparison; corresponding to 

30.11. of winter 2015/16 in the actual data). 
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Figure 8. Illustration of approaches to handle durations of bed closures at provider-level 

All horizontal lines represent days with a bed closed per provider, where the black solid lines in the grey 

boxes represent the data for the overlapping range of dates in all three hypothetical winters, the black dashed 

lines represent the data outside the overlapping range of dates, and the red dashed line the data that could 

potentially be considered when looking at the overlapping range of dates. 

 

When looking at the recording periods (i.e. all vertical lines in Figure 8 irrespective of 

colour and shape), durations vary due to different length and timing of recording each 

winter. When looking at the durations of the overlapping range of dates (i.e., all vertical 

lines in the grey box in Figure 8), information on the actual duration is lost for e.g. Trust 

1 and Trust 5. Moreover, these durations appear as censored now (as they reach the start 

or end date of the period), but removing them would bias results by eliminating the 
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longest-lasting durations, for which the entire length is also known at least partially (i.e. 

Trust 1 and Trust 5, but not Trust 4). When looking at the durations truncated at the 

overlapping range of dates but including those durations for which information is 

available (i.e., all vertical lines in the grey box plus the dashed red lines in Figure 8), the 

information available was considered that was otherwise ignored. Durations spanning the 

range of dates and for which the entire length from the recording periods are known were 

thus considered, while those outside of the filtered period were excluded (as no 

information is available on those across all winters). If one was to remove censored 

durations, the longest lasting durations would still be lost (cf. Trust 4 in Figure 8). In 

addition, information is incomplete for the winters that define the start or end date. 

The results for i) the different recording periods, ii) the overlapping range of dates (with 

truncated durations), and iii) the overlapping range of dates (without truncated durations, 

where possible) are shown in Table 13. As expected, the mean and median of iii) were 

higher than ii), the range of iii) was identical to i), and fewer censored durations were 

removed as a last step in iii) than in ii). 
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Table 13. Number and length of duration of bed closures across seasons 

 recording periods overlapping range of dates (truncated) overlapping range of dates (non-truncated) 

 No. of 

closures 

Duration of closures No. of 

closures 

Duration of closures No. of 

closures 

Duration of closures 

Dataset n (∆) mean (SD) median 

(IQR) 

min, 

max 

n (∆) mean (SD) median 

(IQR) 

min, 

max 

n (∆) mean (SD) median 

(IQR) 

min, 

max 

raw data 7830 2.77 (1.63) 2 (1-5) 1, 5 5510 2.75 (1.61) 2 (1-5) 1, 5 5510 2.75 (1.61) 2 (1-5) 1, 5 

best case 4240 (-3590) 6.89 (10.7) 3 (1-8) 1, 147 2960 (-2550) 7.02 (10.1) 3 (1-8) 1, 83 2960 (-2550) 8.12 (12.3) 4 (1-9) 1, 147 

worst case 4240 (-3590) 8.09 (10.8) 5 (3-9) 1, 147 3000 (-2510) 8.16 (10.1) 5 (3-10) 1, 83 3000 (-2510) 9.38 (12.2) 5 (3-11) 1, 147 

best case: no single bedsa 4060 (-180) 7.14 (10.9) 3 (1-8) 1, 147 2850 (-110) 7.25 (10.2) 3 (1-8) 1, 83 2850 (-110) 8.39 (12.4) 4 (1-10) 1, 147 

worst case: no single bedsa 4170 (-70) 8.21 (10.8) 5 (3-10) 1, 147 2960 (-40) 8.26 (10.1) 5 (3-10) 1, 83 2960 (-40) 9.49 (12.3) 5 (3-11) 1, 147 

best case: connect 48hb 3630 (-430) 8.12 (11.9) 4 (2-9) 1, 147 2540 (-310) 8.25 (11.1) 4 (2-10) 1, 83 2540 (-310) 9.52 (13.5) 4 (2-11) 1, 147 

worst case: connect 48hb 3260 (-910) 10.8 (13.9) 6 (3-13) 1, 147 2300 (-660) 10.9 (12.8) 6 (3-13) 1, 83 2300 (-660) 12.5 (15.3) 7 (4-15) 1, 147 

best case: no censoredc 3130 (-500) 7.03 (9.0) 4 (2-9) 1, 75 2020 (-520) 6.71 (8.2) 4 (2-9) 1, 61 2360 (-180) 7.97 (9.9) 4 (2-10) 1, 75 

worst case: no censoredc 2740 (-520) 9.45 (10.4) 6 (3-12) 1, 88 1710 (-590) 9.09 (9.3) 6 (3-12) 1, 73 2100 (-200) 10.6 (11.3) 6 (3-13) 1, 88 

∆: change (absolute numbers), IQR: interquartile region, SD: standard deviation 

a: Removed isolated single beds closed when no other bed closure occurred within 48h. 

b: Connected bed closures occurring within 48 hours. 

c: Removed censored sequences of bed closures (on first or last day of recording, or second (to last) day of recording). 
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3.9.2 Figure of data scaled to the highest daily number per winter to identify within-

winter variation 

Figure 9. Time series of the observed number (data including lowest imputations) of 

hospital beds closed due to diarrhoea and vomiting in England per winter, 2010/11 to 

2015/16 (different recording periods). 

Values scaled to the highest number recorded each winter. Black line represents the data, blue dashed line 

the linear fit, and red long-dashed line the locally weighted regression fit. 
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3.9.3 Potential impact of the unknown patients’ movements 

In the absence of individual patient-level data the recordings of NHS England do not 

capture patients’ movements. It is thus conceivable that a number of occupied beds were 

unavailable on Friday but over the weekend patients might have been discharged, which 

would convert these occupied beds to unoccupied beds (unavailable or not). 

To illustrate the first situation of unavailable occupied beds becoming unavailable 

unoccupied beds, let us assume a total of 50 beds are unavailable on a Thursday, of which 

20% are unoccupied (Table 14). When discharging e.g. 10 patients between Thursday to 

Sunday, 10 occupied beds would change to 10 unoccupied beds, and the proportion of 

unoccupied beds that are unavailable on Sundays should thus increase from 20% to 40% 

(in case they cannot be reopened altogether, i.e. the total number of beds unavailable 

remains constant at 50). 

 

Table 14. Number of beds unavailable due to norovirus-like symptoms before and after 

weekends; theoretical example with constant total number of beds unavailable 

statistic Thursdays Sundays change 

Beds unavailable occupied 40 30 -10 

Beds unavailable unoccupied 10 20 +10 

Total number of beds unavailable 50 50 0 

Proportion unoccupied/occupied beds unavailable 0.250 0.667 +167% 

Proportion unoccupied on all beds unavailable 0.200 0.400 +100% 

 

However, it may also be that the unavailable unoccupied beds become available again 

for new admissions (i.e., reopening beds), reducing the total number of beds unavailable. 

In such a situation, when discharging again e.g. 10 patients between Thursday to Sunday 

and re-opening the 10 beds for new admissions, the proportion of unoccupied beds that 

are unavailable on Sundays should thus increase from 20% to 25% (assuming no other 

unoccupied beds are reopened; Table 15). 

 

Table 15. Number of beds unavailable due to norovirus-like symptoms before and after 

weekends; theoretical example without constant total number of beds unavailable 

statistic Thursdays Sundays change 

Beds unavailable occupied 40 30 -10 

Beds unavailable unoccupied 10 10 0 

Total number of beds unavailable 50 40 -10 

Proportion unoccupied/occupied beds unavailable 0.250 0.333 +33% 

Proportion unoccupied on all beds unavailable 0.200 0.250 +25% 
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In order for the proportion of beds unoccupied to stay at the expected 20% seen in the 

data, an additional 2.5 beds unavailable unoccupied need to be reopened, too, for the 

proportions to stay at the expected 20% of beds unoccupied (i.e., 7.5/37.5=0.20). 

In the actual dataset both proportions decreased; however, this seemed to be caused by 

an increase in the number of occupied beds unavailable, which drove the total number of 

all beds unavailable upwards (Table 16). At the same time, unoccupied beds may indeed 

have become available again (i.e., less of them were “closed” on Sundays). 

 

Table 16. Number of beds unavailable before and after weekends, aggregated data for England, winters 

2010/11–2015/16 

Statistic Thursdays Sundays change signif. 

Unavailable beds occupied: median (IQR) 864 (627-1200) 972 (690-1340) +108 P=.002 

Unavailable beds unoccupied: median (IQR) 226 (153-336) 212 (154-347) -14 P=.4 

Total number of beds: median (IQR) 1080 (794-1560) 1210 (864-1640) +130 P=.008 

Proportion unoccupied/occupied beds 0.262 0.218 -16.6%  

Proportion unoccupied on all beds 0.209 0.175 -16.3%  

P-values determined by Wilcoxon signed-rank test. 

 

It seems reasonable to assume that not all of these beds unavailable “due to diarrhoea 

and vomiting/norovirus-like symptoms”, as NHS England refers to them, are independent 

observations when occurring within the same Trust and given that they might be caused 

by infectious pathogens. Thus, when using a paired Wilcoxon test a statistically 

significant increase was seen in the number of beds occupied, but a non-significant 

decrease in the number of beds unoccupied (note: when assuming that these aggregated 

numbers of beds for all acute hospitals in England were in fact unavailable independently, 

which seems rather implausible, then none of the changes were statistically significant). 

Thus, if unavailable beds are dependent on each other, then there seems to be a 

“weekend effect” in that more patients are occupying beds due to gastroenteritis at the 

end of each weekend, while the median number of beds unavailable unoccupied stayed 

more or less the same over weekends, which may further indicate an underlying infectious 

cause of symptoms. 

This finding was highlighted in section 3.6.2: “Interestingly, when assuming that beds 

were not closed independently, the median number of beds closed occupied was higher 

for Sundays than for Thursdays (Wilcoxon signed-rank test: P=.002), while the change 

in beds closed unoccupied was statistically insignificant (P=.4). This increase in patients 
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occupying beds due diarrhoea and vomiting towards the end of weekends while the 

numbers of unoccupied beds remain constant may thus be a further indication for an 

underlying infectious cause.”.[251] 

3.9.4 Choice of imputation strategy 

In general, missing data can be addressed with different imputation strategies for 

situations where a complete-case analysis (i.e., no missing values at all) or available-case 

analysis (i.e., no missing values for the chosen variables) are deemed insufficient.[124,252] 

Broadly speaking, the imputation strategy will differ with the cause of values missing: 

 Data missing at random are characterised by the fact that, in theory, similar values 

should be obtainable for complete cases and missing cases except for stochastic 

variation.[124] In such situations, various techniques of multiple imputation have 

been developed that create multiple datasets where the missing values are replaced 

by a range of plausible values drawn from a pre-specified distribution.[124,253] 

 For data not missing at random, the missing values are conditional on the reason 

of why the values are missing.[124] For this type of missing data multiple 

imputation techniques likely introduce bias into the analysis. 

The values in the dataset of NHS England were missing non-randomly at weekends and 

public/bank holidays (Figure 10). Bed-days that became unavailable due to gastroenteritis 

over the weekend should generally have resulted in a more conservative approach by 

healthcare staff.[87] Hence, it seems likely that – at times of decreased personnel as 

occurring during the weekend – the bed-days would simply be kept unavailable for 

infection control to decrease any chance of an outbreak occurring, or for it to be sustained. 

This is the reason why the unconditional last-observation carried forward (LOCF) was 

considered; this method carries forward the value on Thursdays to inform the missing 

values for Fridays and Saturdays. 
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Figure 10. Aggregated daily number of all hospital beds unavailable due to diarrhoea 

and vomiting in England, winters 2010/11 to 2015/16 (data from NHS England).  

 

However, it may have also been possible that some hospitals discharged patients who 

felt well enough, e.g. to free much needed beds during times of increased demand and 

reduced supply. Then, the number of bed-days unavailable on a Sunday may be lower 

than those on a Monday. Thus, in order to capture what had been going on over the 

weekend if an unavailable bed was first recorded on a Sunday but not on the preceding 

Thursday, an unconditional first-observation carried backward (NOCB) was considered 

where the value of Sundays was carried backwards to impute values for Saturdays and 

Fridays. 

However, in order to not bias values systematically upwards, two scenarios were 

considered: The conservative best-case scenario considered the lowest value imputed 

with either LOCF or NOCB. Thereby, the imputation was effectively conditional on 

unavailable beds being recorded before and after the missing values; otherwise, the 

missing values would reflect that there was no unavailable bed recorded either before or 
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after, or a lower number of beds. Conversely, the highest value imputed with either LOCF 

or NOCB was considered in a worst-case scenario, thus unconditional of the number of 

unavailable beds before and after the missing values. 

Overall, neither LOCF nor NOCB was used in isolation, which would have resulted in 

lower values than the worst-case scenario. Instead, a new dataset was created for both the 

best-case and worst-case scenario from the two datasets containing imputed values with 

LOCF and NOCB. 

Moreover, missing values were imputed at the provider-level to allow accurate analysis 

of the dataset. Otherwise, the missing data at weekends and public/bank holidays would 

represent a third of all values, and thus would have biased the analysis by overestimating 

the number of bed closures per provider (Figure 11) and underestimating the duration of 

bed closures due to only recording a maximum of five consecutive days (Sundays to 

Thursdays).  

 

Figure 11. Frequency of acute care hospital beds being unavailable due to diarrhoea and 

vomiting in England across winters, 2010/11 to 2015/16.  
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Even with imputations, the variation in bed-day closure duration was high (Figure 12), 

with a few providers having to deal with bed closures for the entire duration of recording. 

 

Figure 12. Duration of consecutive days that acute care hospital beds were unavailable 

due to diarrhoea and vomiting in England across winters, 2010/11 to 2015/16.  

 

  

imputation (here: lowest value) 
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Lastly, observations were filtered to the same range of days that were available for all 

six winters in order to enable a fair comparison (Figure 13). This was done only after the 

imputation to capture the impact also for the first and last day of recording. 

 

Figure 13. Weekly number of all hospital beds unavailable due to diarrhoea and 

vomiting in England, winters 2010/11 to 2015/16 (data from NHS England).  
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3.9.5 Impact of imputations on descriptive statistics 

Generally, using an imputation strategy will inevitably affect the variation.[124] In order 

to investigate the extent of the impact of the imputations on the descriptive statistics 

reported in the paper, the central tendencies (mean, median) and measures of spread (SD, 

IQR) were compared for the raw data and the imputations of the daily number of all 

occupied and unoccupied beds unavailable (Table 17). 

Table 17. Comparing the central tendencies and measures of spread in the raw data and in both 

imputations for the daily number of all beds unavailable in England, winters 2010/11–2015/16. 

statistic raw data (NHS England) lowest imputation highest imputation 

mean 1,227 1,100 (-10.4%) 1,382 (+12.6%) 

SD 607 586 688 

median 1,141 982 (-13.9%) 1,251 (+9.6%) 

IQR (Q1-Q3) 794-1,580 689-1,435 886-1,800 

IQR: interquartile range, NHS: National Health Service, Q1: lower quartile, Q3: upper quartile, 

SD: standard deviation. 

 

Overall, the lowest imputation underestimated both central tendencies and measures of 

spread of the raw data, while the highest imputation overestimated it (Table 17). This 

finding was included in section 3.6.2: “Furthermore, when comparing central tendencies 

(mean, median) and measures of spread (SD, IQR) for the daily number of beds closed 

between the raw data and the imputations, the lowest imputation underestimated both 

central tendencies and measures of spread of the raw data while the highest imputation 

overestimated it (data not shown).”.[251] Note: The data are shown here now (Table 17). 

The median of the highest imputation is closer to the median of the raw data though, 

and instead of reducing the variation of values, a common issue with imputation strategies 

due to relying on the existing observations,[124] the highest imputation did in fact increase 

the variation. This finding provides some indication that, by being broader, the highest 

imputation may be closer to capturing the (unknown) actual number. The text in section 

3.6.2 concluded more conservatively: “With the information available, it is not possible 

to determine where exactly the number of beds closed lies on the range of the lowest to 

highest imputations; this inaccuracy is unavoidable though due to the values 

missing.”.[251] 
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3.9.6 Validation of imputation strategies 

Since publishing the paper that underlies chapter 3, additional data have become 

available and NHS England has changed the data collection to include daily observations. 

Thus, contrary to the previous winters since inception of the data collecting scheme in 

2010/2011, unavailable bed-days were recorded during weekends and public/bank 

holidays, too.[52] Between 01 December 2016 and 19 February 2017, 58,773 bed-days in 

total were unavailable due to gastroenteritis. 

This change in data collection provided a unique opportunity to validate the imputation 

strategies against the actual number recorded. First, all observations for weekends and 

public/bank holidays in winter 2016/2017 were deleted from the dataset to resemble the 

situation of the data in the previous six winters. Second, the algorithm of the imputation 

strategies was re-run to obtain best-to-worst case scenario estimates. 

As a result, the lowest-to-highest imputations led to 51,600-69,100 unavailable bed-

days in total in winter 2016/17. The difference to the actual number of 58,773 bed-days 

recorded was thus smaller for the lower estimate (with -12.2% and +17.6% for the lowest 

and highest imputation, respectively). When combining the two imputations, their 

average 60,350 bed-days were 2.6% higher than the actually recorded value. 

This result seems to suggest that the actual number of recorded observations may be 

found around the average of the two best-to-worst case imputation strategies 

(cf. Figure 14). However, potential reporting variations on weekends and public/bank 

holidays are not taken into account despite that some hospitals will not have sufficient 

infection control services available on those days. 
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Figure 14. Number of unavailable bed-days and expenditures due to diarrhoea and 

vomiting in England, winters 2010/11-2015/16. 
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4 FINANCIAL EXPENDITURES VS. OPPORTUNITY COSTS: 

HOSPITAL BURDEN OF NOROVIRUS 

 

Previously, chapter 3 illustrated the burden of unavailable bed-days due to norovirus-

associated gastroenteritis in hospitals, which is a particularly pressing concern during 

winter. The chapter also costed the burden conventionally, using as input the number of 

bed-days as well as a proxy for staff absence episodes. Owing to data unavailability, 

however, the study ignored the actual number of inpatients occupying beds, and their 

potential stay in hospital regardless of gastroenteritis (i.e., they may have stayed a few 

days longer anyway due to the underlying primary medical condition for which they were 

initially admitted to hospital). 

Thus, chapter 4 aims to estimate the hospital burden of norovirus by looking at actual 

patients and by considering their excess length of stay. Moreover, the time horizon is 

widened to an annual period to reflect that norovirus outbreaks occur throughout the year, 

even though they are a particularly stressing concern during winter. Nonetheless, 

opportunity costs for alternative admissions forgone arise regardless of the time of the 

year, and only depend on the steady demand for beds and an insufficient number of beds 

supplied in hospitals. Chapter 4 thus estimates the annual hospital burden of norovirus in 

England, and contrasts the conventional costing approach of using financial expenditures 

with the opportunity costs from forgone admissions. 

 

 

 

Title of paper, name of authors and affiliations: 

Estimating the hospital burden of norovirus-associated gastroenteritis in 

England and its opportunity costs for non-admitted patients. 

Sandmann F.G.1,2, Shallcross L.3, Adams N.4,5, Allen D.J.5,6,7, Coen P.G.8, Jeanes A.9, 

Kozlakidis Z.3,10, Larkin L.4, Wurie F.3, Robotham J.V.2, Jit M.1,2, Deeny S.R.11 

1 London School of Hygiene and Tropical Medicine, Department of Infectious Disease 

Epidemiology, London, United Kingdom 



E x p e n d i t u r e s  v s .  o p p o r t u n i t y  c o s t s  o f  n o r o v i r u s  

 

103 

2 Public Health England, National Infection Service, Statistics, Modelling and 

Economics Department, London, United Kingdom 

3 University College London, Institute of Health Informatics, Department of Infectious 

Disease Informatics, London, United Kingdom 

4 Public Health England, National Infection Service, Gastrointestinal Infections 

Department, London, United Kingdom 

5 NIHR Health Protection Research Unit in Gastrointestinal Infections, United Kingdom 

6 London School of Hygiene and Tropical Medicine, Department of Pathogen Molecular 

Biology, London, United Kingdom 

7 Public Health England, National Infection Service, Virus Reference Department, 

London, United Kingdom 

8 University College Hospitals London, Infection Control office, London, United 

Kingdom 

9 University College London Hospitals Trust, Infection Control Department, London, 

United Kingdom 

10 University College London, Division of Infection and Immunity, London, United 

Kingdom 

11 The Health Foundation, London, United Kingdom 

 

Publication status: submitted (under review). Additional unpublished material is 

presented in section 4.11. 

  



C h a p t e r  4  

 

104 

4.1 COVER SHEET OF RESEARCH PAPER 3 

 

 

  



E x p e n d i t u r e s  v s .  o p p o r t u n i t y  c o s t s  o f  n o r o v i r u s  

 

105 

 

  



C h a p t e r  4  

 

106 

4.2 ABSTRACT 

Background. Norovirus places a substantial burden on healthcare systems, arising from 

infected patients, disease outbreaks, beds kept unoccupied for infection control, and staff 

absences due to infection. In settings with high rates of bed occupancy, opportunity costs 

arise from patients who cannot be admitted due to beds being unavailable. With several 

treatments and vaccines against norovirus in development, quantifying the expected 

economic burden is timely. 

Methods. The number of inpatients with norovirus-associated gastroenteritis in England 

were modelled using infectious and non-infectious gastrointestinal Hospital Episode 

Statistics codes and laboratory reports of gastrointestinal pathogens collected at Public 

Health England. The excess length of stay from norovirus was estimated with a multi-

state model and local outbreak data. Unoccupied bed-days and staff absences were 

estimated from national outbreak surveillance. The burden was valued conventionally 

using accounting expenditures and wages, which was contrasted to the opportunity costs 

from forgone patients using a novel methodology. 

Results. Between July 2013 and June 2016, 17.7% (95%-confidence interval: 15.6%‒

21.6%) of primary and 23.8% (20.6%‒29.9%) of secondary gastrointestinal diagnoses 

were norovirus-attributable. Annually, the estimated median 290,000 (interquartile range: 

282,000‒297,000) occupied and unoccupied bed-days used for norovirus displaced 

57,800 patients. Conventional costs for the National Health Service reached £107.6 

million; the economic burden approximated to £297.7 million and a loss of 6,300 quality-

adjusted life years annually. 

Conclusions. In England, norovirus is now the second-largest contributor of the 

gastrointestinal hospital burden. With the projected impact being greater than previously 

estimated, improved capture of relevant opportunity costs seems imperative for diseases 

like norovirus. 
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4.3 INTRODUCTION 

Norovirus has been associated with almost one-fifth of cases of all-cause acute 

gastroenteritis worldwide,[49] resulting in an estimated median 698.8 million illnesses and 

218,800 deaths annually across all ages.[55] Norovirus most commonly occurs in the 

community,[55,254] with relatively short-lived symptoms in healthy individuals, which are 

currently managed with supportive therapies such as rehydration.[58] However, symptoms 

can be more serious in the very young, frail, or elderly and local outbreaks of norovirus 

occur frequently, which are highly disruptive and have significant economic cost 

particularly in hospitals internationally.[41,255-257] These outbreaks can lead to increased 

norovirus-specific hospital admissions and subsequently nosocomial infections that may 

reduce available beds within the hospital system through infected patients blocking space 

for new admissions, beds left unoccupied for reasons of infection control and to allow 

cleaning and decontamination after outbreaks, and staff absences due to 

infection.[41,107,258] 

The impact of norovirus on the hospital system prompted the introduction of the English 

Hospital Norovirus Outbreak Reporting System (HNORS) in 2009,[259] and in 2010 the 

National Health Service (NHS) England started monitoring the performance of all acute 

care hospitals during winter.[52] While both systems enable detection of hospital bed 

pressures and norovirus outbreaks, neither collects individual-patient data. Therefore, the 

data collected by such surveillance systems alone do not capture the full burden of 

norovirus. With several antiviral treatments and vaccine candidates in development,[56,95] 

obtaining a comprehensive overview of the baseline burden of norovirus in hospitals is 

timely to inform policy makers and investment in control strategies. 

Moreover, as hospitals in many countries,[6] including England,[7] face high occupancy 

rates of beds, patients who cannot be admitted due to beds being unavailable result in 

health and economic losses to the healthcare system. Costing the burden of hospital 

infections like norovirus has previously only considered actual expenditures incurred 

from dealing with an outbreak,[41,258] ignoring the wider health impact for other patients 

awaiting admission.[260] This is likely to underestimate the impact of norovirus on the 

healthcare systems and, consequently, any benefits from investing in novel vaccines, 

treatments or infection control. 
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4.4 METHODS 

4.4.1 Data sources 

4.4.1.1 Number of patients, bed-days lost, and staff absences during norovirus 

outbreaks  

Since 2009, hospitals have been encouraged to voluntarily report norovirus outbreaks 

(defined as two or more cases in a functional care unit) to HNORS at 

http://bioinformatics.phe.org.uk/noroOBK. Previously, the under-reporting in this web-

based surveillance system was estimated at about 20%.[259] The number of patients, staff 

absences, and lost bed-days due to norovirus were obtained for all outbreaks declared 

over between July 2009 and by week 27, 2016. 

4.4.1.2 Hospital statistics for gastrointestinal illnesses 

The observed number of inpatients with primary and secondary gastrointestinal disease 

diagnoses, and the bed-days occupied by the inpatients with primary diagnoses, were 

obtained for July 2009 to June 2016 from the Hospital Episode Statistics (HES) database, 

which holds all records of NHS hospitalisations in England.[244] Primary diagnoses 

describe the main reason for hospitalisation, while secondary diagnoses describe co-

morbidities of patients treated for another primary medical reason. Cases with all-cause 

gastroenteritis were identified using the International Classification of Diseases, version 

10 (ICD10), and the diagnosis codes of infectious as well as non-infectious intestinal 

diseases A00‒A09, K52.8 and K52.9.[115,116] 

4.4.1.3 Laboratory data of gastrointestinal pathogens 

The weekly number of laboratory reports submitted to Public Health England for 

surveillance purposes by microbiology laboratories across England were obtained for July 

2009 to June 2016 for the following gastrointestinal pathogens: adenovirus (enteric 

infections-associated Group F serotypes 40 and 41), astrovirus, Campylobacter, 

Cryptosporidium, Giardia, norovirus, rotavirus, non- typhoidal Salmonella (i.e. 

excluding S. typhi and S. paratyphi), and Shigella. Listeria cases were obtained from 

national surveillance of listeriosis in England and Wales. In a separate analysis, cases of 
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shiga toxin-producing Escherichia coli (STEC) were also included as this was only 

available up to December 2015. 

4.4.1.4 Patient-level data of norovirus infections from a local hospital 

This study obtained individual-level data collected during a norovirus outbreak on four 

wards of a large teaching hospital in London in 2015. A research nurse visited affected 

wards daily to collect information on new cases, bed closures and to map the movement 

of patients between wards. Routinely collected data were also obtained on age, sex, dates 

of admission and discharge, primary and up to 11 secondary diagnosis codes, norovirus 

sample collection date, and discharge status for all patients admitted to the same wards 

and days for 2015 with a two-year look-back. For an additional two weeks before and 

after the outbreak, i.e. 43 days in total each year, data were captured on the infection 

status with norovirus genogroup II (GII). Cases were identified based on the primary 

diagnosis code, the first positive norovirus GII infection sample during the hospital stay 

and, for the outbreak in 2015, symptom onset. 

4.4.1.5 Number of bed-days kept unoccupied due to norovirus-like symptoms during 

winters 

It is mandatory for acute care hospitals to report the number of bed-days kept 

unoccupied due to diarrhoea and vomiting/norovirus-like symptoms during winters to 

NHS England since 2010. These data were obtained for winters 2010/11 to 2015/16.[52] 

For more details on data sources and information retrieval, see Supplementary Material 

4.10.1. 

4.4.2 Statistical analysis to estimate the burden of disease 

4.4.2.1 Linear regression models 

Multiple linear regression models were used to attribute norovirus to patients with 

gastroenteritis by using the laboratory reports of relevant gastrointestinal pathogens as 

explanatory variables and inpatients diagnosed with gastrointestinal illnesses as the 

response variable (Supplementary Material 4.10.2). In a separate analysis, the data were 

limited up to December 2015 to be able to include STEC. 
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4.4.2.2 Multi-state models 

The excess length of hospital stays due to norovirus were estimated with a multi-state 

model that consisted of four mutually-exclusive states: (1) admitted (uninfected), (2) 

infected/diseased, (3) discharged alive, and (4) in-hospital death (Supplementary Material 

4.10.3). After admission (1), all inpatients were discharged alive (3) or died (4); becoming 

infected/diseased (2) was optional before being discharged alive (3) or dead (4), too. The 

model used the empirical transition matrix of inpatients from the local patient-level 

hospital data. The model was run separately with all norovirus cases, and for cases with 

a secondary norovirus diagnosis. 

4.4.2.3 Adjustments for potential under-reporting of unoccupied bed-days and staff 

absences 

The number of bed-days kept unoccupied during norovirus outbreaks was estimated 

based on the national surveillance data. As these data are voluntarily reported there could 

be under-reporting of outbreaks, or lost bed-days. Under-reporting of lost bed-days during 

an outbreak (and implicitly under-reported outbreaks) was accounted for using the 

recorded number of unoccupied bed-days mandatorily reported to NHS England 

(Supplementary Material 4.10.4). The reported number of staff absences was adjusted by 

the estimated under-reporting of outbreaks[259] and by using a previous norovirus outbreak 

study in England[41] (Supplementary Material 4.10.5). 

All analyses were performed in R version 3.3.1.[261] For the multi-state model, the R-

package mvna was used to model the hazards between states[262] and etm to estimate the 

excess length of stay.[263] The median and interquartile range (IQR) are reported across 

seasons; for results per season see Supplementary Material 4.10.1 and 4.10.8. 

4.4.3 Costing the burden of disease 

4.4.3.1 Costing convention 

For inpatients with norovirus-associated gastroenteritis and bed-days kept unoccupied, 

expenditures were calculated conventionally using national administrative accounting 

data for 2015/16[243] (Supplementary Material 4.10.6). Staff absences due to infection 

were costed based on the national average wage of nurses in 2015/16.[264] In order to 
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indicate financial (monetary) savings on non-fixed hospital resources if all norovirus 

cases were to be averted,[265] a proportion of variable costs of 15% was assumed of the 

total healthcare expenditure on norovirus, including staff absence costs.[266] 

4.4.3.2 Opportunity costing from forgone admissions 

Given the high occupancy rates of hospital beds in England,[7] opportunity costs arise 

from alternative patients who cannot be admitted due to beds being unavailable, which 

can be expressed particularly in terms of their forgone net benefit, i.e. the health gain 

minus expenditure.[260] For the expenditure incurred when hospitalised, the activity-

weighted mean expenditure of non-gastroenteritis cases was considered.[243] The expected 

health gain from hospital treatment was estimated in terms of quality-adjusted life years, 

QALYs, using the local patient sample (Supplementary Material 4.10.7). Three sub-

groups of patients were distinguished with a) acute life-threatening conditions, b) chronic 

conditions, and c) none of these conditions. QALY-gains beyond one year were 

discounted at 3.5%, and £20,000 was considered as monetary value assigned to each 

QALY gained.[267] In case a higher net benefit was achievable with the alternative patients 

forgone, the sum of the incurred expenditure and the forgone net benefit approximate to 

opportunity costs.[260] 

4.4.3.3 Sensitivity analysis 

Multivariate sensitivity analyses were performed on all input parameters 

(Supplementary Table 28). 

4.4.4 Ethics approval 

Ethical approvals for this study were received from the Ethics Committee of the London 

School of Hygiene & Tropical Medicine (reference number: 11824) and the North West 

- Liverpool Central Research Ethics Committee (REC reference: 14/NW/1433). 
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4.5 RESULTS 

4.5.1 Description of the data 

During July 2009 to June 2016, there were a total of 8,140 norovirus outbreaks 

voluntarily reported to HNORS, involving 77,800 patients, 20,100 staff recorded absent 

and 99,200 lost bed-days (Supplementary Table 20). Of the 658,100 enteric laboratory 

reports in total to national surveillance, the three most frequently reported pathogens were 

Campylobacter with 60.7%, rotavirus with 10.8%, and norovirus with 8.6%. 

Concurrently, HES recorded across all ages 1,621,000 primary all-cause gastrointestinal 

diagnoses vs. 1,672,000 patients with secondary all-cause gastrointestinal diagnoses 

(including 13.1% day cases). The number of primary gastrointestinal diagnoses stabilised 

after July 2013, while the number of patients with secondary gastrointestinal diagnoses 

kept increasing (Figure 15), driven by infections in adults and the elderly (Supplementary 

Figure 17). Based on the data of NHS England, an estimated 142,100‒186,000 

unoccupied acute care hospital bed-days were closed (i.e., unavailable) due to norovirus-

like symptoms during the six winters from 2010/11 to 2015/16. 
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Figure 15. National hospital statistics for inpatients with infectious and non-infectious 

gastrointestinal (primary and secondary) diagnoses and laboratory-confirmed cases of 

norovirus in England, July 2009 to June 2016, visualising norovirus-attributable 

proportions using linear regressions fitted to the data before and after July 2013. 

 

 

The analysis of the local patient-level sample comprised 2,509 individual hospital stays, 

including 33 associated with norovirus and another 11 with primary infectious intestinal 

diagnoses (Table 18). 
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Table 18. Demographic characteristics of the local sample of patients from a teaching hospital in London, England, on the wards affected by the norovirus outbreak 

of May 31 to June 15, 2015, and the previous two years. 

   Control patients without gastroenteritis  Cases with norovirus 

Variables 

All patients 

analysed (cases 

and controls) 

 Patients with 

acute life-

threatening 

conditionsa 

Patients with 

chronic 

conditionsb 

Patients without 

chronic or life-

threatening 

conditionsc 

 Suspected / 

confirmed 

norovirus 

infectiond 

Cases with 

primary iid or 

norovirus 

diagnosise 

Cases with 

secondary 

norovirus 

diagnoses 

Patients, n (%) 2,509 (88.0%)  537 (18.8%) 871 (30.5%) 1,057 (37.0%)  33 (1.2%) 17 (0.6%) 27 (0.9%) 

Age (years), mean (SD) 59.2 (20.2)  75.1 (14.3) 61.7 (17.6) 48.7 (18.5)  70.8 (18.2) 56.9 (23.5) 73.5 (16.6) 

Sex (female), n (%) 1,265 (50.4%)  258 (48.0%) 422 (48.4%) 557 (52.7%)  21 (63.6%) 11 (64.7%) 17 (63.0%) 

CCI score (>0), n (%) 1,440 (57.4%)  537 (100.0%) 871 (100.0%) 0 (0.0%)  27 (81.8%) 8 (47.1%) 24 (88.9%) 

In-hospital mortality, n (%) 54 (2.2%)  21 (3.9%) 26 (3.0%) *  * 0 (0.0%) * 

LOS (days), mean (range) 5.0 (0, 43)  7.2 (0, 43) 5.4 (0, 43) 3.3 (0, 40)  15.8 (3, 43) 5.7 (0, 25) 17.0 (3, 43) 

Excess LOS (days), mean (95% CI)f n/a  n/a n/a n/a  3.33 (0.17–6.50) n/a 3.95 (0.35–7.55) 

QALY gain (undiscounted), mean 

(95% CI)g 

0.179  

(0.0001, 0.386) 

 0.307  

(0.175, 0.377) 

0.313  

(0.189, 0.403) 

0.002  

(0.00005, 0.017) 

 0.227 

(0.003, 0.358) 

0.102  

(0.0004, 0.295) 

0.250  

(0.009, 0.365) 

QALY gain (discounted), mean 

(95% CI)g 

0.142  

(0.0001, 0.293) 

 0.260  

(0.162, 0.309) 

0.239  

(0.175, 0.308) 

0.002  

(0.00005, 0.017) 

 0.188  

(0.003, 0.295) 

0.078  

(0.0004, 0.190) 

0.211  

(0.009, 0.299) 
CCI: Charlson comorbidity index, CI: confidence interval, GII: norovirus genogroup II, iid: infectious intestinal disease, LOS: length of stay, n/a: not applicable, PCR: polymerase 

chain reaction, QALY: quality-adjusted life year, SD: standard deviation. 

a: myocardial infarctions, congestive heart failures, or cerebrovascular diseases. 

b: CCI > 0 but not acutely life-threatening (i.e., myocardial infarctions, congestive heart failures, or cerebrovascular diseases). 

c: CCI = 0, i.e. no chronic or life-threatening conditions. 

d: Suspected infection (for the norovirus outbreak cluster in 2015) and all laboratory-confirmed norovirus GII infections; partly overlapping. 

e: Patients with a primary gastrointestinal diagnosis and laboratory-confirmed norovirus infection (n=6) or without confirmed norovirus infection (n=11). No excess LOS is 

presented here given that hospitalisations for a primary IID but without laboratory-confirmed norovirus diagnosis cannot necessarily be categorised as an excess stay.  

f: Estimated with the multi-state model (Supplementary Material 4.10.3). 

g: For cases with secondary norovirus diagnoses, the QALYs gained were driven by the high level of comorbidities. If one approximated the gastroenteritis-related health gain by 

subtracting the QALY gain of control patients from the QALY gain of inpatients with secondary norovirus diagnoses, one derives 0.211-0.142=0.069 (i.e., close to the gain of 

primary cases). For all cases, the activity-weighted mean (discounted) QALY gain amounted to (0.069*27+0.078*17)/44=0.072 QALYs gained, i.e. about half of the control 

patients who gained 0.142 QALYs (see Supplementary Table 21). 

 ‘*’ in this table means a figure between 1 and 5, values suppressed to prevent possible identification of individuals.[244] 
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4.5.2 Statistical analysis to estimate the burden of disease 

4.5.2.1 Linear regression model results 

The regression models with the highest goodness-of-fit showed a significantly 

increasing proportion of primary and all diagnoses being attributable to norovirus after 

July 2013, while the proportions of rotavirus-attributable primary and all diagnoses 

decreased significantly after July 2013 (Supplementary Table 22 and Figure 16). Due to 

the heterogeneity across the seven seasons, this study continues reporting results for July 

2013 to June 2016. Moreover, the significant reduction in rotavirus diagnoses was driven 

by 0−4 year olds, while the significant increase for norovirus was driven by patients aged 

0−64 year olds (Supplementary Figure 19). Given that confidence intervals for norovirus 

overlapped across age groups, this study continues reporting non-stratified results. 
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Figure 16. Attributable fraction (in %) of enteric pathogens on all-cause acute gastrointestinal primary and secondary diagnoses in hospitals 

in England, using linear regressions fitted to the data of July 2009 to June 2013 vs. July 2013 to June 2016. Estimated absolute numbers 

provided for information. 
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Between July 2013 and June 2016, the best-fitting regression models attributed 17.7% 

of primary gastrointestinal diagnoses (95%-CI: 15.6%‒21.6%) and 23.8% (95%-CI: 

20.6%‒29.9%) of secondary gastrointestinal diagnoses to norovirus (Figure 15), leading 

to a median estimate of 40,800 (IQR: 40,500‒41,400) norovirus-associated cases with 

primary and 61,500 (IQR: 58,700‒62,500) with secondary diagnoses annually. Results 

were slightly lower when limiting the data to December 2015 to include STEC 

(Supplementary Table 23). 

4.5.2.2 Multi-state model results 

The mean excess length of hospital stay due to norovirus was estimated at 3.3 days (95% 

CI: 0.2‒6.5). Patients with norovirus infection and a secondary gastrointestinal diagnosis 

stayed an excess 4.0 days (95% CI: 0.4‒7.6). 

4.5.2.3 Bed-days kept unoccupied for infection control 

A median 19.7%‒26.3% of bed-days lost in outbreaks voluntarily reported to HNORS 

by acute care hospitals during the winters of 2013/14 to 2015/16 matched with those 

mandatorily recorded by NHS England (Supplementary Table 26). 

4.5.2.4 Total number of bed-days used for norovirus 

Annually, at least 290,000 (IQR: 282,000‒297,000) occupied and unoccupied bed-days 

were norovirus-attributable using conservative estimates (Supplementary Table 29), with 

28% being used by inpatients with a primary diagnosis, 62% by secondary diagnoses, and 

10% were beds that had been closed unoccupied. 

4.5.2.5 Staff absences due to norovirus 

An estimated median 4,200 (IQR: 3,800‒5,100) members of staff were absent during 

norovirus outbreaks annually between mid-2013 and mid-2016. 
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4.5.3 Costing the burden of disease 

4.5.3.1 Direct expenditures incurred due to norovirus 

Norovirus-associated gastroenteritis incurred direct expenditures of £107.6 million 

(IQR: £104.6‒£109.8 million) annually, of which £8.9 million (£8.6‒£10.4 million) were 

lost on unoccupied bed-days. Staff absences due to infection incurred costs for the NHS 

of £1.3 million (£1.2‒£1.6 million) annually. The 15% variable costs proportion indicates 

potential monetary savings from averting all norovirus cases equivalent to £16.1 million 

(£15.7‒£16.5 million). 

4.5.3.2 Opportunity costing 

The 290,000 norovirus-associated bed-days could have been used for 57,800 (56,400‒

59,200) alternative non-gastroenteritis patients, who would have been expected to gain 

13,800 (13,500‒14,100) QALYs at a net monetary benefit of £190.1 million (£185.5‒

£194.7 million). From a health-maximising perspective, the forgone non-gastroenteritis 

patients were expected to have gained a higher net benefit than the norovirus cases 

(Supplementary Table 31), with the value of the opportunity costs approximating to 

£297.7 million (£290.1‒£304.5 million) and losing an estimated 6,300 QALYs (i.e. 

13,800 minus 7,500; cf. Supplementary Material 4.10.8). 

4.5.3.3 Sensitivity analysis 

Sensitivity analyses confirmed that the wide uncertainty range around the excess length 

of stay estimate was the most influential source of uncertainty for the burden estimation 

(Supplementary Material 4.10.9). 

For the estimation of the costs, the monetary value assigned to QALYs was the most 

influential parameter with a direct impact on the estimates of the opportunity costs and 

economic costs (Supplementary Material 4.10.9). 

4.6 DISCUSSION 

This study quantified the hospital burden of norovirus-associated gastroenteritis for the 

NHS in England. In addition to the clinical harm to patients from gastroenteritis, this 
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study included for the first time the wider health impact that infectious diseases like 

norovirus can have for other patients awaiting admission by reducing the beds and staff 

available to them.[260] 

4.6.1 Summary of key findings and clinical implications 

Of all inpatients with primary or secondary all-cause gastrointestinal diagnoses in 

England between July 2013 and June 2016, 18% (95%-CI: 16%‒22%) and 24% (95%-

CI: 21%‒30%) were attributable to norovirus, respectively. While the general increase in 

patients diagnosed with gastrointestinal illnesses in England throughout this period 

seemed to be driven by secondary diagnoses, the increase in norovirus-attributable 

inpatients identified after July 2013 appeared to be driven by primary diagnoses (less so 

by secondary diagnoses or outbreaks, cf. Supplementary Table 20; or coding variations, 

cf. Supplementary Table 19). Gastrointestinal inpatients have been discharged faster in 

recent years (Supplementary Material 4.10.1), in line with the generally decreasing length 

of hospital stays in the past decade,[244] presumably giving norovirus less time to spread. 

Moreover, enhanced hygiene and other infection control measures [87,107,108] as well as a 

potentially increasing awareness [107] may have contributed to fewer secondary norovirus-

associated hospital cases and norovirus outbreaks. 

The regression results also showed that norovirus is now the second-highest contributor 

of gastrointestinal hospital diagnoses, after Campylobacter. The proportional increase in 

the burden of norovirus is largely driven by the reduction in rotavirus, which led to a 

reduced total number of laboratory-confirmed cases (cf. Supplementary Table 20). 

Overall, the total number of bed-days tied up by norovirus-associated gastroenteritis 

annually is equivalent to the entire daily NHS hospital bed capacity in England being 

unavailable for more than two days (i.e., 290,000/133,000).[7] The bed-days lost to 

norovirus prevented admission of other patients, who are estimated to have the potential 

to gain twice as many QALYs from hospitalisation as the norovirus patients who 

displaced them. Therefore, these findings demonstrate the wider impact of norovirus 

outbreaks on health. In addition, a combined £10.3 million was lost annually from bed-

days kept unoccupied and staff absences. For norovirus, with the prospect of several 

treatments and vaccines becoming available soon,[56,95] these estimates may serve as 

baseline for their potential to reduce the hospital burden and free up beds and staff for 

new admissions. 
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4.6.2 Comparison with previous work 

The estimate of 16% (95% CI: 15%−19%) of gastrointestinal patients attributable to 

norovirus for July 2009 to June 2013 in this study is consistent with a previous estimate 

of 17% (95% CI: 15%‒19%) from a systematic review of studies published up to 2014,[49] 

irrespective of novel norovirus strain emergences. After July 2013, this study estimated 

this increases to 21% (95% CI: 19%‒25%), which is not attributable to the emergence of 

a novel norovirus strain, but appeared to be driven by statistically significantly higher 

proportions in children aged 0−4, 5−18 and adults aged 19−64 (Figure 16). 

Previously, the costs attributable to unavailable bed-days due to norovirus-like 

symptoms for acute care hospitals were estimated as £35‒£49 million in England each 

winter using the excess bed-day cost value for 2015/16.[268] Another study estimated the 

hospital costs of gastroenteritis outbreaks in England at £115 million annually using a 

top-down approach and data from 1994/95 and 2002/03,[41] which translates to costs from 

norovirus outbreaks of £96.9 million in 2016 value [269] when accounting for norovirus 

being present in only 63% of gastroenteritis outbreaks.[41] While higher expenditures of 

£107.6 million were estimated here, the economic costs of £297.7 million (including 

hospitalisations forgone) are almost thrice as large, reflecting greater accuracy by using 

individual-patient data, accounting for time-dependent biases,[270-272] including non-acute 

care hospitals and maternity and mental health wards, and considering the opportunity 

costs for alternative patients forgone. 

4.6.3 Strengths and limitations 

This study is the first to combine individual-level norovirus outbreak data with national 

hospital surveillance and statistics to apply a novel method for estimating the opportunity 

costs of norovirus-associated gastroenteritis from patients who cannot be admitted due to 

beds being unavailable. This novel methodology of estimating opportunity costs is 

generalisable to other settings given that occupancy rates of hospital beds are high in other 

places besides England.[6,7] Moreover, given the interest in the economic value of the bed-

days that could not be used for alternative admissions, no actual cases may have always 

been delayed or cancelled. Furthermore, the approach could be applied to other 

(infectious) diseases, and to community settings using e.g. general practitioner visits 
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instead of hospitalisations.[260] The potential for these analytical approaches is likely to 

increase in future given the increasing number of linkable data sources. 

The study here used the best available data sources for norovirus, which were adjusted 

for bias in reporting.[52,259] Unadjusted HNORS data were not used directly due to under-

reporting of outbreaks, cases and bed-days. Although the regression analysis assumed 

independence of observations, it is a well-described method to quantify the aetiology of 

gastroenteritis [115,116,273] that captures correlations in weekly counts implicitly through 

the explanatory variables. Given the large sizes of the data used for the regression analysis 

a linear model was chosen, however results are also robust to a negative binomial model 

(Supplementary Material 4.10.2). The regression also accounted for potential miscoding 

of intestinal diagnoses,[115,116] and a statistically rigorous method was used to estimate the 

excess length of stay.[270-272] A possible limitation is the use of the local data to model 

length of stay and the expected QALY gain from hospital treatment. Moreover, the 

previously estimated 20% under-reporting of outbreaks was taken as a conservative 

estimate; the actual number of outbreaks may be higher. Likewise, the actual number of 

bed-days lost unoccupied remains uncertain due to the voluntary reporting to HNORS, 

and is likely higher than conservatively assumed here despite the efforts of matching the 

bed-days. Future research should consider larger norovirus samples through advanced 

individual-patient infection control during outbreaks and longer observation periods. 

Moreover, clinical hospital diagnoses may not fully capture patients with asymptomatic 

carriage of norovirus.[274] Nonetheless, this study is first to estimate the expected QALY 

gain from hospital treatment in England, and the results for the sample of non-

gastroenteritis patients can readily be used in other studies. 

The need to differentiate inpatients by their primary and secondary norovirus diagnosis 

arose mainly in order to not bias the total number of bed-days used for norovirus 

systematically upwards.[270-272] Therefore, this study relied on records of intestinal illness 

episodes in hospital; if illnesses are incompletely recorded the burden estimate of this 

study may be an underestimate. Also, secondary diagnosis codes may be less reliable due 

to potential variation in coding practices between hospitals.[244] Note that a secondary 

diagnosis does not necessarily imply a hospital-acquired infection. From the economic 

perspective of this study, however, the source of infection, i.e. hospital-acquired or 

community-acquired, is irrelevant for obtaining a comprehensive picture of the burden of 

norovirus in hospitalised patients. 
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While the local sample did not involve paediatric or elderly wards, these were included 

in the national sources. Future research may need to investigate norovirus transmission 

rates for different age groups. When stratifying regressions by age, confidence intervals 

overlapped, which supports a previous systematic review and meta-analysis that found 

similar norovirus attributable fractions among all-cause gastroenteritis for patients below 

the age of 5, 5 years and older, and mixed ages.[49] 

For the bed-days kept unoccupied, the figures reported to HNORS and NHS England 

were matched as closely as possible for a fair comparison, and it was assumed that the 

observed difference applied throughout the year and equally to community hospitals and 

maternity and mental health wards. 

The staff absence costs in this study are likely to be still an underestimate due to 

considering only outbreaks and the average wage of nurses but no other healthcare 

professionals nor relief/locum staff. Other studies of norovirus outbreaks in England and 

Scotland applied the same assumptions, with their proportions of staff absence costs on 

the total expenditure reaching 0.25 [41] and 0.17 [258], while the estimated staff costs made 

up about 0.03 here. This study also did not consider indirect costs from productivity losses 

nor the costs borne by the community (or in long-term care facilities), which would 

substantially increase costs.[55,254,275] 

The results support the hypothesis that a norovirus vaccine may have the greatest impact 

in reducing the burden of norovirus-associated gastroenteritis cases and outbreaks in 

hospital settings when reaching adult and the elderly populations, particularly those at 

risk of secondary infection while staying in hospital (Figure 16 and Supplementary 

Figure 17). However, future research needs to investigate the potential impact of 

vaccinations and treatments on disease dynamics, and the most appropriate target groups 

to prevent transmission, such as adult inpatients, staff and children.[79] 

4.7 CONCLUSION 

With bed pressures being a recurring public health concern, any analysis considering 

the impact of infectious diseases on hospital systems needs to include the opportunity 

costs from forgone alternative admissions. In England, although the hospital burden of 

rotavirus has declined significantly following vaccination introduction in July 2013, the 

overall number of gastrointestinal inpatients has kept growing with a significantly 
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increasing proportion of primary diagnoses being attributable to norovirus. In fact, 

norovirus has become the second largest contributor of inpatient gastrointestinal illnesses 

in England since mid-2013. Norovirus-associated gastroenteritis ties up the equivalent of 

more than twice the daily hospital bed stock in England, with a substantial economic and 

health impact for the NHS and patients. 
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4.10 SUPPLEMENTARY MATERIAL 

4.10.1 Additional information on data sources 

The hospital burden of norovirus-associated gastroenteritis was estimated based on a) 

patients, b) the bed-days occupied by these patients, c) bed-days kept unoccupied for 

infection control, and d) staff absences due to infection. While the starting point of this 

analysis was the national hospital surveillance system of norovirus outbreaks, HNORS, 

this system only tracks outbreaks and relies on voluntary reporting. As such, HES data 

were used to obtain all norovirus-attributable gastroenteritis patients, and the voluntarily 

reported numbers of lost bed-days and staff absences in HNORS were used as basis for 

the estimation after adjusting for potential under-reporting. 

4.10.1.1 Number of patients, bed-days lost, and staff absences during norovirus 

outbreaks  

The Hospital Norovirus Outbreak Reporting System (HNORS) gathers voluntarily 

reported information of norovirus outbreaks since its inception in January 2009. In total, 

HNORS included 8,767 outbreaks at the time of data retrieval (August 2016). Incomplete 

outbreaks up to June 2009 were excluded as they counted towards various previous 

epidemiological seasons (n=609), and outbreaks for the season of 2016/17 (n=16). In 

total, 8,142 outbreaks in 439 hospitals and 147 Trusts across the seven seasons from July 

2009 to June 2016 were considered in the analysis. Most outbreaks involved general 

medicine wards (n=1,754; 21.5%), followed by elderly care wards (n=1,587; 19.5%) and 

acute medicine (n=511; 6.3%). Paediatric wards were only involved in a small number of 

outbreaks (n=88; 1.1%). 
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4.10.1.2 Hospital statistics for gastrointestinal illnesses 

The Hospital Episode Statistics (HES) database holds inpatient records including one 

primary and up to 19 secondary diagnoses that are recorded at the time of discharge.[244] 

Gastrointestinal infectious and non-infectious illnesses (ICD10 codes A00‒A09; K528 

and K529) were extracted per date of admission for finished consultant episodes using 

only primary diagnosis codes, only secondary diagnosis codes, or all diagnosis codes of 

all ordinary admissions, day cases, and mothers and babies using only delivery facilities. 

It was ensured that patients with secondary diagnoses were not double counted given that 

records can have more than one gastrointestinal diagnosis code, and also both a primary 

plus secondary diagnosis code (which were counted as primary diagnosis). 

Given that the HES data are recorded per financial year (i.e., from April in the first year 

up to the end of March of the following year), records for 2016/17 were obtained too in 

order to obtain data up to week 26 in 2016 to derive the entire epidemiological season for 

2015/16. 

Interestingly, a change in coding practices led to an increase in infectious intestinal 

diagnoses on all gastrointestinal diagnoses from 22.9% to 87.1% starting in financial year 

2012/13 (Supplementary Table 19). As such, infectious and non-infectious 

gastrointestinal diagnoses were combined in the analysis in order to minimise the impact 

of coding variations over time. 

 

Table 19. Coding of infectious and non-infectious intestinal diagnoses in England over time, 2009/10–2015/16. 

Season 2009/ 

2010 

2010/ 

2011 

2011/ 

2012 

2012/ 

2013 

2013/ 

2014 

2014/ 

2015 

2015/ 

2016 

2009/10–

2011/12 

2012/13–

2015/16 

Patients with primary gastrointestinal diagnoses 

infectiousa 0.312 0.300 0.288 0.859 0.869 0.863 0.857 0.300 0.861 

non-infectiousb 0.688 0.700 0.712 0.141 0.131 0.137 0.143 0.700 0.139 

Patients with secondary gastrointestinal diagnoses 

infectiousa 0.181 0.159 0.153 0.871 0.890 0.887 0.883 0.159 0.883 

non-infectiousb 0.819 0.841 0.847 0.129 0.110 0.113 0.117 0.841 0.117 

Patients with primary or secondary gastrointestinal diagnoses 

infectiousa 0.248 0.229 0.221 0.865 0.880 0.876 0.871 0.229 0.871 

non-infectiousb 0.752 0.771 0.779 0.135 0.120 0.124 0.129 0.771 0.129 
Note: Data represent financial years. 

a: ICD-10 codes A00‒A09 across all ages. 

b: ICD-10 codes K528 and K529 across all ages. 
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4.10.1.3 Hospital statistics for gastrointestinal illnesses: Further dynamics observed 

Patients with a primary gastrointestinal diagnosis have used statistically significant 

fewer bed-days over the years, with a median 2.21 (IQR: 2.21–2.24) bed-days before mid-

2013 and 1.99 (IQR: 1.96–1.99) afterwards (Supplementary Table 20). 

Moreover, the increase of primary gastrointestinal diagnoses appeared to have been 

halted for most age groups after introducing the rotavirus vaccine (Supplementary 

Figure 17); the further increase for adolescents seemed minor given the low number of 

cases. More importantly, the very high peaks for young children (aged <5 years) 

disappeared after July 2013, which included the primary target group of the rotavirus 

vaccination campaign.[276] Unlike primary diagnoses, the number of inpatients with 

secondary gastrointestinal diagnoses continued to increase across all ages except for 

young children (aged < 5 years), whose peaks also flattened slightly (Supplementary 

Figure 17). However, winter peaks were still visible for young children (aged <5 years) 

and the elderly. 

Consequently, in health care settings the major gastrointestinal disease burden now rests 

with adults and the elderly since July 2013, particularly for patients with secondary 

gastrointestinal diagnoses (cf. Supplementary Table 20 and Supplementary Figure 17; 

note the different scales in Supplementary Figure 17).  
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Table 20. Raw input data of the national data sources in England per season, for NHS England per winter. 

Source Variable 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

SGSS/NESSS

/national 

surveillance 

of listeriosisa 

Adenovirus (group 

F serotype 40 & 41) 

169 181 198 152 135 45 47 

Astrovirus 66 49 78 397 291 284 304 

Campylobacter 57,926 59,262 60,943 57,046 58,156 55,643 50,348 

Cryptosporidium 4,471 3,490 3,199 5,331 3,129 3,579 5,354 

STEC (shiga toxin-

producing E. coli) 

933 1,003 871 725 784 780 430f 

Giardia 3,398 3,676 3,640 3,594 3,513 3,972 4,398 

Listeria 179 167 159 178 182 162 188 

Norovirus 12,216 7,784 8,669 9,459 4,761 7,635 6,313 

Rotavirus 15,245 14,894 14,935 14,686 4,429 4,430 2,345 

Salmonella (excl. 

typhi & paratyphi) 

8,824 8,306 7,300 7,088 6,538 7,888 7,946 

Shigella 1,554 1,932 1,727 1,935 2,029 2,184 1,848 

Total 104,981 100,744 101,719 100,591 83,947 86,602 79,521 

HESb Primary diagnoses 227,000 220,200 233,100 247,400 226,300 236,600 230,800 

 Primary diagnosis 

(bed-days) 

568,400 507,400 495,100 507,500 459,900 471,500 434,100 

 Secondary 

diagnoses 

220,900 219,300 228,700 243,100 234,900 258,500 267,000 

 ~ of which day 

cases 

24,300 26,900 30,600 30,800 31,500 35,400 39,100 

 All diagnoses 448,000 439,500 461,800 490,400 461,200 495,100 497,800 

HNORSc Outbreaks 1,900 1,200 1,600 1,500 600 900 500 

 Patients 19,500 11,500 15,500 14,000 5,400 7,700 4,300 

 staff absences 5,200 3,000 3,700 3,500 1,400 2,100 1,300 

 lost bed-days 22,900 15,300 17,200 16,900 7,400 12,400 7,200 

NHSEd unoccupied bed-

days 

n/ae 24,100-

31,700 

32,100-

42,600 

32,600-

41,900 

19,800-

25,500 

24,800-

32,700 

8,700-

11,500 
Abbreviations: HES: hospital episode statistics, HNORS: Hospital Norovirus Outbreak Reporting System, NESSS: 

National Enhanced Surveillance System for STEC, NHSE: National Health Service England, SGSS: Second Generation 

Surveillance System, STEC: shiga toxin-producing E. coli. 

a: Note that the aggregate figures do not account for seasonality within each year. 

b: Figures of finished consultant episodes were extracted for financial years but are shown here per season, i.e. week 27 in 

the first year to week 26 in the following year.  

c: Recording started in week 1 in 2009; values presented here represent seasons running from week 27 in the first year to 

week 26 in the second year; thus e.g. the first season 2009/10 covered the period of week 27 in 2009 to week 26 in 

2010.[71] 

d: Missing values on weekends and public holidays were imputed in best-to-worst-case scenarios; values presented here 

were recorded between November and March for 16, 18, 17, 21, 21, and 13 weeks for the six seasons, respectively; for 

a sound comparison see [268]. 

e: The first winter recorded by NHS England was in 2010/11. 

f: For season 2015/16, no reports for shiga toxin-producing E. coli (STEC) were available for the year 2016 due to the data 

being audited. 
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Figure 17. Additive decomposition of national hospital statistics into age-stratified inpatients with primary and secondary gastrointestinal 

diagnoses in England, July 2009 to June 2016 (cave: different scale of y-axes). 
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4.10.1.4 Laboratory data of gastrointestinal pathogens 

The weekly number of de-duplicated laboratory reports were obtained using the date of 

the first specimen from faeces and lower gastrointestinal tract from reports submitted by 

microbiology laboratories across England to Public Health England. While reporting to 

Public Health England is mandatory for some enteric pathogens like Salmonella, it is 

voluntary for e.g. norovirus and rotavirus; however, laboratory testing and reporting 

practices have been confirmed to be high and consistent in a survey for rotavirus 

before.[277] 

For rotavirus, laboratory reports showed a decrease after July 2013 when the vaccine 

was introduced,[276] while for norovirus they remained relatively constant with peaks in 

2009/10 and 2012/13 that corresponded to novel strain emergences [58] (Supplementary 

Table 20). At the same time, the total number of laboratory reports decreased after July 

2013 from a median 101,200 (IQR: 100,700–102,500) reports before mid-2013 to 83,900 

(IQR: 81,700–85,300) afterwards (Supplementary Table 20). Note: The aggregate figures 

of pathogens do not account for seasonality within the years, which is why the regression 

models based on the weekly data provide more accurate results than a comparison of the 

raw data. 

4.10.1.5 Patient-level data of norovirus infections from a local hospital 

This study used individual-level patient data collected in a teaching hospital in London 

during a norovirus outbreak in 2015, during which the lower daily admission than 

discharge rates (of 0.208 vs. 0.212, respectively) corresponded to the outbreak potentially 

having prevented new admissions. At the time of the outbreak, the four wards had a 

capacity of 56, 59, 56 and 43 beds, which is larger than the median 20 beds (range 1‒38) 

reported previously for 171 units in another region in England in 2002‒2003;[41] however, 

the wards included one admission ward, one general ward and two infectious disease 

wards with isolation bed capacity. As such, it was assumed that the setting was negligible 

for estimating the excess length of stay of patients with norovirus (it may rather have had 

a positive effect on the speed of containing the outbreak). 

For the analysis of the routinely collected patient data, this study copied for duplicate 

records of the same patients any missing personal information (i.e., date of birth and sex) 

and any missing information of the same stay when a transfer occurred merely between 
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specialties, which led to another record being created (i.e., admission and discharge). For 

all records, missing information on the length of hospital stay were approximated with 

the stay on the wards. 

Duplicate records of the same stay but not for different stays were removed. By using 

the first positive norovirus GII infection sample during the hospital stay it was ensured 

norovirus patients were not double counted as records of re-admissions were excluded 

when no other norovirus GII infection sample was taken. For stays beyond the 

observation period, the infection status was unknown and records censored to these time 

points. 

In order to obtain unbiased controls without gastroenteritis, patients were excluded from 

the analysis that had a) any secondary infectious or non-infectious intestinal disease codes 

(A00‒A09; K528 and K529), b) a primary non-infectious intestinal disease code (K528 

and K529) or c) a negative PCR test taken for norovirus GII due to potentially being 

infected with a different norovirus strain, or a different enteric pathogen (e.g. 43.5% of 

cases during the local outbreak in 2015 were symptomatic yet tested norovirus GII 

negative, while 17.4% of cases were positively tested but asymptomatically infected). For 

the demographic characteristics of all patients, together with those excluded, see 

Supplementary Table 21. 
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Table 21. Demographic characteristics of the local sample of patients from a teaching hospital in London, 

England, on the wards affected by the norovirus outbreak of May 31 to June 15, 2015, and the previous two 

years. 

Variables All patients  

Excluded 

patients 

 All patients 

analysed  All controls All cases 

Patients, n (%) 2,855 

(100.0%) 

 346  

(12.0%) 

 2,509 

(88.0%) 

 2,465 

(86.3%) 

44  

(1.5%) 

Age (years), mean 

(SD) 

60.1  

(20.4) 

 66.5  

(21.0) 

 59.2  

(20.2) 

 59.1  

(20.1) 

67.1  

(20.9) 

Sex (female),  

n (%) 

1,456 

(51.0%) 

 191  

(55.2%) 

 1,265 

(50.4%) 

 1,237 

(50.2%) 

28  

(63.6%) 

CCI score (>0), n 

(%) 

1,667 

(58.4%) 

 227  

(65.6%) 

 1,440 

(57.4%) 

 1,408 

(57.1%) 

32  

(72.7%) 

In-hospital mortality, 

n (%) 

77 (2.7%)  23 (6.6%)  54 (2.2%)  * * 

LOS (days), mean 

(range) 

6.3 (0, 43)  15.4 (0, 43)  5.0 (0, 43)  4.9 (0, 43) 12.6 (0, 43) 

Excess LOS (days), 

mean (95% CI)a 

n/a  n/a  n/a  n/a n/a 

QALY gain 

(undiscounted), 

mean (95% CI)b 

0.183  

(0.0001, 

0.386) 

 0.220  

(0.0002, 

0.397) 

 0.179  

(0.0001, 

0.386) 

 0.178  

(0.0001, 

0.386) 

0.193  

(0.0004, 

0.349) 

QALY gain 

(discounted), mean 

(95% CI)b 

0.147  

(0.0001, 

0.298) 

 0.182  

(0.0002, 

0.312) 

 0.142  

(0.0001, 

0.293) 

 0.142  

(0.0001, 

0.293) 

0.160  

(0.0004, 

0.288) 

CCI: Charlson comorbidity index, CI: confidence interval, GII: norovirus genogroup II, LOS: length of stay, 

n/a: not applicable, PCR: polymerase chain reaction, QALY: quality-adjusted life year, SD: standard 

deviation. 

a: No excess LOS is presented here given that hospitalisations for a primary infectious intestinal disease but 

without laboratory-confirmed norovirus diagnosis cannot necessarily be categorised as an excess stay.  

b: For cases, the QALYs gained were driven by the high level of comorbidities. If one approximates the 

gastroenteritis-related health gain by subtracting the QALY gain of all non-gastroenteritis control patients 

from the QALY gain of all gastroenteritis cases, one derives 0.160-0.142=0.018 QALYs gained. 

 

 ‘*’ in this table means a figure between 1 and 5, values suppressed to prevent possible identification of 

individuals.[244] 

  



C h a p t e r  4  

 

132 

4.10.2 Details on the linear regression analysis 

In order to attribute norovirus to inpatients with gastroenteritis, the expected number of 

gastroenteritis cases caused by different gastrointestinal pathogens per week was 

estimated using multiple linear regressions with laboratory reports for the pathogens as 

explanatory variables. The linear regression estimated the expected number of 

gastroenteritis inpatients Y using the gastrointestinal pathogens in week j: 

𝑌𝑗 = 𝑐 + ∑ 𝛼𝑖𝐿𝑖𝑗 

where Lij denotes the number of laboratory reports for the gastrointestinal pathogens i 

in week j, αi is the regression coefficient for pathogen i to estimate the number of 

inpatients with gastroenteritis diagnoses associated with each laboratory report, and c is 

a constant term for the background number of gastrointestinal illnesses that the model 

was not able to attribute to the weekly observations of laboratory reports. Similar to 

previous studies,[115,116,273] the initial model included all pathogens, which were 

subsequently removed stepwise backwards when they were not significantly contributing 

to the model (i.e., P<.05 and their removal did not decrease the adjusted R2), or that had 

a biologically implausible negative coefficient. The regression coefficient per pathogen 

were then multiplied with its observed number of laboratory reports before deriving the 

attributed fractions from the fitted total of hospital cases. Various sensitivity analyses 

were performed of excluding the constant, using only norovirus as explanatory variable, 

and separating the data to account for rotavirus vaccine introduction in July 2013. In a 

separate analysis, the data were limited up to December 2015 to be able to include shiga 

toxin-producing E. coli (STEC). 

The regression models with the highest adjusted R2 were those that separated the dataset 

in mid-2013 to account for rotavirus vaccination introduction, excluded the constant, and 

controlled for other significant pathogens besides norovirus, particularly astrovirus, 

Campylobacter, Giardia, Listeria, rotavirus and Shigella (Supplementary Table 22). The 

best-fitting models confirmed previous studies on rotavirus vaccination [118,119] by 

showing a significant decrease in the burden attributable to rotavirus admissions 

following vaccine introduction in July 2013. 

The results of the separate analysis that limited the data to December 2015 to include 

STEC showed slightly lower results for norovirus that were not significant when 
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separating the dataset in mid-2013 for rotavirus vaccination introduction (Supplementary 

Table 23). Because STEC was excluded in all but one regression model (and not the best-

fitting one), where it accounted for only 1.6% (CI: 0.5%–2.4%) of primary diagnoses, the 

study proceeded without STEC in the interest of being able to use a longer dataset that 

captured the full seasonal activity of norovirus in 2015/16.[71] 

It was also checked how the regression models would predict the norovirus-attributable 

burden for each season and visualised results for the best-fitting models (Supplementary 

Figure 18). Despite a decreased power from fewer observations, proportions of above 

20% were found for norovirus-attributable primary gastroenteritis for each season after 

mid-2013 (despite not including a novel strain emergence). The increase to about 25% 

already in 2012/13 corresponded with the Sydney/2012 norovirus strain emergence,[58] 

while the consistently high levels afterwards corresponded with the rotavirus vaccination 

introduction.[276] For secondary diagnoses, the fluctuations also correspond to the novel 

strain emergences in 2009/10 and 2012/13 (where values are at about 30%, while most 

other seasons are at lower levels of 20%) and the fewer reported norovirus outbreaks in 

HNORS in recent seasons. The strain emergence in 2012 was also much more efficient 

in transmission than the one in 2009, which may explain the lower fraction of primary 

diagnoses but higher fraction of secondary diagnoses in 2009/2010 (Supplementary 

Figure 18). 
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Figure 18. National hospital statistics for inpatients with infectious and non-infectious 

gastrointestinal illnesses in England, July 2009 to June 2016, and visualising norovirus-

associated gastroenteritis using linear regressions fitted to the data per season. 

 

Of note, a previous regression analysis found no increase in the number of (voluntarily-

reported) norovirus outbreaks when using positive norovirus laboratory cases as 

explanatory variable.[278] Differences to the findings here may be explained by the fact 

that a wider range of enteric pathogens were included as explanatory variables and the 

obligatory hospital diagnosis codes recorded for each gastrointestinal hospitalisation 

episode nationally were used as response variable. 
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Table 22. Attributable cause of gastrointestinal diagnoses by regression model, 2009/2010 to 2015/2016 

Data, timeframe, 

model 
Aden. Astr. Camp. Cryp. Giar. List. Noro. Rota. Salm. Shig. Intercept 

Adj. 

R2 

Primary gastrointestinal diagnoses (FCEs) 

2009/

2010 

– 

2015/

2016 

Base 

analysis 

- 3.3  

(3.3–3.3) 

8.8  

(7.0–10.1) 

0.7  

(-0.6–1.6) 

5.3  

(2.3–7.4) 
- 

2.5  

(1.7–3.1) 

6.0  

(5.6–6.6) 

- 4.0  

(1.9–5.5) 

69.3  

(63.3–77.9) 

0.761 

No 

constant 
- 5.5  

(5.5–5.5) 

35.8  

(33.6–38.8) 

- 23.8  

(23.5–24.0) 

4.8  

(3.6–5.6) 

11.7  

(11.3–12.3) 

6.5  

(6.3–6.9) 

- 11.9  

(9.4–13.6) 
- 

0.989 

Noro only 
- - - - - - 7.8  

(6.8–8.8) 

- - - 92.2  

(91.2–93.2) 

0.295 

2009/

2010 

– 

2012/

2013 

Base 

analysis 

- 2.6  

(2.5–2.7) 

12.7  

(10.8–14.1) 

2.3  

(1.4–3.0) 

- - 3.7  

(3.0–4.3) 

9.4  

(8.9–10.1) 

- 1.7  

(-0.9–3.7) 

67.5  

(63.3–73.1) 

0.903 

No 

constant 
- 3.3  

(3.1–3.4) 

39.3  

(36.2–44.2) 

- 20.3  

(18.5–21.5) 

4.7  

(3.2–5.6) 

12.4  

(11.8–13.3) 

10.8  

(10.0–12.2) 

- 9.2  

(5.5–11.6) 
- 

0.991 

Noro only 
- - - - - - 11.1  

(9.7–12.3) 

- - - 88.9  

(87.7–90.3) 

0.393 

2013/

2014 

– 

2015/

2016 

Base 

analysis 

- - 12.8  

(11.4–13.9) 

- 5.7  

(3.1–7.5) 
- 

5.8  

(5.1–6.2) 

4.3  

(4.1–4.5) 

3.6  

(1.5–5.1) 
- 

67.8  

(62.7–74.7) 

0.578 

No 

constant 
- 3.2  

(1.7–3.9) 

42.5  

(36.9–53.2) 

4.4  

(1.7–5.8) 

15.1  

(10.7–17.4) 

4.5  

(3.3–5.1) 

17.7  

(15.6–21.6) 

6.3  

(6.2–6.5) 

- 6.4  

(1.3–9.0) 
- 

0.993 

Noro only 
- - - - - - 0.8  

(-0.8–2.3) 

- - - 99.2  

(97.7–100.8) 

0.000 

Cases with secondary gastrointestinal diagnoses (FCEs) 

2009/

2010 

– 

2015/

2016 

Base 

analysis 

- 4.0  

(3.7–4.3) 

- - 6.6  

(3.4–9.3) 
- 

6.0  

(5.5–6.4) 

- - - 83.3  

(80.0–87.4) 

0.482 

No 

constant 
- 6.3  

(6.2–6.4) 

27.8  

(27.0–29.1) 

- 30.2  

(29.6–31.1) 

5.0  

(3.4–6.1) 

17.8  

(16.1–20.5) 

- - 12.9  

(9.5–15.1) 
- 

0.980 

Noro only 
- - - - - - 6.7  

(5.8–7.6) 

- - - 93.3  

(92.4–94.2) 

0.273 

2009/

2010 

Base 

analysis 

- 2.3  

(2.0–2.5) 

- - - - 8.6  

(8.2–9.0) 

0.7  

(-0.1–1.3) 

- 2.4  

(-0.4–4.8) 

86.0  

(82.4–90.3) 

0.750 



C h a p t e r  4  

 

136 

– 

2012/

2013 

No 

constant 
- 2.7  

(2.3–3.0) 

34.4  

(31.8–39.4) 

- 22.0  

(20.0–23.0) 

5.0  

(3.0–6.0) 

20.2  

(17.7–24.7) 

2.7  

(1.5–3.4) 

- 13.0  

(9.2–15.0) 
- 

0.984 

Noro only 
- - - - - - 10.3  

(9.5–11.0) 

- - - 89.7  

(89.0–90.5) 

0.641 

2013/

2014 

– 

2015/

2016 

Base 

analysis 

- 0.8  

(-0.5–1.8) 

- - 6.6  

(3.4–9.1) 
- 

7.9  

(7.1–8.5) 

- - 
- 

84.8  

(80.6–90.0) 

0.484 

No 

constant 
- 4.7  

(3.2–5.5) 

40.2  

(35.4–49.9) 

5.1  

(1.2–7.1) 

20.0  

(14.6–22.7) 

4.5  

(2.2–5.6) 

23.8  

(20.6–29.9) 

1.8  

(-0.9–3.1) 

- - 
- 

0.988 

Noro only 
- - - - - - 7.7  

(6.5–8.7) 

- - - 92.3  

(91.3–93.5) 

0.442 

All gastrointestinal diagnoses 

2009/

2010 

– 

2015/

2016 

Base 

analysis 

- 3.3  

(3.1–3.5) 
- 

- 6.0  

(3.4–8.0) 
- 

4.0  

(3.4–4.5) 

2.8  

(2.6–3.0) 

- 3.2  

(0.9–5.0) 

80.7  

(76.0–86.6) 

0.635 

No 

constant 
- 5.9  

(5.8–6.0) 

31.8  

(30.1–34.3) 

- 26.9  

(26.7–27.4) 

4.9  

(3.6–5.8) 

14.8  

(13.9–16.2) 

3.4  

(3.0–3.6) 

- 12.3  

(9.6–14.2) 
- 

0.986 

Noro only 
- - - - - - 7.3 

(6.6–8.0) 

- - - 92.7 

(92.0–93.4) 

0.388 

2009/

2010 

– 

2012/

2013 

Base 

analysis 

- 2.5  

(2.4–2.6) 

5.0  

(2.1–7.3) 

- 
- - 

5.8  

(5.3–6.1) 

5.1  

(5.1–5.1) 

- 2.7  

(0.5–4.4) 

78.9  

(74.5–84.6) 

0.868 

No 

constant 
- 3.0  

(2.7–3.1) 

36.8  

(34.0–41.6) 

- 21.1  

(19.3–22.2) 

4.8  

(3.2–5.8) 

16.2  

(14.8–18.5) 

7.0  

(6.7–7.3) 

- 11.0  

(7.3–13.2) 
- 

0.989 

Noro only 
- - - - - - 10.7  

(9.8–11.5) 

- - - 89.3  

(88.5–90.2) 

0.576 

2013/

2014 

– 

2015/

2016 

Base 

analysis 

- 
- 

6.5  

(4.0–8.4) 

- 6.4  

(4.4–8.0) 
- 

6.8  

(6.3–7.2) 

1.3  

(0.6–1.8) 

- 
- 

79.0  

(74.6–84.8) 

0.467 

No 

constant 
- 4.1  

(2.6–4.9) 

42.9  

(38.1–51.5) 

5.1  

(2.0–6.8) 

18.4  

(13.6–21.2) 

4.4  

(2.6–5.4) 

21.1  

(18.9–25.0) 

4.0  

(2.7–4.7) 

- 
- - 

0.991 

Noro only 
- - - - - - 4.4  

(3.4–5.3) 

- - - 95.6  

(94.7–96.6) 

0.299 

Aden: Adenovirus, Astr: Astrovirus, Camp: Campylobacter, Cryp: Cryptosporidium, FCE: Finished Consultant Episode, Giar: Giardia, List: Listeria, NHS: National 

Health Service, Noro: Norovirus, Rota: Rotavirus, Salm: Salmonella (excl. typhi & paratyphi), Shig: Shigella. 

The results of the most parsimonious models with the highest goodness-of-fit are presented in bold. 95% confidence intervals are given in parentheses. 
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Table 23. Attributable cause of gastrointestinal diagnoses by regression model, 2009/2010 to December 2015 in order to be able to include data on shiga toxin-

producing Escherichia coli (STEC) 

Data, time-

frame, model 
Aden. Astr. Camp. Cryp. Giar. List. Noro. Rota. Salm. Shig. STEC Intercept 

Adj. 

R2 

Primary gastrointestinal diagnoses (FCEs) 

2009/

2010 

– 

2015/

2016 

Base 

analysis 

- 3.1  

(3.0–3.1) 

9.7  

(7.8–11.1) 

- 6.1  

(3.7–7.9) 
- 

2.3  

(1.4–2.9) 

6.6  

(6.2–7.1) 

- 5.0  

(2.8–6.5) 

- 67.2  

(62.2–74.2) 

0.774 

No 

constant 

- 4.9  
(4.9–5.0) 

37.2  
(34.8–40.6) 

- 22.6  
(21.9–23.0) 

4.8  
(3.5–5.6) 

10.6  
(10.3–10.9) 

7.4  
(7.1–7.9) 

- 12.6  
(10.2–14.2) 

- 
- 

0.989 

Noro 

only 

- - - - - - 8.0  

(6.9–8.9) 

- - - - 92.0  

(91.1–93.1) 

0.307 

2009/

2010 

– 

2012/

2013 

Base 

analysis 

- 2.6  

(2.5–2.7) 

12.7  

(10.8–14.1) 

- - - 3.7  

(3.0–4.3) 

9.4  

(8.9–10.1) 

- 1.7  

(-0.9–3.7) 

2.3  

(1.4–3.0) 

67.5  

(63.3–73.1) 

0.903 

No 

constant 

- 3.3  

(3.1–3.4) 
39.3  

(36.2–44.2) 

- 20.3  

(18.5–21.5) 
4.7  

(3.2–5.6) 
12.4  

(11.8–13.3) 
10.8  

(10.0–12.2) 

- 9.2  

(5.5–11.6) 

- 
- 

0.991 

Noro 

only 

- - - - - - 11.1  

(9.7–12.3) 

- - - - 88.9  

(87.7–90.3) 

0.393 

2013/

2014 

– 

Dec 

2015 

Base 

analysis 

- 1.0  

(-0.02–1.7) 

13.2  

(11.8–14.0) 

1.6  

(0.5–2.4) 

6.4  

(3.9–8.1) 
- 

5.1  

(4.4–5.6) 

5.1  

(5.1–5.2) 

3.7  

(1.1–5.3) 
- 

- 63.9  

(57.8–73.1) 

0.625 

No 

constant 

- 3.4  
(2.1–4.0) 

43.3  
(37.2–55.3) 

- 16.3  
(12.4–18.3) 

4.0  
(2.4–4.9) 

13.8  
(12.7–16.2) 

7.6  
(7.2–8.4) 

- 7.1  
(1.6–10.0) 

- 
- 

0.994 

Noro 

only 

- - - - - - 1.2  

(-0.6–2.8) 

- - - - 98.8  

(97.2–100.6) 

0.005 

Cases with secondary gastrointestinal diagnoses (FCEs) 

2009/

2010 

– 

2015/

2016 

Base 

analysis 

- 3.4  

(3.2–3.6) 

- - 5.7  

(2.3–8.4) 

- 6.3  

(6.0–6.5) 

- - 3.7  

(0.6–6.1) 

- 80.9  

(75.4–87.9) 

0.492 

No 

constant 

- 5.3  

(5.3–5.3) 
29.7  

(28.6–31.6) 

- 28.2  

(28.0–28.5) 
4.7  

(2.9–5.8) 
17.5  

(15.7–20.2) 

- - 14.6  

(11.6–16.5) 

- 
- 

0.981 

Noro 

only 

- - - - - - 6.5  

(5.6–7.4) 

- - - - 93.5  

(92.6–94.4) 

0.289 

2009/

2010 

Base 

analysis 

- 2.3  

(2.0–2.5) 

- - - - 8.6  

(8.2–9.0) 

0.7  

(-0.1–1.3) 

- 2.4  

(-0.4–4.8) 

- 86.0  

(82.4–90.3) 

0.75 
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– 

2012/

2013 

No 

constant 

- 2.7  

(2.3–3.0) 
34.4  

(31.8–39.4) 

- 22.0  

(20.0–23.0) 
5.0  

(3.0–6.0) 
20.2  

(17.7–24.7) 
2.7  

(1.5–3.4) 

- 13.0  

(9.2–15.0) 

- 
- 

0.984 

Noro 

only 

- - - - - - 10.3  

(9.5–11.0) 

- - - - 89.7  

(89.0–90.5) 

0.641 

2013/

2014 

– 

Dec 

2015 

Base 

analysis 

- - - - 8.6  

(5.4–11.2) 
- 

7.8  

(7.1–8.5) 

- - 
- 

- 83.6  

(80.3–87.5) 

0.465 

No 

constant 

- 4.4  
(2.8–5.1) 

41.2  
(36.0–51.9) 

5.7  
(1.9–7.6) 

21.9  
(17.6–24.0) 

3.3  
(0.03–4.9) 

20.3  
(18.1–24.6) 

3.2  
(1.0–4.3) 

- - - 
- 

0.989 

Noro 

only 

- - - - - - 6.8  

(5.6–8.0) 

- - - - 93.2  

(92.0–94.4) 

0.382 

All gastrointestinal diagnoses 

2009/

2010 

– 

2015/

2016 

Base 

analysis 
- 

3  

(2.7–3.1) 
- - 

5.9  

(3.2–8.0) 
- 

3.8  

(3.1–4.3) 

3.3  

(3.1–3.4) 
- 

4.8  

(2.5–6.5) 

- 79.4  

(74.7–85.3) 
0.66 

No 

constant 
- 

5.2  

(5.1–5.2) 
33.3  

(31.4–36.2) 
- 

25.4  

(25.4–25.5) 
4.7  

(3.3–5.7) 
13.6  

(12.8–14.7) 
4.2  

(4.0–4.4) 
- 

13.6  

(11.0–15.2) 

- 
- 0.987 

Noro 

only 
- - - - - - 

7.3  

(6.5–8.0) 
- - - 

- 92.7  

(92.0–93.5) 
0.394 

2009/

2010 

– 

2012/

2013 

Base 

analysis 
- 

2.5  

(2.4–2.6) 

5  

(2.1–7.3) 
- - - 

5.8  

(5.3–6.1) 

5.1  

(5.1–5.1) 
- 

2.7  

(0.5–4.4) 

- 78.9  

(74.5–84.6) 
0.868 

No 

constant 
- 

3  

(2.7–3.1) 
36.8  

(34.0–41.6) 
- 

21.1  

(19.3–22.2) 
4.8  

(3.2–5.8) 
16.2  

(14.8–18.5) 
7  

(6.7–7.3) 
- 

11  

(7.3–13.2) 

- 
- 0.989 

Noro 

only 
- - - - - - 

10.7  

(9.8–11.5) 
- - - 

- 89.3  

(88.5–90.2) 
0.576 

2013/

2014 

– 

Dec 

2015 

Base 

analysis 
- 

0.6  

(-0.4–1.2) 

9.4  

(7.0–11.0) 

1.3  

(-0.3–2.5) 

6.4  

(3.3–8.6) 
- 

6.5  

(6.1–6.8) 

2  

(1.4–2.5) 
- - 

- 73.8  

(67.5–82.8) 
0.509 

No 

constant 
- 

4  

(2.6–4.8) 
44  

(38.8–53.4) 
5.3  

(2.1–7.0) 
20.4  

(16.4–22.6) 
3.6  

(1.2–4.9) 
17.5  

(16.1–20.0) 
5.2  

(4.4–5.7) 
- - 

- 
- 0.992 

Noro 

only 
- - - - - - 

4.1  

(3.0–5.2) 
- - - 

- 95.9  

(94.8–97.0) 
0.255 

Aden: Adenovirus, Astr: Astrovirus, Camp: Campylobacter, Cryp: Cryptosporidium, FCE: Finished Consultant Episode, Giar: Giardia, List: Listeria, NHS: National 

Health Service, Noro: Norovirus, Rota: Rotavirus, Salm: Salmonella (excl. typhi & paratyphi), Shig: Shigella, STEC: shiga toxin-producing Escherichia coli. 

The results of the most parsimonious models with the highest goodness-of-fit are presented in bold. 95% confidence intervals are given in parentheses. 
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Figure 19. Age-stratified attributable fraction (in %) of enteric pathogens on all-cause acute gastrointestinal primary and secondary 

diagnoses in hospitals in England, using linear regressions fitted to the data of July 2009 to June 2013 vs. July 2013 to June 2016. 
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In Figure 19, the attributable fraction of enteric pathogens on gastrointestinal diagnoses 

were explored stratified by age. Pathogens are presented in alphabetical order given their 

different impact qua proportion in different age groups. Moreover, it needs to be kept in 

mind that this ecological regression analysis cannot inherently explain the reasons for the 

changes observed (e.g. in younger ages for norovirus), although it seems likely to be 

impacted by reductions in attributable cases for other pathogens, particularly rotavirus. 

Further in-depth analyses are required that were outside of the scope of this study. 

Negative binomial regression models were also fitted to the data to compare with the 

multivariate linear regression models used in the paper. This allowed checking for over-

dispersion by the rule of thumb of the residual deviance divided by the degrees of freedom 

being close to 1.0. This ratio was not higher than 1.05 in any of the models, indicating no 

over-dispersion. 

For the norovirus-attributable burden, the values are indeed close to the multivariate 

regression although always slightly higher (see Table 24). The rest of the conclusions are 

not changing either. 

The Akaike information criterion (AIC) of the models were then compared, with lower 

values indicating a (relatively) better fitting model. Overall, the linear regression models 

are almost always slightly better than the negative binomial models, except for the one of 

cases with secondary diagnoses before July 2013. Given the small difference though and 

the fact that the particular model was not used in the main results, the original estimates 

with the multivariate regression analysis were kept. 
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Table 24. Comparison of regression models; including results of norovirus-attributable proportions 

Season Linear regression Negative binomial regression 

Primary gastrointestinal diagnoses (FCEs) 

2009/10−2015/16 11.7 (11.3–12.3) 

AIC: 5553 

14.6 (13.9–15.7) 

AIC: 5580 

Dispersion: 1.02 

2009/10−2012/13 12.4 (11.8–13.3) 

AIC: 3132 

15.2 (14.0−17.1) 

AIC: 3141 

Dispersion: 1.04 

2013/14−2015/16 17.7 (15.6–21.6) 

AIC: 2312 

19.3 (17.5–22.3) 

AIC: 2339 

Dispersion: 1.05 

Cases with secondary gastrointestinal diagnoses (FCEs) 

2009/10−2015/16 17.8 (16.1–20.5) 

AIC: 5784 

20.0 (18.1–22.9) 

AIC: 5790 

Dispersion: 1.02 

2009/10−2012/13 20.2 (17.7–24.7) 

AIC: 3242 

25.0 (21.6–31.0) 

AIC: 3236 

Dispersion: 1.04 

2013/14−2015/16 23.8 (20.6–29.9) 

AIC: 2432 

26.1 (22.8–32.0) 

AIC: 2453 

Dispersion: 1.04 

All gastrointestinal diagnoses 

2009/10−2015/16 14.8 (13.9–16.2) 

AIC: 6164 

18.1 (16.8−20.2) 

AIC: 6183 

Dispersion: 1.02 

2009/10−2012/13 16.2 (14.8–18.5) 

AIC: 3466 

19.7 (17.5–23.3) 

AIC: 3470 

Dispersion: 1.04 

2013/14−2015/16 21.1 (18.9–25.0) 

AIC: 2583 

22.6 (20.0–27.2) 

AIC: 2611 

Dispersion: 1.05 

AIC: Akaike information criterion, FCE: Finished Consultant Episode 
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4.10.3 Details on the multi-state model 

The mean excess length of hospital stay due to norovirus was estimated using a multi-

state model [270-272] consisting of four mutually exclusive states: admission, 

infected/diseased, discharged, and death (Supplementary Figure 20). Inpatients were 

allowed to make five transitions between two transient states for patients that do not, or 

do, develop norovirus, which are labelled in the following with “0” and “1”, respectively, 

and two absorbing states of being discharged alive or dead, respectively labelled with “2” 

and “3” (Supplementary Table 25 and Supplementary Figure 20). It was decided against 

a combined endpoint discharged/death given the rarity of in-hospital mortality among 

norovirus cases in the sample used, which conforms with national data;[94] for most cases, 

the model thus estimated the excess length of stay based on control patients discharged 

alive (i.e., hazard rate λ12 vs. λ02 in Supplementary Figure 20). 

Figure 20. State-transition diagram of the multi-state model with hazard rates. 

 

Table 25. Possible transitions of patients in the multi-state model 

Transitions from to 

Inpatients developing suspected and/or confirmed norovirus 0 1 

Inpatients being discharged alive without developing norovirus 0 2 

Inpatients dying in hospital without having developed norovirus 0 3 

Inpatients being discharged alive after developing norovirus 1 2 

Inpatients dying in hospital after having developed norovirus 1 3 
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The model was populated with the local patient-level hospital data that included the time 

of norovirus infection and symptoms. For day cases who did not stay overnight in 

hospital, the resource consumption was approximated with 0.5 bed-days. For primary 

gastrointestinal diagnoses, it was assumed that a diagnosis of primary gastrointestinal 

illnesses (as manifested by diarrhoea and/or vomiting) was made within about 15 minutes 

after being admitted (i.e., a value of 0.01). 

The daily transition probabilities of patients were estimated as time-varying hazards 

using the empirical transition matrix (also called Aalen-Johansen estimator);[263] cf. 

Supplementary Figure 21 for the 33 suspected and/or GII confirmed norovirus cases and 

2,465 non-gastroenteritis controls. 

 

Figure 21. Transition probabilities from the individual-level patient data of developing 

norovirus (0 to 1), of being discharged alive without norovirus (0 to 2), of being 

discharged dead without norovirus (0 to 3). 

Probabilities for norovirus not shown here due to small numbers of in-hospital mortality.[244] 

 

Afterwards, the activity-weighted mean excess length of stay was calculated from the 

difference in the expected length of stay per day and the frequency of norovirus patients 

(Supplementary Figure 22). 
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Figure 22. Frequency of developing norovirus, and the expected length of stay for 

norovirus and control patients. 

 
The upper panel shows how most inpatients developed norovirus during the first 10 days of their stay, 

while the lower panel shows the daily difference in the expected length of stay between norovirus and 

control patients, which remained relatively constant until around day 24. 

 

Finally, 10,000 bootstraps were ran to obtain robust estimates of the standard error to 

calculate 95% confidence intervals. Although relatively wide, the obtained intervals 

corresponded to previously published durations of symptomatic disease in hospitalised 

norovirus patients of 1 to 8 days.[40,67,83,279] Moreover, the negative lower-bound 

confidence interval obtained for norovirus cases with primary diagnoses points towards 

them having left the model faster than control patients (i.e., hazard rate λ02 < λ12; cf. 

Supplementary Figure 20), which may be explained by a short overall length of stay and 

fast discharge of norovirus cases when admitted for acute gastrointestinal symptoms only. 

Another possible explanation would be a higher in-hospital mortality of norovirus cases 

(i.e., λ03 < λ13),
[272] which was not applicable in the sample used here.  
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4.10.4 Details on the comparison of bed-days kept unoccupied for infection control 

For a fair comparison of the bed-days kept unoccupied due to norovirus, the figures 

voluntarily reported to HNORS during norovirus outbreaks were matched with those 

mandatorily recorded by NHS England for acute care hospitals during winters. The 

resulting ratio was used to scale up figures in HNORS. 

For HNORS, outbreaks were limited to those of acute care hospitals, excluded maternity 

and mental health wards, and restricted outbreaks to the same range of dates recorded 

each winter by NHS England via the start and end date of outbreaks. Thus, of the 8,142 

outbreaks included in this study during July 2009 to June 2016, 39 outbreaks in 

community and mental health hospitals were first excluded as well as 41 outbreaks in 

maternity and mental health wards. Limiting the outbreaks to the same days during 

winters as recorded by NHS England excluded 4,803 outbreaks, of which n=1,756 

belonged to the entire season 2009/10 given that NHS England started recording only in 

winter 2010/11. In total, 3,259 outbreaks remained for the comparison that made up for 

40.4% of all outbreaks in HNORS, while the bed-days lost in those outbreaks made up 

for about 52% of all bed-days lost in HNORS. Figure 23 illustrates the difference between 

the outbreaks reported annually and the outbreaks considered during the winters of 

2010/11 to 2015/16. 
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Figure 23. Daily number of outbreaks recorded in HNORS between July 2009 to June 

2016, and of outbreaks during the same period of time as recorded by NHS England, per 

start date. 
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In addition, it was explored whether the bed-days lost recorded in HNORS were 

associated with norovirus by repeating the linear regression described above. Norovirus 

was the only covariate that was non-negative and statistically significant for predicting 

the number of bed-days lost in outbreaks. The adjusted R2 is suggestive of norovirus 

laboratory reports being able to explain more than 80% of the bed-days lost 

(Supplementary Figure 24). 

 

Figure 24. Weekly number of bed-days lost recorded in HNORS between July 2009 to 

June 2016. 

 

 

For NHS England, missing values were imputed for weekends and Christmas holidays 

in best-to-worst-case scenarios (i.e., lowest to highest imputations).[268] Afterwards, 

outbreaks were approximated using conventional definitions for norovirus [40,50,280] by 

excluding all single beds that were unavailable for merely one day within 48 hours, which 

reduced the 142,100–186,000 bed-days across all six winters with the lowest-to-highest 

imputations only marginally to 141,600–185,800 bed-days. 
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It was also investigated whether unavailable beds recorded by NHS England were 

associated with norovirus by repeating the linear regression described above. Norovirus 

was always the only covariate left in all regression models (including scenario analyses) 

that was non-negative and statistically significant for predicting the hospital bed-days 

closed unoccupied, occupied, and combined for both the lowest and highest imputations 

(Supplementary Figure 25). When calculating Pearson’s correlation coefficient to 

investigate the linear relationship between the number of bed-days lost during outbreaks 

(in HNORS) and the unoccupied bed-days unavailable (by NHS England) during winters 

per week, positive correlations were found of r=0.76 for the lowest imputations and 

r=0.73 for the highest imputations. 

Figure 25. Weekly number of bed-days closed due to diarrhoea and vomiting/norovirus-

like symptoms recorded by NHS England during winters, 2010/11 to 2015/16. 

 

Note the different scales for the horizontal panels. 
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Overall, 21.2%–28.0% of unoccupied bed-days recorded by NHS England matched the 

bed-days reported for outbreaks to HNORS (Supplementary Figure 26). Between July 

2009 and June 2013, the number of matching bed-days was higher with 22.6%–29.7%, 

which decreased in subsequent years to 19.7%–26.3% between July 2013 and June 2016. 

Apart from the mode of reporting (i.e., voluntary to HNORS vs. mandatory to NHS 

England), other possible explanations for this discrepancy could be that hospitals start 

reporting an outbreak to HNORS but do not update their report once the outbreak has 

finished, which would thus not contain all numbers of bed-days lost, staff absences and 

patients involved. Also, hospitals may perceive both systems as duplicate; or there may 

be a lack of general awareness of HNORS. 

 

Figure 26. Matched weekly number of bed-days lost during outbreaks reported to 

HNORS vs. lowest and highest imputations of unoccupied bed-days recorded by NHS 

England, winters 2010/11 to 2015/16. 

 

Assuming that the observed difference applied throughout the year and also to 

community hospitals and maternity and mental health wards, the numbers of bed-days 
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lost recorded in HNORS were scaled up (Supplementary Table 26). For 2009/10, the 

figures for across the other six winters were used given that NHS England only started 

recording the winter situation in 2010/11. Note that adjusting for potential under-

reporting of outbreaks explicitly first before scaling up the then-higher figures of bed-

days with the then-lower number of non-matching bed-days would give the same results. 

 

Table 26. National trend of hospital bed-days lost unoccupied in England per winter, 2009/10–2015/16 

Source 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

HNORSa n/a 6,300 9,400 9,700 5,000 7,500 2,300 

NHSEb n/a 24,000–

31,700 

32,000–

42,600 

32,500–

41,900 

19,700–

25,400 

24,700–

32,600 

8,600–

11,500 

matching 

(%) 

n/a 19.4–25.2 22.6–30.1 23.4–29.7 19.4–25.3 23.3–31.6 19.7–26.3 

Adj. bed-

days lost 

annually 

81,700–

108,000c 

60,700–

78,600 

57,300–

76,300 

57,000–

72,400 

29,200–

38,000 

39,100–

53,100 

27,400–

36,400 

HNORS: Hospital Norovirus Outbreak Reporting System, n/a: not applicable, NHSE: National Health Service England 

a: Limited to non-community hospitals, excluding maternity and mental health wards, and to the recording periods of 

NHSE each winter. 

b: Imputed missing values for weekends and Christmas holidays in best-to-worst-case scenarios, excluded isolated beds 

closed without another bed closed in 48 hours in order to approximate outbreaks, and ensured association with 

norovirus via linear regressions. 

c: Given that NHS England started recording in winter 2010/11, the six other winters were used to adjust the number for 

2009/10. 
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4.10.5 Details on the estimated number of staff being absent during norovirus 

outbreaks 

Potential under-reporting of the number of staff being absent during outbreaks were 

accounted for by multiplying the number of patients reported to HNORS with the ratio of 

infected patients to staff of 1:0.63 from a previous epidemiological study in one region of 

England that closely monitored norovirus outbreaks during April 2002 and March 2003, 

involving 2,154 patients and 1,360 healthcare staff.[41] Given that the number of patients 

involved in outbreaks is also under-recorded due to under-reporting of outbreaks,[259] 

patient figures were first scaled up to 100%. Note: The estimated number of norovirus 

patients was not taken as baseline given that this will overestimate staff absences, which 

occur only for symptomatic disease and particularly during outbreaks. 

These adjustments led to figures that were about three times higher than the reported 

absences (Supplementary Table 27). Overall, there were an estimated median 9,100 (IQR: 

5,100–12,000) individual staff absences during outbreaks annually between July 2009 

and June 2016. 

 

Table 27. Number of staff absences and patients during norovirus outbreaks in England per season. 

Variable 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

Patientsa 19,500 11,500 15,500 14,000 5,400 7,700 4,300 

staff absencesa 5,200 3,000 3,700 3,500 1,400 2,100 1,300 

Patientsb 24,400 14,400 19,400 17,500 6,700 9,600 5,300 

staff absencesc 15,400 9,100 12,200 11,100 4,200 6,100 3,400 
HNORS: Hospital Norovirus Outbreak Reporting System. 

a: Raw data of patients and staff absences from HNORS. Raw staff absences only shown for reference here. 

b: Scaled up to 100% to account for under-reporting of outbreaks.[259] 

c: Estimated by multiplying the number of patients with the ratio of patients to staff from a previous norovirus 

outbreak study in England.[41] 

 

Interestingly, there was a decrease in absences over time, which matched the decrease 

in reported outbreaks (Supplementary Table 20). Between July 2009 and June 2013 there 

were a median 12,000 (IQR: 11,000–13,000) individual staff absences, which decreased 

between July 2013 and June 2016 to only a median 4,200 (IQR: 3,800–5,100) staff 

absences. It is unclear whether this is a genuine decrease in recent seasons or a result of 

reporting bias, especially in light of the stable (if not slowly increasing) number of 

secondary norovirus-associated gastroenteritis diagnoses in England (Figure 15 in the 

main text). 
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4.10.6 Details of the costing approach 

Inpatients with a primary norovirus diagnosis were costed with the activity-weighted 

mean reference costs for elective, non-elective, non-elective short stay and day cases of 

gastrointestinal infections, with or without any intervention and with any Complication 

and Comorbidity (CC) score (i.e., all healthcare resource group codes starting with 

FZ36*) and paediatric infectious or non-infectious gastroenteritis, irrespective of the CC 

score (i.e., all codes starting with PF21*).[243] 

For inpatients with secondary diagnoses attributable to norovirus, only their excess stay 

due to norovirus was costed by using the activity-weighted mean excess bed-day value 

for elective and non-elective stays of gastrointestinal infections (all codes starting with 

FZ36*) and paediatric infectious or non-infectious gastroenteritis, with any Complication 

and Comorbidity (CC) score (all codes starting with PF21*).[243] The resource 

consumption of day cases was approximated with 0.5 bed-days. 

For hospital bed-days kept unoccupied, the excess bed-day value for all elective and 

non-elective stays was used (all codes), irrespective of intervention and the CC score.[243] 

Excluding gastroenteritis would assume that all hospitalisations for gastroenteritis are 

unnecessary, which may not be true for the more severe forms. 

Staff absences due to norovirus were costed using the average wage of the mid-range 

grade E of the NHS pay scale for nurses in England for 2015/16.[264] An estimated 3.14 

days of work missed per absence was assumed based on a previous norovirus outbreak 

study in England involving 1,360 staff members.[41] 

For the next-best alternative patients forgone, whose forgone health benefit gain poses 

the relevant opportunity costs for decision makers aiming to maximise population 

health,[260] it was assumed that the national average of the regularly admitted non-

gastroenteritis patients in England were a reasonable proxy.[243,244] These alternative 

patients were costed with the activity-weighted mean reference costs for elective, non-

elective, non-elective short stay and day cases of non-gastrointestinal diagnoses 

(excluding all codes starting with FZ36* or PF21*).[243] 

The input parameters and the values used for multivariate sensitivity analyses are shown 

in Supplementary Table 28. 
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Table 28. Input parameters of the calculations for bed-days. 

Parameter Value (sensitivity 

analysis) 

Unit Description and sources 

Length of stay 5.01 (3.3, 7.2) days Mean hospital LOS of all non-gastroenteritis cases in 

England (HES, 2015/16). Sensitivity analysis: Lowest 

and highest mean LOS per non-gastroenteritis sub-

group (local hospital sample). 

 3.33 (0.17, 6.50) days Mean excess hospital LOS of patients with norovirus 

infection (local hospital sample). Sensitivity analysis: 

95% confidence interval. 

Unit costs £1,072 (£800, £1,222) per 

patient 

Mean NHS reference costs of gastroenteritis cases in 

England in 2015/16 (activity-weighted, only HRGs 

FZ36 and PF21a).[243] Sensitivity analysis: lower and 

upper quartiles. 

£1,491 (£1,058, £1,766) per 

patient 

Mean NHS reference costs of non-gastroenteritis cases 

in England in 2015/16 (activity-weighted, excluding 

HRGs FZ36 and PF21a).[243] Sensitivity analysis: lower 

and upper quartiles. 

£294 (£232, £348) per bed-

day 

Mean NHS reference costs of excess bed-days for 

gastroenteritis in England in 2015/16 (activity-

weighted, only HRGs FZ36 and PF21a).[243] Sensitivity 

analysis: lower and upper quartiles. 

£306 (£220, £366) per bed-

day 

Mean NHS reference costs of all excess bed-days in 

England in 2015/16 (activity-weighted, all HRGs).[243] 

Sensitivity analysis: lower and upper quartiles. 

Norovirus-

attributable 

gastroenteritis 

0.124 (0.118, 0.133) proportion Estimated from cases with primary gastrointestinal 

diagnoses between July 2009 and June 2013. Sensitivity 

analysis: 95% confidence interval. 

0.177 (0.156, 0.216) proportion Estimated from cases with primary gastrointestinal 

diagnoses between July 2013 and June 2016. Sensitivity 

analysis: 95% confidence interval. 

0.202 (0.177, 0.247) proportion Estimated from cases with secondary gastrointestinal 

diagnoses between July 2009 and June 2013. Sensitivity 

analysis: 95% confidence interval. 

0.238 (0.206, 0.299) proportion Estimated from cases with secondary gastrointestinal 

diagnoses between July 2013 and June 2016. Sensitivity 

analysis: 95% confidence interval. 

Variable costs 0.15 (0.04, 0.34) proportion Estimated proportion of variable costs on total hospital 

costs.[266] Sensitivity analysis: range of proportions 

published for 16 medical specialties.[266] 

QALY gain 0.239 (0.142, 0.260) per 

patient 

Mean (discounted) QALYs gained from hospital 

treatment for non-gastroenteritis cases with chronic 

conditions (local hospital sample, n=871). Sensitivity 

analysis: Mean (discounted) QALYs gained of all 

patients without gastroenteritis (n=2,465) and with 

acute life-threatening conditions (n=537), respectively. 

Acute life-threatening conditions were included as 

extreme scenario only as it seemed unrealistic to 

assume forgoing them constantly. 
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Monetary value 

for QALYs 

£20,000 (£13,000, 

£30,000) 

per 

QALY 

NICE reference case.[267] Sensitivity analysis: estimated 

from mortality data,[281] and NICE’s upper-bound 

threshold.[267] 
HES: hospital episode statistics, HRG: healthcare resource group, LOS: length of stay, NHS: National Health Service, 

NICE: National Institute for Health and Care Excellence, QALY: quality-adjusted life year. 

a: HRG FZ36*: gastrointestinal infections; HRG PF21*: paediatric, infectious or non-infectious gastroenteritis 
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4.10.7 Details on the modelled health gain expected from hospital treatment 

In the absence of national data on the health gain from hospital treatment, the expected 

mean quality-adjusted life years, QALYs, were estimated from individual patient-level 

data of a local teaching hospital in London, UK. Mean age- and sex-specific health 

utilities for diseased individuals were mapped to the primary admission code,[282] and 

patients were separated into three sub-groups based on all diagnosis codes and the 

Charlson comorbidity index [283] (Supplementary Figure 27): 

a) For patients with acute life-threatening conditions (i.e., myocardial infarctions, 

congestive heart failures, and cerebrovascular diseases), immediate death was 

assumed without hospital treatment. With treatment, the health status was 

assumed to be stabilised and the utility score maintained until discharge, at which 

point the utility was assumed to gradually decline over the remaining age- and 

sex-specific life expectancy using life-tables for England.[284] 

 

b) For all other patients with chronic conditions (i.e., Charlson index > 0 but not 

acutely life-threatening), a steady decline of the health utility for the remainder of 

the life expectancy was assumed without treatment, while with treatment the same 

assumption was made as before of an initially stabilised health status before 

deterioration commences after discharge. 

 

c) For patients without chronic or life-threatening conditions, a gradual recovery was 

modelled until discharge, while a delay in recovery was assumed without 

treatment, lasting for the entire stay in hospital, after which patients make a natural 

recovery over the same period of time as with hospital treatment. No difference 

attributable to this hospital stay was assumed for the remaining life expectancy. 

For the recovered health status, utility norms published sex-specifically by 

Programme Budget Categories were used.[281] For 40 young patients, this non-

age-specific utility norm was smaller than the age-specific diseased utility, for 

who a norm of 1 was thus assumed. Alternatively, one could have assumed a 

utility norm value of 1 for the recovered health status in line with theory, which 

were to skew results upwards while ignoring the patients’ age, sex, and diseased 

utility (and thus dismissed by us). 

 

For patients with chronic or life-threatening conditions the age- and sex-specific life 

expectancy from the Office for National Statistics was used.[284] For all cases of in-

hospital mortality, QALYs were calculated using the observed survival time. 
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Figure 27. Health gain in terms of quality-adjusted life years, QALYs, from hospital 

treatment vs. no hospital treatment.  

 

To account for potential heterogeneity, the health gain modelling differed for the three patient sub-groups 

of a) acute life-threatening conditions, b) chronic conditions, or c) none of these conditions. a) Patients with 

acute life-threatening conditions survive with hospital treatment for their remaining age- and sex-specific 

life expectancy. b) Patients with chronic conditions maintain their health at a higher level with hospital 

treatment for their remaining age- and sex-specific life expectancy. c) Patients with none of these conditions 

recover faster with hospital treatment, but there is no effect attributable to this hospital stay for the 

remaining life expectancy. 
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4.10.8 Details on results of the burden and costs estimation 

Table 29 shows the results of the burden estimation for patients, bed-days and staff absences per season. 

Table 29. Results for the burden of norovirus-associated gastroenteritis in hospital in England per season, 2009/10-2015/16 

Variable 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

Patients        

~ with primary norovirus 

diagnosis (95% CI)a 

28,200 

(26,800–30,200) 

27,300 

(26,000–29,300) 

28,900 

(27,500–31,000) 

30,700 

(29,200–32,900) 

40,100 

(35,300–48,900) 

41,900 

(36,900–51,100) 

40,800 

(36,000–49,800) 

~ with secondary norovirus 

diagnosis (95% CI)b 

44,600 

(39,100–54,600) 

44,300 

(38,800–54,200) 

46,200 

(40,500–56,500) 

49,100 

(43,000–60,000) 

55,900 

(48,400–70,200) 

61,500 

(53,300–77,300) 

63,600 

(55,000–79,800) 

total (95% CI) 72,800 

(65,900–84,800) 

71,600 

(64,800–83,500) 

75,100 

(68,000–87,500) 

79,800 

(72,200–92,900) 

96,000 

(83,700–119,000) 

103,000 

(90,200–128,000) 

104,000 

(91,000–130,000) 

Bed-days         

~ used for primary norovirus 

diagnoses (95% CI)a 

70,500 

(67,100–75,600) 

62,900 

(59,900–67,500) 

61,400 

(58,400–65,900) 

62,900 

(59,900–67,500) 

81,400 

(71,700–99,300) 

83,500 

(73,600–102,000) 

76,800 

(67,700–93,800) 

~ used for secondary norovirus 

diagnoses (95% CI)c 

135,000 

(118,000–

165,000) 

132,000 

(116,000–

162,000) 

136,000 

(119,000–

167,000) 

146,000 

(128,000–

178,000) 

165,000 

(143,000–

207,000) 

181,000 

(157,000–

227,000) 

185,000 

(160,000–

233,000) 

~ lost unoccupied, lowest-to-

highest imputationsd 

81,700–108,000 60,700–78,600 57,300–76,300 57,000–72,400 29,200–38,000 39,100–53,100 27,400–36,400 

total, low imputations (95% CI) 287,000 

(267,000–

322,000) 

256,000 

(236,000–

290,000) 

255,000 

(235,000–

290,000) 

266,000 

(245,000–

303,000) 

275,000 

(244,000–

336,000) 

304,000 

(269,000–

368,000) 

290,000 

(255,000–

354,000) 

total, high imputations (95% CI) 313,000 

(293,000–

348,000) 

274,000 

(254,000–

308,000) 

274,000 

(254,000–

309,000) 

281,000 

(260,000–

318,000) 

284,000 

(252,000–

345,000) 

318,000 

(283,000–

382,000) 

299,000 

(265,000–

363,000) 

Staff absences due to illness        

totale 15,400 9,100 12,200 11,100 4,200 6,100 3,400 
HES: hospital episode statistics, HNORS: Hospital Norovirus Outbreak Reporting System, LOS: length of stay, NHS: National Health Service. 



C h a p t e r  4  

 

158 

a: Derived from inpatients with a primary diagnosis of gastroenteritis attributed to norovirus with the two regression models with the highest goodness-of-fit for prior and after mid-

2013. 

b: Derived from inpatients with a secondary diagnosis of gastroenteritis attributed to norovirus with the two regression models with the highest goodness-of-fit for prior and after mid-

2013. 

c: Derived from the non-day cases with a norovirus-attributable secondary diagnosis of gastroenteritis times the estimated excess length of stay due to norovirus of 3.33 (95%-CI: 

0.17–6.50) days plus the number of day cases with a norovirus-attributable secondary diagnosis of gastroenteritis times the approximated resource consumption of 0.5 bed-days. 

d: Figures of bed-days lost were scaled up using the ratios derived from the comparison of bed-days during winters reported voluntarily to HNORS versus mandatorily to NHS 

England. 

e: Figures account for under-reporting of outbreaks, and absences during outbreaks. 
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Table 30 shows the costing results, split up for the conventional costing and the opportunity costing of bed-days. 

Table 30. Results for the costs of norovirus-associated gastroenteritis in hospital in England per season, 2009/10-2015/16 

Variable 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

Conventional costing        

Patients with primary norovirus 

diagnosis, in million £ (95% CI)a 

30.2 (21.4–36.9) 29.3 (20.8–35.8) 31.0 (22.0–37.9) 32.9 (23.4–40.2) 43.0 (28.3–59.7) 44.9 (29.5–62.4) 43.8 (28.8–60.9) 

Bed-days used for secondary 

norovirus diagnoses, in million £ 

(95% CI)b 

39.5 (27.3–57.4) 38.8 (26.8–56.3) 40.0 (27.7–58.0) 42.8 (29.6–62.1) 48.4 (33.1–72.1) 53.2 (36.3–79.2) 54.4 (37.1–81.1) 

Bed-days lost unoccupied, low-

to-high imputations, in million £c 

25.0–33.0 18.6–24.0 17.5–23.3 17.4–22.1 8.9–11.6 12.0–16.2 8.4–11.1 

Staff absence costs due to illness, 

in million £d 

4.9 2.9 3.9 3.5 1.3 1.9 1.1 

Total, low-to-high imputations, 

in million £ 

99.6–107.6 89.5–95.0 92.4–98.2 96.7–101.4 101.6–104.3 111.9–116.2 107.6–110.4 

Opportunity costing        

Patients forgone, low-to-high 57,300–62,500 51,100–54,600 50,900–54,700 53,100–56,100 55,000–56,700 60,600–63,400 57,800–59,600 

QALYs forgone, low-to-high 13,700–14,900 12,200–13,100 12,200–13,100 12,700–13,400 13,100–13,600 14,500–15,200 13,800–14,200 

Net monetary benefit, low-to-

high, in million £e 

188.4–205.7 168.0–179.7 167.4–179.9 174.6–184.7 180.9–186.7 199.4–208.6 190.1–196.1 

HES: hospital episode statistics, HNORS: Hospital Norovirus Outbreak Reporting System, LOS: length of stay, NHS: National Health Service. 

a: Patients with primary diagnoses were costed directly using NHS reference costs.[243] 

b: Patients with secondary diagnoses were not costed directly given that they were in hospital for other primary reasons. Instead, their excess bed-days due to norovirus were 

costed. 

c: Figures of bed-days lost were scaled up using the ratios derived from the comparison of bed-days reported during winters to HNORS vs. NHS England. 

d: Figures account for under-reporting of outbreaks, and absences during outbreaks. 

e: Equivalent to opportunity costs, unless a higher net benefit was achievable with the alternative patients forgone than with the norovirus patients. 
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The net monetary benefit of the QALYs forgone is equivalent to the opportunity costs 

of the norovirus patients, unless a higher net benefit was achievable with the alternative 

patients forgone.[260] In order to investigate this, this study costed the QALY gain of 

norovirus patients with a primary diagnosis (0.078; Table 18) and a secondary norovirus 

diagnoses, for which the gastroenteritis-related health gain was approximated by 

subtracting the QALY gain of control patients with no primary gastroenteritis diagnosis 

and no norovirus infection from the QALY gain of inpatients with no primary 

gastroenteritis diagnosis but norovirus infection (i.e., 0.211-0.142=0.069; cf. Table 18 

and Supplementary Table 21). The results of this analysis are shown in Table 31, which 

estimated that norovirus patients gained from hospital treatment an expected number of 

5,400 QALYs before July 2013 and 7,500 QALYs after July 2013. 

 

Table 31. Costing results for the bed-days used for norovirus-associated inpatients in England, 

2009/10-2015/16 

 Before July 2013:  

261,000 bed-days  

After July 2013:  

290,000 bed-days 

 Across seasons:  

275,000 bed-days 

 Norovirus 

cases, 

n=73,900 

Forgone 

patients: 

n=52,100  

Norovirus 

cases, 

n=103,400 

Forgone 

patients: 

n=57,800 

 Norovirus 

cases, 

n=79,800 

Forgone 

patients: 

n=55,000 

Expenditure  

(£ million in total) 

94.5 77.6  107.6 86.1  99.6 82.0 

Benefit (GMB, £ 

million in total) 

107.2 248.9  150.2 276.2  115.6 262.8 

Net benefit (NMB, 

£ million in total) 

12.7 171.3  42.6 190.1  16.0 180.9 

Economic costs  

(£ million in total)a 

265.5 90.3  297.7 128.7  282.5 98.0 

GMB: gross monetary benefit (i.e., QALYs gained times £20,000 [267]), NICE: National Institute for Health and 

Care Excellence, NMB: net monetary benefit (i.e., benefit-expenditure), QALY: quality-adjusted life year. 

a: Economic costs are defined as the expenditure incurred plus the highest net monetary benefit forgone; they 

approximate to opportunity costs in case the chosen option was the sub-optimal alternative. 
 

The net monetary benefit of the forgone patients was always higher than that of 

norovirus patients, and the economic costs were always lower than the benefit for 

norovirus only (Supplementary Table 31). As such, the higher net benefit was achievable 

with the forgone patients, rendering the norovirus cases as sub-optimal treatment choice 

from an economic perspective aiming to maximise population health. Consequently, the 

economic costs approximate to opportunity costs here. 
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4.10.9 Details on the sensitivity analysis 

For the burden estimation, the estimated confidence intervals of the best-fitting 

regression models were used to obtain lower and upper estimates for the norovirus-

attributable cases and the bed-days of primary diagnoses, and the estimated confidence 

interval of the excess length of stay due to norovirus from the multi-state model were 

used. Due to the wide confidence interval of the excess hospital stay of norovirus cases, 

the bed-days used for them showed the highest uncertainty to either side of the base case 

value (Supplementary Figure 28). For the bed-days lost unoccupied for infection control, 

the lower value was takenas conservative estimate, which is why there is only an upwards 

trend shown (Supplementary Figure 28); the actual number of bed-days kept unoccupied 

is likely higher than assumed here but also lower than the worst-case scenario. 

Figure 28. Tornado diagram of the change (in %) of the base estimates for the burden 

estimation. 

 

NoV: norovirus. 
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For the costs, estimates appeared to be right-skewed, as is often the case for cost data.[4] 

There appeared to be less uncertainty surrounding calculations using the length of stay 

and expenditure of the forgone alternative patients (Supplementary Figure 29: “nr 

forgone pts”, “costs forgone pts”) than for calculations relying on a monetary value for 

the quality-adjusted life years, QALYs, gained (Supplementary Figure 29, “GMB 

forgone pts”, “NMB forgone pts”, “economic costs NoV”). For the variable costs 

proportion of the expenditure on norovirus (“variable costs NoV”), the wide interval 

chosen as input of up to 0.34 is reflecting the large uncertainty surrounding the estimate 

when the total expenditures also increased. 

 

Figure 29. Tornado diagram of the change (in %) of the base estimates for the cost 

calculation.  

 

GHB: gross health benefit, GMB: gross monetary benefit, NHB: net health benefit, NMB: net monetary 

benefit, NoV: norovirus, pts: patients. 
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4.11 ADDITIONAL RESULTS FOR THE OTHER APPROACHES IDENTIFIED 

In order to streamline the discussion of the costing approach for a clinical audience, the 

results presented in the paper in chapter 4 focussed on the comparison of the conventional 

costing approach and the novel opportunity costs approach. Here, the implications for 

costing are discussed using all 14 approaches presented in chapter 2 (see Table 32 for a 

summary). 

First, following Methodology A showed that while the bed-days used for norovirus were 

only valued as an expected 57,800 patient-equivalents (approach 1), the expenditure on 

norovirus was valued as an expected 72,200 treatment-equivalents (approach 2). This 

difference in the result when using the exchange rate between natural units (approach 1) 

or the exchange rate between the expenditures associated with the natural units (approach 

2) is largely explained by the fact that the amount of money that could have been spent 

on the treatment of alternative patients included the costs of day cases, which do not use 

many bed-days but incur expenditures, and staff absence costs (although these account 

for merely 3%). However, when aiming to maximise throughput it seems as if the 

expenditure was able to buy more treatments than the beds would allow treating. As a 

result, chapter 4 disregarded treatment-equivalents for its ease in resulting in distorted 

values, particularly when looking over time (cf. section 2.5.4), while the average length 

of stay in hospital for patients in England has stayed relatively constant over the last 

years,[244] suggesting a plateau may have been reached, and its use seems preferable. 

Second, Methodology B gave vastly different values for the opportunity costs of bed-

days with the different approaches for both the valuation in terms of money as well as the 

health benefit (i.e., QALYs), with the treatment-equivalents giving generally higher 

values than the patient-equivalents (including the gross monetary benefit for the 

treatment-equivalents, which would have resulted in £345.2 million). The lowest results 

were obtained for the direct expenditures on the alternative patients (approach 3a), and 

the highest for the gross monetary benefit of the patients forgone (approach 5). 

Interestingly, the universal measure for the expected next-best use of £20,000 per QALYs 

gave the lowest QALYs (approach 6), while the gross health benefit for the second-best 

patients gave the highest (approach 4). Of note, approaches from the provider perspective 

that required information on their revenue (cf. section 2.5.2.2) have not been calculated 
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on the national level in the absence of available data, given that the reimbursement levels 

are determined in England based on the average accounting expenditures of all providers. 

Third, Methodology C calculated expenditures according to conventional practices, 

assuming that the expenditure signals the amount of money that could have been 

employed in its second-best alternative use (approach 7). This amount is not indicative of 

monetary savings in case all norovirus cases were averted, but the amount that could have 

been used alternatively (cf. section 2.5.1). Looking at the variable cost proportion may 

give an idea of the actual cash savings (approach 8), which will mostly be saved on staff 

absences and cautionary measures given that no treatment for norovirus exists as of now 

(cf. section 1.3.2). 

Lastly, Methodology D is not sensible to be looked at in isolation as it intends to correct 

for having chosen the sub-optimal alternative in terms of net benefits (cf. section 2.5.1); 

for a complete overview of the results for the patient chosen and the highest valued 

alternative forgone see section 4.10.8. In situations where it proves impossible to 

determine the optimal alternative or disprove an alternative as not optimal, it may be 

preferable to consider only the net monetary benefit of the second best patients (approach 

New1) and qualitatively acknowledge the distortion in its value from market 

imperfections. 
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Table 32. Overview of approaches to value the opportunity costs of the bed-days used by the norovirus cases 

Approach Description Equation Results 

Methodology A: Units of the second-best alternative forgone 

1 Patient-equivalents forgone 
𝐿𝑂𝑆𝑖 ∗

1

𝐿𝑂𝑆𝑗
  (∗ 𝑂𝐶𝑅) 

57,800 

2 Treatment-equivalents forgone 
𝐶𝑖 ∗

1

𝐶𝑗
 

72,200 

Methodology B: Net benefit of the second-best alternative forgone 

 Valuation in terms of money   

3a Expenditure forgone on patient-equivalents 
𝐿𝑂𝑆𝑖 ∗

𝐶𝑗

𝐿𝑂𝑆𝑗
 

£86,100,000 

3b Revenue forgone from the patient-equivalents 
𝐿𝑂𝑆𝑖 ∗

𝑅𝑗

𝐿𝑂𝑆𝑗
  (∗ 𝑂𝐶𝑅) 

n/a 

3c Net revenue forgone from the patient-equivalents 
𝐿𝑂𝑆𝑖 ∗

(𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

n/a 

5 Gross monetary benefit forgone for the patient-

equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 ∗ λ)

𝐿𝑂𝑆𝑗
 

£276,200,000 

New1 Net monetary benefit forgone for the patient-

equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
 

£190,100,000 

New2 Net monetary benefit forgone for the treatment-

equivalents 𝐶𝑖 ∗
(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐶𝑗
 

£237,500,000 

 Valuation in terms of QALYs   

4 Gross health benefit forgone for patient-equivalents 
𝐿𝑂𝑆𝑖 ∗

𝐵𝑗

𝐿𝑂𝑆𝑗
 

13,800 

6 Health benefit forgone for expected second-best use 
𝐶𝑖 ∗

1

𝜆
 

5,400 

New3 Net health benefit forgone for the patient-

equivalents 𝐿𝑂𝑆𝑖 ∗
(𝐵𝑗 − (

𝐶𝑗

𝜆
))

𝐿𝑂𝑆𝑗
 

9,500 

New4 Net health benefit forgone for the treatment-

equivalents 𝐶𝑖 ∗
(𝐵𝑗 − (

𝐶𝑗

𝜆
))

𝐶𝑗
 

11,900 

Methodology C: Expenditure of the alternative chosen 

7 Expenditure for the resource consumption incurred 
𝐿𝑂𝑆𝑖 ∗

𝐶𝑖

𝐿𝑂𝑆𝑖
 

£107,600,000 

8 Separating variable expenditure and non-monetary 

resource consumption 
𝐿𝑂𝑆𝑖 ∗

𝑉𝐶𝑖

𝐿𝑂𝑆𝑖
 & 𝐿𝑂𝑆𝑖 

£16,100,000 

Methodology D: Expenditure of the alternative chosen + highest net benefit forgone 

9 Expenditure incurred + highest net revenue forgone 
𝐿𝑂𝑆𝑖 ∗ (

𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝑅𝑗 − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

n/a 

New5 Expenditure incurred + highest net monetary 

benefit forgone 
𝐿𝑂𝑆𝑖

∗ (
𝐶𝑖

𝐿𝑂𝑆𝑖
+

(𝐵𝑗 ∗ λ − 𝐶𝑗)

𝐿𝑂𝑆𝑗
) 

£297,700,000 

B: (health) benefit gained per patient, Ci: total expenditure incurred for i, Cj: expenditure incurred per patient, λ: 

monetary value assigned to QALYs in local cost-effectiveness thresholds, LOSi: total bed-day consumption of i, LOSj: 
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length of stay per patient, n/a: not available, OCR: occupancy rate, QALY: quality-adjusted life year, R: revenue per 

patient, VC: variable cost proportion of the expenditure. 
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5 NOROVIRUS OUTBREAKS IN HOSPITAL AND THE 

ADDITIONAL IMPACT ON BED PRESSURES 

 

Previously, chapter 3 looked at the hospital bed pressure in winter resulting from cases 

with acute gastroenteritis/norovirus-like symptoms, and chapter 4 illustrated for norovirus 

the impact of the different costing approaches on burden of disease estimations, as 

predicted in chapter 2. Up to three times higher opportunity cost values were obtained for 

norovirus nationally when considering the alternative patients forgone who were unable 

to be admitted due to beds being unavailable. 

Next, chapter 5 looks at the sustained transmission of norovirus during outbreaks in 

hospital when accounting for individuals being susceptible to illness and/or infection. It 

also estimates the daily risk of an inpatient becoming infected with norovirus per ward 

per year. Lastly, this chapter explores the additional impact of norovirus outbreaks on bed 

pressures from increased bed occupancy rates, which are already at high levels in many 

settings but especially in England. 

 

 

 

Title of paper, name of authors and affiliations: 

Norovirus outbreaks and hospital bed occupancy levels in England:  

A mathematical modelling study 

Sandmann F.G.1,2, Deeny S.R.3, Robotham J.V.2, Edmunds W.J.1, Jit M.1,2 

1 London School of Hygiene and Tropical Medicine, Department of Infectious Disease 

Epidemiology, London, United Kingdom 

2 Public Health England, Modelling and Economics Unit, London, United Kingdom 

3 The Health Foundation, London, United Kingdom 

 

Publication status: draft. Additional material that is not intended to be part of the 

journal submission is presented in section 5.8.1. 
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5.1 COVER SHEET OF RESEARCH PAPER 4 
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5.2 ABSTRACT 

Background: Hospital outbreaks of norovirus recurrently lead to bed shortages from 

sustained transmission among susceptible inpatients on the wards. With the National 

Institute for Health and Care Excellence (NICE) and National Health Service (NHS) 

England/Improvement having recently proposed hospital bed occupancy levels of below 

90% and 92%, respectively, we aimed to explore the impact of norovirus outbreaks on 

achieving these levels. 

Methods: We built a stochastic transmission-dynamic model of norovirus outbreaks in 

hospital wards that accounted for individuals being susceptible to illness and/or infection. 

In the baseline without norovirus, stochastic admissions and discharges were simulated 

for typical hospital wards of the NHS in England, with mean capacities of 19.8 beds 

(standard deviation 6.2 beds) and occupancy rates of 89.0%. 

Results: The model predicted a mean incidence of 1.46 (95%-CI: 1.38-1.54) norovirus 

outbreaks per ward annually, which lasted for 8.3 days and consumed 10.9 bed-days. In 

the majority of simulations (76.9%), the infection did not spread beyond the index case 

and cause outbreaks. In the baseline, the ward occupancy reached full capacity on 101 

days a year (27.8%; range 34-206 days). With norovirus, occupancy levels increased by 

a mean of 8.1% (i.e., 1.6 longer staying inpatients). Full capacity was exceeded in 46.7% 

of outbreaks, with a mean 1.5 (range 0―12) new admissions waiting for free beds. 

Conclusions: In England, norovirus outbreaks add to existing bed pressures and impact 

the admission of new patients. Recently proposed bed occupancy levels are regularly 

exceeded. Future research should consider the impact on health outcomes. 
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5.3 INTRODUCTION 

Norovirus outbreaks in hospital regularly lead to bed pressures from sustained 

transmission among susceptible inpatients on the wards, particularly in winter when the 

number of outbreaks peaks.[71,285] However, not all infections with norovirus in hospital 

will result in outbreaks, which are defined by more than one case connected in time and 

place.[40,50,280] Moreover, not all infections will be discovered owing to mild or sub-

clinical illness, which could result in asymptomatic transmission, as well as under-

reporting due to hospitals not confirming all norovirus-suspected inpatients in the 

laboratory, miscoding cases as non-infectious, or discharging patients before 

gastrointestinal symptoms have developed. 

Hospital outbreaks add to periodic bed crisis by increasing the occupancy levels 

temporarily when infected inpatients cannot be discharged, and other beds need to be kept 

empty for infection control. In general, while high occupancy of hospital beds can be an 

efficient use of health care resources, they may also be a major cause for concern.[286] 

Existing observational studies suggest that high occupancy levels increase the risk of in-

hospital mortality, hospital-acquired infections, excess length of stays, 30-day 

readmissions, and delays for other patients awaiting admission.[286,287] 

In England, the National Institute for Health and Care Excellence (NICE) and National 

Health Service (NHS) England/Improvement have recently proposed hospital bed 

occupancy levels of below 90%[287] and 92%[288], respectively, while the National Audit 

Office (NAO) has noted that mean occupancy levels above 85% may lead to “regular bed 

shortages, periodic bed crises and increased numbers of hospital‑acquired infections”.[286] 

In reality, the annual occupancy level of all general and acute hospital beds of the National 

Health Service (NHS) in England has increased from a mean 87.1% in 2010/11 to a mean 

90.3% in 2016/17.[289] The situation regularly worsens during winter, with occupancy 

levels above 91% in 2015/16 and 2016/17,[289] and even reaching a mean 93.9% in the 

winter of 2017/18 (as of 18 January 2018).[290] 

The aims of this study were threefold. First, we built a stochastic transmission-dynamic 

model to simulate norovirus outbreaks and investigate the sustained transmission of 

norovirus among susceptible inpatients. Second, the model was used to determine the 

daily risk for hospital wards of an inpatient becoming infected with norovirus, taking into 

account that not all infections will lead to outbreaks. Third, we investigated the impact of 
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norovirus outbreaks on hospital bed occupancy levels, both of which peak during winter, 

for which we nested the transmission-dynamic model within a simple stochastic model 

of admissions and discharges for typical hospital wards in England. 

5.4 METHODS 

5.4.1 Model structure 

5.4.1.1 Classification tree for the general community at risk of being admitted 

In the model, individuals were admitted to the hospital wards directly from the general 

community. The population was stratified into two age groups of <65 and ≥65 years, 

given the higher risk of hospitalisation for the elderly in England.[244] In addition, 

individuals were further stratified according to whether or not they have natural immunity 

against norovirus infection and/or illness (Figure 30). 

 

Figure 30. Classification tree of individuals in the community stratified by age and the 

natural immunity to norovirus infection or illness. 
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5.4.1.2 Hospital ward model: Baseline without norovirus 

For the baseline situation of hospital bed occupancy without norovirus outbreaks, a 

typical hospital ward was modelled with bed capacity drawn from a log-normally 

distributed random variable with mean 19.8 beds (standard deviation 6.2 beds) based on 

a sample of 171 inpatient wards in England (see Appendix in section 5.8).[41] In addition, 

we considered extra space for trolley beds (e.g. in hallways) of 10% of the bed capacity. 

The occupancy was simulated using the national mean bed-occupancy rate in 2015 of 

0.890.[291] Seasonal demand in bed-days was accounted for with a cosine function fitted 

to the national hospital bed occupancy data (see Appendix in section 5.8).[291] 

Individuals in the community were randomly admitted each day following a Poisson 

distribution. Based on the classification tree for the community (Figure 30), we 

distinguished three potential inpatient admission groups: 

i. Admissions not immune but susceptible to norovirus infection and illness 

(c1 + c2); 

ii. Admissions immune to illness but not norovirus infection (c3 + c4); 

iii. Admissions immune to illness and norovirus infection (c5 + c6). 

Each day, inpatients were discharged according to a Poisson distribution, conditional on 

the number of inpatients in each admission group on the previous day (t−1). 

The hospital ward occupancy was then simulated for 365 days in total (see Appendix in 

section 5.8 for details). Next to the proposed benchmark occupancy levels of 85%, 90%, 

and 92%, we considered the level of full capacity as well as the additional trolley bed 

capacity. 

5.4.1.3 Compartmental model of norovirus outbreaks 

We nested a transmission-dynamic compartmental model within the hospital model to 

simulate norovirus outbreaks. We implemented a stochastic model using the Gillespie 

algorithm,[292] which is based mathematically on Monte Carlo simulation of the time to 

the next event before determining which event occurs.[293] The transmission model 

simulated an extended susceptible-infectious-recovered (SIR) process (Figure 31),[293,294] 

with an additional exposed/latently infected compartment E, during which time patients 

incubate norovirus without symptoms but they are already 5% as infectious as a 

symptomatic case,[79] and an asymptomatic infection compartment A, in which patients 
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are again only 5% as infectious as a symptomatic case.[79] Inpatients immune to illness 

but not infection (admission group ii.) lacked the symptomatic compartment I, while 

inpatients immune to both illness and infections (admission group iii.) were captured in 

only a recovered/immune compartment, R3. 

 

Figure 31. Compartmental model of norovirus outbreaks on hospital wards.  

 

S1‒2: susceptible, E1‒2: infectious (latently/exposed), I1: infectious (symptomatic), A1‒2: infectious 

(asymptomatic), R1‒3: recovered/immune, a: admissions, d: discharges, λ(t): force of infection, g: proportion 

asymptomatically infected, ε: 1/incubation period, δ: 1/symptomatic period, γ: 1/asymptomatic period. c1‒

6 indicate the proportions of people in the community stratified by age and natural immunity to norovirus. 

 

The equations of the compartmental model are as follows: 

dS1/dt = a1 ∙ N − (dS1 + λ(t)) ∙ S1 

dE1/dt = λ(t) ∙ S1 − (dE1 + ε) ∙ E1 

dI1/dt = ε ∙ (1 − g) ∙ E1 − δ ∙ I1 

dA1/dt = ε ∙ g ∙ E1 + δ ∙ I1 + λ(t) ∙ R1 − (dA1 + γ) ∙ A1 

dR1/dt = γ ∙ A1 − (dR1 + λ(t)) ∙ R1 

   

dS2/dt = a2 ∙ N − (dS2 + λ(t)) ∙ S2 
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dE2/dt = λ(t) ∙ S2 − (dE2 + ε) ∙ E2 

dA2/dt = ε ∙ E2 + λ(t) ∙ R2 − (dA2 + γ) ∙ A2 

dR2/dt = γ ∙ A2 − (dR2 + λ(t)) ∙ R2 

   

dR3/dt = a3 ∙ N − dR3 ∙ R3 

 

where: 

S1‒2: susceptible inpatients 

E1‒2: exposed (latently infected, infectious) inpatients 

I1: symptomatic (infectious) inpatients 

A1‒2: asymptomatic (infectious) inpatients 

R1‒3: recovered (immune to illness) inpatients 

N: S1‒2 + E1‒2 + I1 + A1‒2 + R1‒3 , dependent on admission groups being occupied on 

day (t) 

a1‒3: admission rates 

d1‒3: discharge rates 

λ(t): force (rate) of infection 

g: proportion asymptomatically infected 

ε: rate of 1/incubation period 

δ: rate of 1/symptomatic period 

γ: rate of 1/asymptomatic period 

 

The probability that a susceptible inpatient becomes latently infected is determined by 

the force of infection, λ(t). Latently infected patients may not develop symptoms, and 

recovered patients in compartments R1-2 may become asymptomatically infected again 

while still in hospital at a rate identical to λ(t).[40,58,295] Inpatients in compartment R3 are 

naturally immune to infection, which is why they cannot become asymptomatically 

infected and do not contribute to sustained transmission. 
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We calculated λ(t) according to the Reed-Frost equation,[296] which accounts for the 

probability p of norovirus being transmitted when any given susceptible patient on the 

ward comes into contact with at least one infected patient on the ward,[293] and we 

assumed a reduced infectiousness for the A and E compartments with a proportion of 

0.05:[79] 

λ(t) = 1 − (1 − p)( 0.05 ∙ E1(t) + I(t) + 0.05 ∙ A1(t) + 0.05 ∙ E2(t) + 0.05 ∙ A2(t) ) , for I > 0 

 

Further, p was estimated based on the basic reproductive ratio, R0, the infectious period 

(i.e., incubation, symptomatic, and asymptomatic periods), and the proportion of 

susceptible patients on the ward (see Appendix in section 5.8):[83,293] 

 

p = R0 / ( infectious period ∙ susceptible ward population ) 

 

R0 is a metric indicating the number of secondary cases infected by an infectious 

individual in a completely susceptible population.[293] 

Inpatients were discharged at all stages during an outbreak at a defined rate, except for 

inpatients in the symptomatically infected compartment I, who were kept in the ward until 

they recovered. We counted infections as an outbreak when at least two inpatients became 

symptomatically infected,[184,224,225] and we assumed that wards were closed for new 

admissions.[87] 

Once the outbreak model had reached its end, the ward model continued randomly 

admitting and discharging patients for the rest of the 365 days (cf. section 5.4.1.2), starting 

on the first day after the symptoms resolved in the last symptomatic patient involved in 

the outbreak model. 

In order to explore the impact of norovirus outbreaks on hospital bed pressures, we 

investigated how often the simulated occupancy exceeded the occupancy level at the time 

of the outbreak (had there not been an outbreak); the full bed capacity of the ward; and 

the full capacity plus additional trolleys. For all three measures we assumed that the ward 

had been closed for new admissions after three days to reflect current practices.[107] 
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5.4.1.4 Risk of norovirus infection in hospital 

We used both models of the ward (section 5.4.1.2) and outbreaks (section 5.4.1.3) to 

determine the daily risk of an inpatient becoming infected with norovirus on a hospital 

ward: Within the ward model, there was the risk of one inpatient on the ward becoming 

infected with norovirus each day. This infection risk was evaluated each day with a 

uniform random draw that would set off the nested outbreak model if the number drawn 

was smaller than the value of the daily risk of infection. Not all infections, however, lead 

in reality to outbreaks (i.e., more than one case). Likewise, due to the stochasticity of the 

outbreak model (cf. section 5.4.1.3), it is possible for the infection to go extinct after 

infecting the index case, with no outbreak occurring even for values of the basic 

reproductive ratio, R0, greater than 1.0 (and, vice versa, outbreaks may occur by chance 

when R0 < 1.0).[293] 

The (unknown) value of the infection risk was determined by fitting the annual outbreak 

incidence per ward to the mean incidence of 1.33 (95%-confidence interval, CI: 

1.16-1.51) outbreaks per ward reported during an epidemiological surveillance study in 

England that observed 171 inpatient wards over one year.[41] We assumed the outbreak 

incidence to be normally distributed, and the model fit was confirmed by visual 

inspection. 

The infection risk was further modelled with a cosine function given that norovirus-

associated infections occur more often during winters (see Appendix in section 5.8).[285]  
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5.4.2 Model parameters 

For an overview of parameters, see Table 33. 

 

Table 33. Model input parameters, distributions and sources. 

Parameter Description Value Unit Distribution Sources 

tmax time horizon 365 days Fixed - 

rA immune to illness, not infection 0.292 proportion Beta(0.292; 0.5a) [102] 

rR immune to illness and infection 0.375 proportion Beta(0.375; 0.5a) [102] 

ce elderly people in the community 0.180 proportion Fixed [297] 

ae elderly inpatients in hospital 0.410 proportion Fixed [244] 

a, d admissions/discharges, based on 

the mean length of stay in 

England in 2015 

1/5 rate Poisson(0.2)  [244] 

w hospital ward bed capacity 19.75 per bed-

day 

Lognormal(19.75, 6.17) [41] 

wT additional trolley beds (rounded) 0.1 ∙ w per bed-

day 

Dependent on w c 

o bed-day occupancy 0.890 rate cosine; see text [291] 

BDU beds kept empty for infection 

control, based on all beds 

occupied (BDO) 

0.2 number Poisson(BDO/(1-0.2)-

BDO) 

[268] 

ε incubation period in days 1.0 rate (1/ε) Gamma(μ=1.0, σ=1.0) [58,75,295] 

δ symptomatic period in days 3.0 rate (1/δ) Gamma(μ=3.0, σ=3.0) [40,58,295] 

γ asymptomatic period in days 2.0 rate (1/γ) Gamma(μ=2.0, σ=2.0) [58] 

g people infected 

asymptomatically 

0.292 proportion Beta(0.292; 0.5b) [102]  

a: 97.5th percentile; assumption 

b: 99.999th percentile; assumption 

c: assumption 

 

5.4.2.1 Classification tree for the general community at risk of being admitted 

Parameters for the natural immunity to norovirus were derived from the placebo group 

of the phase II randomised controlled trial (RCT) of a norovirus vaccine-candidate 

challenge study.[102] We calculated the number of people not norovirus infected (n=18; 

37.5%) to inform the proportion of immunity to infection (i.e., C5 + C6 in Figure 35), and 

the number of people that were norovirus infected but not ill (n=14; 29.2%) informed the 

proportion of immunity to illness (i.e., C3 + C4). 
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5.4.2.2 Hospital ward model 

While individuals aged ≥65 years make up 18.0% of the population in England,[297] they 

make up 41.0% of all hospital stays (see Appendix in section 5.8 for technical details).[244] 

The random admission and discharge rates into the wards were informed by the mean 

national length of hospital stay of 5 days.[244] 

5.4.2.3 Compartmental model of norovirus outbreaks 

Clinical and epidemiological input parameters describing norovirus outbreaks (cf. 

Figure 31) were obtained from peer-reviewed publications (see Table 33).[40,58,75,102,295] 

Values of R0 for norovirus outbreaks in hospitals range between 1.6 and 4.3.[83,279,298] 

Following the incubation period of 0.5-2 days,[58,75,295] inpatients are symptomatic for 2-

5 days,[40,58,295] with a median 3 days reported for England.[40] Afterwards, patients remain 

asymptomatically infectious for at least 2 days after symptom resolution following the 

conventional contact precaution advice.[58] 

The number of patients in compartment I over time was used to calculate the bed-days 

occupied by norovirus patients. Bed-days lost unoccupied were approximated using their 

estimated proportion of 20% on all bed-days lost (occupied and unoccupied) due to 

norovirus in hospitals during winter in England (cf. Chapter 3).[268] 

We ran 1,000 simulations of the model. In order to account for parameter uncertainty, 

we ran the model probabilistically using Monte Carlo sampling from the input parameters 

from their prior distributions listed in Table 33. 

All analyses were performed with R version 3.4.3 in RStudio,[299] using the R-package 

GillespieSSA for the outbreak model.[292] 
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5.5 RESULTS 

5.5.1 Hospital ward model: Baseline without norovirus 

In the baseline, the occupancy varied in the 1000 simulated typical hospital wards 

between a mean of 88.6% in the summer (April to September) and a mean of 91.5% in 

the winter (October to March; see Figure 32 for one example run of the simulation 

illustrating different levels of bed occupancy). The model indicates that the wards had 

bed occupancies above a level of 85% on 207 days a year (Table 34), while the full 

capacity was reached on 27.8% of the days (mean 101.4 days, range 34-206). The 

additional trolley bed capacity was exceeded on 13.5% of the days (mean 49.1 days, range 

5-121). 

 

Figure 32. Illustration of one simulation run of the ward model for a full capacity of 20 

beds plus an additional 2 trolley beds in the hallway. 
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Table 34. Model results for different levels of bed occupancy. 

Description Nr. of days 

occupancy 

reached 

specified level 

(%) 

% of outbreaks 

where new 

admissions reached 

specified level (95%-

CI) 

Nr. of new 

admissions 

reaching specified 

level during 

outbreaks (range) 

occupancy level at the start of 

the outbreak 

n/a 83.0% (80.8‒85.1%) 6.81 (0‒44) 

occupancy level: 85% 207.2 (56.8%) 72.9% (70.3‒75.5%) 3.10 (0‒17) 

occupancy level: 90% 174.8 (47.9%) 67.6% (64.9‒70.4%) 2.61 (0‒16) 

occupancy level: 92% 164.2 (45.0%) 65.3% (62.5‒68.0%) 2.42 (0‒14) 

occupancy level: 100% (full 

capacity) 

101.4 (27.8%) 46.7% (43.8‒49.7%) 1.47 (0‒12) 

occupancy level: 110% (trolley 

beds) 

  49.1 (13.5%) 28.1% (25.4‒30.8%) 0.72 (0‒10) 

CI: confidence interval 

 

5.5.2 Norovirus outbreaks model 

The daily risk of an inpatient becoming infected matched the annual incidence of 1.33 

outbreaks per ward at a value for the infection risk of 0.02 (Figure 33). Using this value, 

the model predicted a mean incidence of 1.46 (95%-CI: 1.38-1.54) outbreaks on the 

hospital wards annually, resulting from an average of 6.24 (95%-CI: 6.09-6.40) infections 

per ward per year. There was a 76.9% chance of stochastic extinction after infection of 

an index case, i.e. without an outbreak occurring. 
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Figure 33. Different values for the daily risk of an inpatient becoming infected fitted to 

the annual outbreak incidence per ward. 

 

 

The simulated outbreaks lasted for a mean of 8.33 days, with a mean of 2.60 

symptomatic patients occupying 10.89 bed-days. Additionally, 2.67 bed-days were kept 

unoccupied for infection control. In total, a mean 13.56 bed-days were used for norovirus 

per outbreak, and occupancy levels increased by a mean of 8.1% (i.e., 1.6 longer staying 

inpatients). 

When looking at the impact of outbreaks for alternative patients who wait for free beds 

to be admitted, the wards were closed to new admissions for a mean of 5.48 days during 

outbreaks. New admissions waiting for free beds occurred in 83.0% of outbreaks 

(Table 34), with a mean number of 6.8 new admissions (range 0―44) that waited for free 
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beds when closing the ward at the occupancy level of the start of the outbreak and 

assuming that new patients cannot be accommodated in the ward. This number of new 

admissions is equivalent to an additional demand of hospital beds of a mean 31.2%. 

When assuming that new patients can be accommodated up to the full capacity of the 

ward, the full capacity was exceeded in 46.7% of outbreaks by a mean of 1.5 (range 

0―12) new admissions waiting for free beds. This number of new admissions is 

equivalent to an additional demand of beds of 6.9%. 

5.6 DISCUSSION 

This study examined the dynamics of norovirus outbreaks in a typical English ward by 

fitting a dynamic transmission model to data on outbreak size, and accounting for the 

different immunity status in the population at risk of admission. Best fitting parameters 

were then used to simulate outbreaks in order to determine the impact of norovirus 

outbreaks on bed pressures. 

5.6.1 Summary of key findings 

We found that the daily risk of infection per ward and per year was approximately 2%. 

In the majority of simulations (76.9%), the model predicted that the infection would not 

spread beyond the index case and cause outbreaks. 

In the baseline, the bed occupancy of the wards reached their full capacity on more than 

one-fourth of the days annually (27.8%). With norovirus, the situation worsens as it adds 

to the bed pressure in most outbreaks (83.0%). During outbreaks, occupancy levels were 

expected to increase by a mean of 8.1% from longer staying inpatients. 

Even when assuming that wards can accommodate new admissions up to their full 

capacity and an additional 10% trolley bed capacity, new admissions will be forgone 28% 

of the time when outbreaks occur, with a mean number of 0.72 new admissions (which 

add to the bed pressures by an additional 3.3%, i.e., 0.72/(19.8 +2)). 
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5.6.2 Implications for policy and practice 

This study showed the impact of norovirus outbreaks in hospital on bed occupancies, 

which rose to critically high levels that exceeded the full capacity in 46.7% of outbreaks, 

with a mean 1.5 (range 0―12) new admissions waiting for free beds.  

Also, this study supports the findings of increased bed occupancies leading to bed 

shortages and periodic crisis. Hospital bed occupancy levels in England are high already 

without outbreaks, and it is uncertain that the recently proposed benchmark levels of bed 

occupancy between 90% and 92% by various public bodies in England are feasible in 

practice at current levels of bed capacity and demand for hospital care in England. 

 Considering the recurring bed pressures faced by NHS hospitals in England, which are 

in part due to norovirus,[268] reducing illness and outbreaks will increase capacity that can 

be used for other patients. In England, these outbreaks involve more than 11,000 infected 

patients and almost 3,000 infected staff annually,[71,285] while the total number of all 

norovirus-infected inpatients may be above 100,000 and incur financial expenditures to 

the NHS in England of £108 million annually.[285] The opportunity costs of the bed-days 

used for norovirus have been estimated with between £190 million and £298 million 

annually – roughly 2-3 times higher than the financial expenditures.[285] This does not 

include any opportunity costs for bed-days blocked for other reasons than norovirus, 

which may also arise as our study suggests but did not quantify. 

5.6.3 Strengths and limitations 

The stochastic model presented here followed hospital wards in England over one year, 

and simulated norovirus outbreaks using a nested transmission-dynamic model. The 

model carefully considered the characteristics of sustained transmission of norovirus 

during outbreaks and the different levels of natural immunity in the population, as well 

as the features of typical hospital wards in England. 

Previous studies modelling norovirus in hospital mainly looked at the impact of ward 

closure for a single hospital or within a region,[83,108,298] as well as other infection control 

and contact precaution measures.[279,300] Similar to these studies, we assumed 

homogeneous mixing of patients on the ward. During outbreaks, we assumed that the 

ward was always closed for all but the first 3 days of the entire outbreak duration. This is 

consistent with a recent estimation as well as the fact that over 95% of outbreaks lead to 
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ward or bay closures.[71,107] However, we did not consider overspill into other wards, and 

in reality cases may be transferred into another ward or hospital, which may impact 

extended transmission and could make a series of connected cases look like separate 

outbreaks. Moreover, the simple stochastic model of admissions and discharges is not 

realistically capturing all the drivers of hospital bed use throughout the year, which are 

driven by a multitude of factors (e.g. dynamic changes to capacity, other seasonal 

infections, bad weather, or staffing levels). 

We informed the proportion of immunity to infection from the number of people not 

norovirus infected in the RCT challenge study,[102] assuming that anyone not infected 

after norovirus challenge must be immune. The derived value of 37.5%, however, is 

consistent with previously published estimates of one-third and up to 50% of a 

population.[79] 

In this study we considered the full capacity level at 100% and an additional 10% trolley 

bed capacity, which results in a capacity above 100%. Obviously, very high levels of 

occupancy cannot be maintained for longer than a few days; trolley beds in the hallway 

can only be temporary when trying to accommodate peaks in the demand for hospital 

beds. Moreover, occupancy levels vary per specialty and ward, which we did not capture 

here by using the national average of all acute care hospitals. Lastly, our study did not 

look at adverse effects for patients and the care that they receive when admitted, or 

intangible effects like the stress and anxiety level for both patients and staff. Both are 

likely to rise with higher occupancy levels. 

The period of one year was chosen to reflect the short duration of infection in most 

cases.[58,295] Although it was previously thought that immunity may only last for 0.5-2 

years, recent modelling work has shown that immunity may wane only after 5-8 years.[79] 

However, recovered patients becoming fully susceptible again were not explicitly 

considered in this study, only implicitly by keeping proportions constant. Likewise, 

infections among healthcare staff were not modelled in the compartmental model due to 

the lack of suitable data. A modelling study for Dutch hospitals showed that symptomatic 

patients instead of asymptomatic healthcare workers are the drivers of NoV 

transmission.[58,301] 

Lastly, with the phase III RCT of the norovirus vaccine-candidate expected to be 

published soon, robust data will become available to model a vaccination uptake 
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programme.[56] The model used for the study here could then be extended to evaluate the 

impact of vaccination (i.e., vaccine-induced immunity), which may not be conferred to 

all subjects receiving the vaccine as indicated by early results of the phase II challenge 

study.[102] 

5.7 CONCLUSIONS 

This study found that norovirus outbreaks add to existing bed pressures and impact new 

admissions of patients waiting for a free bed. In addition, recently proposed bed 

occupancy levels between 90% and 92% may not be feasible in practice at current levels 

of capacity and demand for hospital care. Current hospital financing and planning may 

need to be revised. 

Future research needs to consider the direct implications on health outcomes (e.g. the 

increased risks of in-hospital mortality and hospital-acquired infections). In order to 

reduce the hospital burden of norovirus, it will be important to evaluate the cost-

effectiveness of norovirus vaccination once robust data have become available. 

5.8 SUPPLEMENTARY MATERIAL 

We used the following set of equations to separate people in the community according 

to the natural or vaccine-induced immunity against norovirus infection and/or illness, and 

by age (cf. Figure 30). 

 

c1 = (1 − rA − rR) ∙ (1 − ce) 

c2 = (1 − rA − rR) ∙ ce 

c3 = rA ∙ (1 − ce) 

c4 = rA ∙ ce 

c5 = rR ∙ (1 − ce) 

c6 = rR ∙ ce 

 

where: 

ce: proportion of elderly people aged ≥65 years in the community 
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rA: proportion recovered/immune to illness but not infection (asymptomatic) 

rR: proportion recovered/immune to illness and infection 

 

 

For typical hospital wards in England, we modelled the bed capacity drawn from a 

normal random variable based on a sample of 171 inpatient wards in England with a 

median capacity of 20 beds (range 1-38).[41] Given the large number of 171 wards, we 

estimated the mean and standard deviation from the median and range following a 

previously published approach:[302] 

mu = (1 + 2 ∙ 20 + 38) / 4 

sd = (38 − 1) / 6 

 

 

The inpatient population occupying beds in the hospital ward was initialised accordingly 

for t = 0, ensuring a higher proportion of the elderly for the hospital occupancy, h, to 

reflect national hospital statistics[244] based on the proportions c as follows: 

ℎ𝑘 = {

𝑤 ∙  𝑜(𝑡)  ∙  𝑎 ∙ (1 − 𝑎𝑒) ∙  
𝑐𝑘

(1 − 𝑐𝑒)
, 𝑘 ∈ {1,3,5}

𝑤 ∙  𝑜(𝑡)  ∙  𝑎 ∙ 𝑎𝑒 ∙  
𝑐𝑘

𝑐𝑒
, 𝑘 ∈ {2,4,6}

 

where: 

w: bed-day capacity of the hospital ward 

o(t): daily hospital bed occupancy rate 

a: mean hospital admission rate 

ae: proportion of inpatients aged ≥65 years 

ck: proportion k of people in the community 

ce: proportion of people aged ≥65 years in the community 
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When initialising the occupancy on day t = 0, o(t) is set equal to the annual mean bed 

occupancy rate in hospital, and a is set to 1. For each day afterwards, people in need of 

hospitalisation were randomly admitted from the community into the admission groups 

using a Poisson distribution to allow for variability in patient arrival. The admission rate 

a was set equal to 1/LOS, where LOS is the mean length of stay in hospital.[244] The mean 

occupancy rate o was adjusted for seasonality with a cosine function fitted to the quarterly 

occupancy data of all hospital bed-days in England in 2015.[291] 

o(t) = o + o ∙ 0.023 ∙ cos(2 ∙ π ∙ t / tmax)
 

 

Each day, inpatients may leave the ward according to a Poisson distribution, too, 

conditional on the number of patients in each of the three groups on the previous day 

(t−1). The daily sum of discharged patients is then equal to: 

∑ {
𝑎𝑘(𝑡 − 1) ∙ 𝑑            𝑖𝑓 1 ≤ 𝑡 < 366

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3

𝑘=1

 

where: 

d: mean discharge rate 

t: daily steps of the hospital model 

 

 

The daily risk of an infection event was modelled with a cosine function, too, which was 

fitted to the expected norovirus-associated infection events in hospital in England in 2015 

[285]:  

y(t) = y + y ∙ 0.7 ∙ cos(1.6 ∙ π ∙ t / tmax)
 

 

where: 

y(t): daily risk of an infection event in hospital 
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For the Reed-Frost equation, we calculated p (which is equivalent here to the rate of 

transmission, β)[293] as follows: 

p = R0 / ( (ε + δ + γ) ∙ (w ∙ (1 − rR) ∙ o) ) 

 

where: 

R0: basic reproductive ratio 

ε: incubation period 

δ: symptomatic period 

γ: asymptomatic period 

w: bed-day capacity of the hospital ward 

rR: proportion recovered/immune to illness and infection 

o: mean hospital bed occupancy rate 
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5.8.1 Other mathematical modelling studies for norovirus 

At least fourteen modelling studies of norovirus have been published as of November 

2017,[303] which have considered a range of different methods, populations, interventions, 

settings and outcomes. The most relevant studies for this thesis are those that looked at 

norovirus outbreaks in healthcare settings, specifically hospitals: 

1. Vanderpas and colleagues (2009) used a deterministic transmission dynamic 

susceptible-exposed-infectious-recovered (SEIR) compartmental model to 

investigate a norovirus outbreak on four wards in a long-term care facility adjacent 

to a hospital in Belgium in December 2007, and the impact of ward closure to new 

admissions.[298] The model assumed homogeneous mixing of all patients. It did not 

consider natural immunity, loss of immunity (i.e., movement from the recovered to 

the susceptible compartment), mortality, or asymptomatic infection. Patients were 

admitted into the susceptible compartment at a rate inverse to the mean length of 

stay, and were discharged from each other compartment at a rate equal to the 

admission rate. Results indicated that high turn-over rates (i.e., short lengths of stay 

of ≤ 2 days) produced the highest number of cases, which declined exponentially as 

turn-over rates decreased. The authors therefore concluded that closing wards to new 

admissions may be beneficial to reduce the number of cases by decreasing the turn-

over rate and prolonging the length of stays.[298] 

2. Lee and colleagues (2011a) compared an unmitigated norovirus outbreak in a 

hospital ward with the separate implementation of various infection prevention and 

control strategies, including increased hand hygiene, enhanced use of contact 

precautions, increased disinfection of the ward, staff exclusion policies, patient 

isolation (with up to four empty beds), or ward closure (with up to five empty 

beds).[202] For each intervention, the authors used a stochastic decision-tree model of 

1 million runs and one primary case infecting one generation of secondary cases 

based on a low R0 of 3.74 (95%-CI: 3.179−4.301) or a high R0 of 7.26 (95%-CI: 

5.26−9.25), which they obtained from the outbreaks reported by Vanderpas et al.[298] 

and Heijne et al.[304], respectively. The intervention efficacy reduced R0 

correspondingly, i.e. R0*(1-efficacy). In sensitivity analyses, the number of initial 

cases and R0 were varied, as well as the intervention efficacy and the room size, ward 

size, and occupancy of the ward. The perspective was that of the hospital and the 

outcome the cost savings achieved with the different interventions. Infectious 

patients had a probability of becoming symptomatic of 66.3%, leading to an excess 

length of stay equivalent to a mean 2 days (95%-CI: 0.96−13.05 days) based on other 

publications. The model assumed no natural or acquired immunity, and 

homogeneous mixing of patients within the ward. Results indicated that most 

measures were cost-saving at all levels of effectiveness except for the patient 

isolation and ward closure, which were only cost-saving at an efficacy of at least 50% 

and when a maximum of only one bed became unavailable for infection control.[202] 
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3. Lee and colleagues (2011b) used a stochastic transmission dynamic susceptible-

exposed-infectious-recovered (SEIR) compartmental model to evaluate the 

economic impact of norovirus outbreaks for different ward sizes and outbreak 

durations.[279] The perspective was that of the hospital and the outcome the revenue 

losses associated with bed-days lost as they were occupied by symptomatic patients. 

Patients in the infectious compartment could become symptomatic at a probability of 

66.3%, leading to an excess length of stay equivalent to the symptom duration. 

Patients also stayed protected for the remainder of the duration of the study due to 

the relatively short durations of outbreaks of about 20 days. The model assumed no 

pre-existing natural immunity of patients on the ward and homogeneous mixing of 

patients within the ward. Results indicated that the ward size and the number of cases 

were the most influential cost drivers of the study.[279] 

4. Bartsch and colleagues (2014) investigated the spread of norovirus outbreaks due to 

patient transfers among different healthcare facilities in one region of the USA, and 

the impact of contact precautions.[83] They modelled transmission within each 

general ward and intensive care unit of the 29 acute care hospitals in Orange County, 

California, in 2008. The authors used an agent-based simulation model with the four 

states “susceptible”, “exposed”, “infectious”, and “recovered”. They ran the model 

100,000 times for 5 years and with daily transition probabilities. The model assumed 

homogeneous mixing of patients within the two types of wards, and allowed for 

transfers from intensive care wards to general wards. The individual infection risk 

(λ) was modelled with the Reed-Frost formula, which takes into account the 

probability (p) of coming into contact with at least one of the infected individuals (I) 

at time t: λ𝑡 = 1 − (1 − 𝑝)𝐼𝑡.7 Infectious patients experienced symptoms with a 

probability of 66.3% and could not be discharged. Only asymptomatically infected 

patient could spread the virus, for whom infectiousness was assumed to be reduced 

by 50%. Moreover, the recovered state was assumed to confer protection against 

symptoms but not infection; these patients could thus become asymptomatically 

infected again. They also investigated in the impact of using contact precautions (i.e., 

gloves and gowns) with an assumed effectiveness of 50−60%. In the base case the 

authors assumed no pre-existing natural immunity of patients, while in a scenario 

analysis they explored 27% of patients being protected by natural immunity and thus 

starting in the recovered state. However, the model did not include the impact of ward 

closures to new admissions and restrictions on patient transfers, or any mortality. 

Overall, the ongoing sequential outbreak among the hospitals never exceeded 5.5 

months, with most transmission occurring within 2−4 weeks after the initial outbreak. 

Contact precautions reduced the number of norovirus cases and the probability of 

                                                 

 

7 The formula is used so that the infection risk is not overestimated as it would be using the 

conventional calculation of λt = βIt, where β is the effective contact rate.[293] 
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outbreaks spreading to other hospitals, but not the number of hospitals with norovirus 

cases.[83] 

5. Sadique and colleagues (2016) evaluated the cost-effectiveness of hospital ward 

closures during norovirus outbreaks. They modelled outbreaks in admission, general 

medical, and long-stay wards for 14 hospitals in England.[108] They ran 100,000 

stochastic simulations of a decision-tree-like transmission model for 1 year each to 

compare different timings of closure (none, day 1, 3 or 5 after initial infection) and 

effectiveness of reduced between-ward infectiousness (by 0%, 25%, or 50%). Daily 

time steps were used and the number of newly infected wards determined from a 

negative binomial distribution. The end of an outbreak was determined by daily 

probabilities from a previous epidemiological study[41] but not exceeding three 

weeks. Outcomes included the incremental cost per case and per outbreak avoided. 

The perspective was that of the hospital, and they calculated unoccupied bed-days 

lost by multiplying the duration of closure with a mean 3.6 bed-days lost for each 

day based on a previous epidemiological study.[41] Similarly, staff absence costs were 

calculated by multiplying the mean length of staff absence with the unit cost of a 

nurse. Results indicated that ward closures were costly but able to reduce the number 

of outbreaks and cases by up to 55%, with incremental costs ranging from 

£10,000−£306,000 per outbreak averted and £500−£61,000 per case averted.[108] 

 

The study presented in this chapter adds to the literature by focussing on hospital 

outbreaks of norovirus and the additional bed pressure arising from these outbreaks when 

occupancy levels are already high at baseline (without norovirus). Insights into bed 

occupancy are specific to the periodic bed pressure situation of the NHS in England. 
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6 DISCUSSION AND CONCLUSIONS 

“If among a nation of hunters, for example, it usually costs twice the labour to kill 

a beaver which it does to kill a deer, one beaver should naturally exchange for or be 

worth two deer. It is natural that what is usually the produce of two days’ or two 

hours’ labour, should be worth double of what is usually the produce of one day’s or 

one hour’s labour.” 

Adam Smith, The Wealth of Nations, 1776.[17] 

 

 

This final chapter 6 discusses the main aims and ideas of the thesis, and places its content 

into a broader context. I reflect on the strengths and limitations of the novel approach, 

and its practical application to norovirus, and I provide recommendations for future policy 

making. The thesis is concluded by highlighting implications for research and practice. 

 

 

The current costing convention in (health) economics uses market prices and financial 

expenditures as proxies for the value of the opportunity costs of resources. The main 

assumption behind this conventional approach is that “[…] costs of production are 

measured in money, and these reflect the value of output that might have been produced 

if the same resource inputs had been rationally applied in alternative employments.”.[5: 

p.11] This assumption hence only holds when the value of the inputs equals the value of 

the outputs, i.e. in perfectly competitive markets. 

Owing to market imperfections in healthcare, resources like bed-days are unlikely to 

reach the equilibrium price, and thus their actual price or expenditure will most likely not 

converge to opportunity costs. Consequently, the need arises for considering the net 

benefit, and finding the optimal option and its second-best alternative. 

For situations not requiring a monetary value, the displaced alternative could simply be 

determined as in the historic example of Adam Smith for the nation of hunters (see quote 

above).[17] Looking at healthcare, one may be tempted to replace the animals with 

patients: “If in the healthcare sector it usually costs twice the labour to treat a patient of 
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type A which it costs to treat a patient of type B, one patient of type A should naturally 

exchange for or be worth two patients of type B.”. The assumptions are still the same: 

Patients of type B are the second-best alternative forgone to patients of type A as 

determined by an agent’s objective of e.g. health maximisation, and the highest valued 

option does not lie outside the healthcare sector. 

Nonetheless, most situations are beyond natural units of resources (like bed-days) and 

require a monetary exchange value. This complicates matters, especially in healthcare. 

For practical reasons, considering market prices and financial expenditures has become a 

widespread standard of costing despite its shortcomings, which is why it was already 

noted before that “[…] it has often been remarked that health economists recognize that 

market imperfections exist in health care, unless they are undertaking an economic 

evaluation”.[4: p.58] It is against this background that this thesis needs to be read, which has 

aimed to propose an approach for addressing the existing shortcomings. 

6.1 SUMMARY OF THE KEY FINDINGS 

6.1.1 How to estimate the value of bed-days 

In order to find out how to estimate the value of bed-days during epidemic and disease 

outbreaks in hospital (cf. research question 1 in section 1.4), chapter 2 started by tracing 

the existing methodologies of estimating the opportunity costs of resources that were 

developed over the last three centuries. In total, four different methodologies were 

identified, which showed that broad consensus exists in theory that opportunity costs 

represent the value of a resource in terms of its most valuable8 alternative use forgone 

(section 2.5.1). 

The resulting taxonomic framework was then used to categorise nine approaches for 

bed-days that were found in a scoping literature review of the (health) economic and 

medical fields (section 2.5.2). For pragmatic reasons, the conventional approach of taking 

                                                 

 

8 The “most valuable forgone alternative” corresponds ideally to the second-best option, assuming 

that the optimal option is chosen. Otherwise when choosing a sub-optimal alternative, the net 

value of the optimal option needs to be added to the value of the chosen option to account for 

the forgone benefits.[5] 
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market prices and accounting expenditures and assuming that they approximate to 

opportunity costs has been widely followed for bed-days. However, this assumption is 

only valid for the perfectly competitive market model, with waiting lists and other market 

imperfections disproving this model for the healthcare market. Therefore, the true value 

for the second-best use of bed-days likely differs from the value calculated using 

conventions, and very noticeably so during nosocomial outbreaks of infectious diseases 

due to the impact on supply and demand of hospital beds. 

Nonetheless, some studies used the adequate approach of estimating net benefits for the 

perspective of providers aiming to maximise net revenues (sections 2.5.2.2 and 2.5.4). 

For decision makers aiming to maximise population health, no adequate approach was 

found that captures the (health) opportunity costs of hospital beds for displaced 

admissions (section 2.5.4). 

Therefore, I have developed a novel approach in this thesis that builds on the idea of the 

net monetary benefit[139,140] of the second-best patients forgone (section 2.5.5), which 

aims to overcome the previously identified issues of conventional approaches not 

capturing the health impact for displaced patients. 

6.1.2 Costing the winter bed pressure due to acute gastroenteritis 

Chapter 3 (and chapter 4) were used to estimate the hospital burden of norovirus in 

England, based on the most prominent costing approaches identified previously in chapter 

2 (cf. research question 2 in section 1.4). In chapter 3, I turned to illustrating the 

conventional method of estimating costs for hospital bed-days using norovirus-associated 

gastroenteritis as case study. The dataset used operational data of hospital beds kept 

unoccupied for infection control during six winters across seven years, which is the time 

of increased demand for acute hospital care in England that results in periodic bed 

pressures. One of the main advantages of this dataset is that the number of bed-days are 

reported compulsorily by each acute care hospital, which is why only a small fraction of 

the data (0.34%) was miscoded or suspected to contain errors (see sections 3.4.1 and 

3.6.2). Thus, the compulsory nature of the reports allows for a comprehensive overview 

of the impact of acute gastroenteritis on bed-days lost nationwide in winter. 

Furthermore, this study is the first time that the issue of the missing values in the dataset 

has been addressed by imputing non-randomly missing values at provider-level, and 
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taking the lowest and highest value imputed as best and worst case estimates 

(section 3.4.2). Moreover, observations were filtered to a common range of dates 

recorded in all six winters to enable a fair comparison. An additional analysis was carried 

out for winter 2016/2017 as it tracked information for each day (i.e., the data collection 

did no longer contain missing values for weekends or public/bank holidays), which 

pointed to the actual value being between the best-to-worse case estimates (section 3.9.6). 

This study is also the first attempt to identify outbreaks in the data. Whether the 

infectious gastroenteritis outbreak duration could be traced by following conventional 

definitions for outbreaks of norovirus was explored (i.e., more than one symptomatic case 

for more than one day, with symptom onset of cases within ±48 hours; see section 

3.4.3).[184,224,225] The estimated duration of infectious gastroenteritis outbreaks was within 

the range of previously published studies.[174,175,204] 

Results indicated that bed closures due to diarrhoea and vomiting are a widespread issue 

among acute care hospitals in England, with a mean of 80% of hospitals being impacted 

each winter (section 3.5.1). Although only about 1.1−1.3% of the general and acute care 

beds available in England each day were closed due to diarrhoea and vomiting each 

winter, the median number of beds closed for each entire winter is equivalent to the entire 

median total bed capacity in England per day (section 3.5.1). 

In addition, 20% of bed-days are lost unoccupied, which indicate opportunity costs for 

both the hospital (in terms of revenue losses) as well as society (in terms of potential 

health losses as no additional patients can be treated in the unused beds). The financial 

burden amounted to £6−£8 million per winter for the unoccupied bed-days only (section 

3.5.3), which increased to £29−£37 million when considering all occupied and 

unoccupied beds (section 3.6). Arguably, the occupied beds do not represent a financial 

revenue loss for hospitals, but these beds are blocked for alternative patients and 

opportunity costs may arise from the lost opportunity to treat the patient who would have 

been admitted if the bed was available. The dataset did not allow determining how many 

beds were actually lost due to norovirus (cf. time-dependent bias), which has therefore 

been estimated in chapter 4. Once the number of bed-days is known, it is possible to use 

the new approach for quantifying the opportunity costs of bed-days (cf. chapter 2). 
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6.1.3 Financial expenditures vs. opportunity costs: hospital burden of norovirus 

Chapter 4 provided a more comprehensive overview of the annual hospital burden of 

norovirus in England in order to demonstrate the difference between costing approaches. 

This study is first to combine individual-level norovirus outbreak data with national 

hospital surveillance and statistics to apply the novel approach for estimating the 

opportunity costs of bed-days from patients who cannot be admitted due to beds being 

unavailable. To this end, the study accounted for time-dependent biases, under-recording 

of norovirus in national databases of infection surveillance and hospital statistics as well 

as the potential impact of the vaccine introduced against rotavirus-associated 

gastroenteritis in July 2013. 

Much of the complexity of this study arose due to the features of norovirus and the 

diverse surveillance systems and data sources in England (cf. section 4.4.1), with each of 

them having different objectives, which needed full interrogation to ensure they were 

used robustly (section 4.10). In particular, the study used the best available data sources 

for norovirus. Multivariate linear regression analysis was used to attribute the number of 

inpatient cases with gastrointestinal symptoms (and the bed-days occupied by them) to 

norovirus using the national hospital episode statistics database and laboratory 

surveillance count data at Public Health England (section 4.4.2.1). Given the large sizes 

of the data used for the regression analysis a linear model was chosen, but results were 

robust to a negative binomial model (section 4.10.2). The bed-days used by cases with a 

secondary diagnosis of norovirus-associated gastroenteritis were estimated more 

accuratey than when using matched-cohort studies, which have shown to lead to 

overestimations. Instead, the excess length of hospital stays due to norovirus was 

estimated using a multi-state model and individual-patient data from a local hospital 

outbreak of norovirus (section 4.4.2.2). For the number of members of staff absent due to 

illness, as well as the number of bed-days lost unoccupied for infection control, the 

national surveillance data were not used directly but adjusted due to the known issue of 

under-reporting of outbreaks, cases and bed-days (section 4.4.2.3).  

The results showed that norovirus is now the second-largest contributor of the 

gastrointestinal hospital burden (section 4.5.2.1). Also, the estimated median number of 

occupied and unoccupied bed-days that are used for norovirus per year is equivalent to 
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the entire daily NHS hospital bed capacity in England being unavailable for more than 

two days annually (section 4.6.1).  

Chapter 4 also confirmed that the number of bed-days lost due to diarrhoea and vomiting 

(D&V) in winter (cf. chapter 3), which NHS England calls “number of beds unavailable 

due to D&V/norovirus like symptoms”, are indeed closely associated with norovirus as 

indicated by the linear regression analysis (section 4.10.4). The adjusted R2 is suggestive 

of norovirus explaining more than 93% of the variation observed. Similarly, the same 

regression methodology was used to explore whether the bed-days recorded in HNORS 

were associated with norovirus due to the fact that the source of outbreaks may be of 

suspected or confirmed norovirus, with only between 60−70% being laboratory 

confirmed.[71] The adjusted R2 is suggestive of norovirus being able to explain more than 

80% of the bed-days lost (cf. section 4.10.4). 

Thus, although keeping bed-days unoccupied for infection control is an important 

contact precaution measure in clinical practice, this analysis showed that empty beds 

make a small contribution to the total economic burden of norovirus. The unoccupied 

beds make up only 10% of the total bed-days lost to norovirus (sections 4.5.2.4 and 

4.10.8). This finding may be surprising to some, which is why extensive detail was 

provided on how the number of bed-days lost unoccupied was obtained (section 4.10.4). 

However, the study used the best available data, and the proportion of empty beds is thus 

unlikely to change to a great extent, even considering the uncertainties around it. 

Lastly, as part of the new approach of valuing opportunity costs it became necessary to 

estimate the mean QALYs gained from hospital admissions (section 4.10.7), and thus 

enabling estimation of QALYs lost in prevented admissions. Mean age- and sex-specific 

health utilities were mapped for diseased individuals to the primary admission code,[282] 

and patients were stratified into three sub-groups of a) acute life-threatening conditions, 

b) chronic conditions, or c) none of these conditions (section 4.10.7). Based on the 

remaining age- and sex-specific life expectancy from the Office for National Statistics in 

England (for patients in group a and b),[284] a gradual decline of health was modelled over 

time, similar to previous studies using more sophisticated regression analyses.[282,305] It 

was assumed here that (a) patients with acute life-threatening conditions survive with 

hospital treatment for their remaining age- and sex-specific life expectancy; (b) patients 

with chronic conditions maintain their health at a higher level with hospital treatment; 

and (c) patients with none of these conditions recover faster with hospital treatment but 
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there is no attributable effect of this hospital stay for the remaining life expectancy. 

Overall, the alternative patients forgone were estimated to have the potential to gain twice 

as many QALYs from hospitalisation as the norovirus patients who displaced them 

(sections 4.5.1 and 4.10.8). 

Overall, valuing the burden of norovirus conventionally resulted in financial 

expenditures of £107.6 million annually for the NHS (section 4.5.3.1), while accounting 

for the opportunity costs from forgone patients with the novel approach resulted in 

£190−£298 million at a monetary value of £20,000/QALY, and a loss of 6,300 QALYs 

annually (sections 4.5.3.2 and 4.10.8). These results indicate that opportunity costs for 

treating norovirus in hospital are high, and the true cost may be roughly 2−3 times higher 

than the value calculated with conventional techniques. 

6.1.4 Norovirus outbreaks in hospital and the additional impact on bed pressures 

Finally, chapter 5 explored the transmission of norovirus during hospital outbreaks, and 

the additional impact on the bed occupancy level in acute care wards of the NHS in 

England (cf. research question 3 in section 1.4). The study used a model that stratified 

individuals in the general community at risk of being admitted by age to reflect the higher 

risk of hospitalisation for the elderly in England, and it also accounted for individuals 

being susceptible to norovirus infection and/or illness (section 5.4.1.1). 

For the baseline situation of typical hospital ward occupancy levels without norovirus, 

a sample of 171 inpatient units in England and the national bed occupancy rate of all acute 

care hospitals in 2015 were considered for simulating random admissions and discharges 

(section 5.4.1.2). In order to explore the additional impact of norovirus outbreaks on the 

bed occupancy, a transmission dynamic mathematical model was built that simulated 

norovirus transmission within the ward. The model reflected the immunity of individuals 

to norovirus infection and/or illness as well as the asymptomatic transmission of 

norovirus before and after gastrointestinal symptoms appear (section 5.4.1.3). It was also 

assumed that conventional infection control and contact precaution measures were in 

place in that the wards were closed to new admissions after three days and patients were 

discharged at all times unless they were acutely symptomatic. The resulting bed pressure 

was then measured from longer staying inpatients as well as new patients awaiting 

admission to a free bed as compared to different levels of bed occupancy. 
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The model was also used to determine the daily risk of an inpatient becoming infected 

with norovirus on a hospital ward per year, and stochastic extinction after norovirus 

infected the index case, i.e. without an outbreak occurring (section 5.4.1.4). The model 

estimated that the daily risk of one inpatient becoming infected was 0.02 per ward per 

year (section 5.5.2), and a 76.9% chance of stochastic extinction (section 5.5.2). 

Results also indicated that already in the baseline without norovirus the bed occupancies 

reached the full capacity of the wards on days that add up to more than three months each 

year, and even the additional 10% trolley bed capacity is regularly exceeded on days 

equivalent to more than 1.5 months (see section 5.5.1). With norovirus, the situation 

worsens rapidly as occupancy levels increased from longer staying inpatients by a mean 

of 8.1% during outbreaks (section 5.5.2). 

Additional bed pressure from new patients awaiting admission arose in most outbreaks 

(83.0%), with a mean number of 6.8 new admissions forgone when closing the wards at 

the prevailing occupancy rate of the outbreaks (section 5.5.2). Even when assuming that 

these patients can be accommodated up to the level of full capacity of the ward and an 

additional 10% trolley bed capacity, a mean of 0.7 new admissions were forgone in 28% 

of the outbreaks, which is equivalent to an additional demand of beds of 3.3% 

(section 5.5.1). Consequently, despite hospital wards exhibiting some undeniable 

compensatory abilities to accommodate temporary supply and demand shocks, it seems 

reasonable to assume that opportunity costs occurred and may not even be avoidable in 

England given the high occupancy rates. 

6.2 IMPLICATIONS AND RECOMMENDATIONS FOR POLICY AND PRACTICE 

In order to guide reimbursement decision-making, policy makers and researchers in 

developed countries have been increasingly relying on health technology assessments 

(HTA), particularly on health economic evaluations.[306,307] These evaluations require 

adequate cost estimates by considering the opportunity costs of resources.[4] 

Current costing conventions for opportunity costs, however, may be too simplistic in 

their assumptions, and they ignore the wider health impact for other patients. Considering 

that the main purpose of health-technology assessments and public reimbursement 

decisions in many jurisdictions is to maximise population health, the outcome of 
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assessments may change with an incorrect valuation of opportunity costs of displaced 

health care resources. 

The novel approach proposed in this thesis of the net monetary benefit of the second-

best patient forgone aims to quantify those aspects that have not been considered 

previously for mostly pragmatic reasons. When including these opportunity costs of 

hospital bed-days into economic evaluations, it is likely that this novel approach will lead 

to outcomes and incremental cost-effectiveness ratios (ICERs) that favour interventions 

averting hospitalisations, for as long as the disease is of lesser severity and displaces more 

severe cases (i.e., the opportunity cost value of the second-best patients is higher). Thus, 

interventions which otherwise may not have been implemented due to being viewed as 

too costly may become cost-effective. This is largely due to financial expenditures not 

approximating to opportunity costs, which is illustrated in Figure 34. 

Figure 34. Density per bed-day of the expenditure incurred on norovirus and the net 

monetary benefit (NMB) of the second-best patients forgone at £20,000/QALY (panel a), 

and different cost-per-QALY values for the NMB to explore convergence with financial 

expenditures (panel b). 
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Here, financial expenditures have been estimated to be incurred on norovirus patients 

per bed-day, resulting from patients, unoccupied bed-days, and staff absences (cf. 

chapter 4), while the opportunity costs have been estimated as the net monetary benefit 

of the second-best patients forgone, using the values for the length of stay, QALYs gained 

and expenditure presented in chapter 4, section 4.10.6, and a monetary value per QALY 

of £20,000/QALY. In this figure, the financial expenditures incurred would have 

approximated to opportunity costs at a monetary value per QALY of about 

£12,978/QALY. However, it is unclear whether the opportunity costs are indeed higher 

than the expenditure incurred, as suggested here at £20,000/QALY, or whether QALYs 

are currently being valued too high (as suggested by recent research findings, which 

suggested that the threshold may indeed be closer to £13,000/QALY).[150] Given the 

differences in expenditures by disease area, it is also likely that results will differ for other 

diseases and in international settings (i.e., the monetary value needs to be lower than 

£20,000/QALY when financial expenditures are incurred that are lower than the NMB, 

and higher than £20,000/QALY if the financial expenditures incurred exceed the 

estimated NMB). 

Valuing the opportunity costs adequately is crucial for analyses of the true value of 

resources to enable sound decision making, as interventions may not get public funding 

for reimbursement when ignoring these aspects. Future research needs to continue 

exploring the monetary value assigned to QALYs by different stakeholders and with 

different techniques. Future studies of economic evaluations and burden of disease 

estimations should at least make all important assumptions and potential implications of 

the costing technique used clear and explicit when communicating to decision makers. 

Researchers need to be aware of the underlying assumptions and resulting biases when 

applying conventional costing approaches, which frequently are unmentioned and 

unquestioned or worst: unknown. Moreover, this thesis used rigorous statistical and 

mathematical modelling techniques for estimating the additional length of hospital stay 

actually attributable to the infection.[270-272] However, even if additional length of stay is 

appropriately estimated any economic evaluation or burden estimation will remain 

inaccurate (or even misleading) if the value placed on those attributable days is 

underestimated, or indeed overestimated.[143] 

For norovirus, considering the recurring bed pressures faced by NHS hospitals in 

England each winter, reducing illness and outbreaks will increase bed capacity that can 
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be used for otherwise forgone patients. As norovirus has become one of the key enteric 

pathogens across all ages, particularly in countries that introduced rotavirus vaccination 

(like the USA,[164,220] and for the UK see chapter 4), it will become important to evaluate 

the cost-effectiveness of norovirus vaccination strategies for England in the near future. 

The potential value of an efficacious norovirus vaccine may be underestimated unless lost 

bed-days are valued appropriately. The extent of the benefits has been modelled in a 

recent study of norovirus mass vaccination for the USA,[308] showing that a total number 

of 14,100 (95%-CI: 10,100-20,100) hospitalisations may be averted with a pediatric 

vaccine program, and 4,900 (95%-CI: 3,700-6,000) hospitalisations with routine elderly 

immunization. The studies presented in this thesis may partly serve as a baseline against 

which to assess the impact of vaccination for England. Moreover, the model presented in 

chapter 5 can be extended to explore the impact of vaccine-induced immunity to norovirus 

infection and/or illness before hospital admission, as shown in Figure 35, which extends 

the previous Figure 30 with the potential vaccine impact as reflected in the branches 

labelled with c3-c8 (cf. the grey shaded box in Figure 35). 

Figure 35. Classification tree of individuals in the community stratified by age and the 

natural or vaccine-induced immunity to norovirus infection or illness. 

The admission groups for the dynamic model (cf. section 5.4.1.2) could then be 

extended to: 
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i. Admissions unvaccinated and not immune but susceptible to norovirus infection 

and illness (c1 + c2); 

ii. Admissions vaccinated but not immune to infection and illness (c3 + c4); 

iii. Admissions immune (naturally or vaccine-induced) to illness but not norovirus 

infection (c5 + c6 + c9 + c10); 

iv. Admissions immune (naturally or vaccine-induced) to illness and norovirus 

infection (c7 + c8 + c11 + c12). 

 

These may then feed into a compartmental model (cf. section 5.4.1.3), with separate 

compartments for the newly inserted admission group ii. of inpatients vaccinated but 

without immunity, for which all five compartments should be used. The dynamic model 

could then be combined with the novel approach of valuing bed-days in chapter 2 to 

estimate the cost-effectiveness of norovirus vaccination (cf. Figure 36), which can be 

expected to yield diverging results. 

Figure 36. Illustrative incremental cost-effectiveness plane (panel a) and cost-

effectivenes acceptability curve (panel b) with diverging results when using different cost 

estimates (shown in grey vs. black). 

 

6.2.1 Comparison of cost estimates for norovirus with other studies 

When comparing the estimated results of resources used for norovirus, the study in 

chapter 4 revealed direct expenditure on norovirus from the healthcare provider 
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perspective reaching an estimated £107.6 million annually when 1) combining individual-

patient data with national hospital statistics and surveillance, 2) accounting for time-

dependent biases,[270-272] 3) looking at all NHS hospitals in England, and 4) accounting 

for relative changes following the rotavirus vaccination introduction (see sections 4.4.3.1 

and 4.5.3.1; note that this estimate did not include the opportunity cost of patients 

displaced). 

The study in chapter 3 also estimated the value of all occupied and unoccupied bed-days 

lost due to norovirus-like symptoms as £35−£49 million in winter (section 3.6). Assuming 

that these bed-days represent 52% of all beds lost on norovirus throughout the year 

(section 4.10.4), scaling these values up to 100% results in £67−£94 million, with the 

upper bound being £13 million lower than the more accurate estimate of chapter 4. 

However, the estimate is close to the one calculated based on another study on 

gastroenteritis outbreaks in hospital in England in 2002/02,[41] which amounted for 

norovirus to £96.9 million in 2016 value (cf. section 4.6.2).[269] 

By far the lowest estimates were obtained in a recently published study calculating the 

societal costs of norovirus for primary care and hospitalisations in England in 2008/2009 

using reference costs and income losses of patients.[275] The total costs for norovirus were 

£81 million (95%-CI: £63−£106 million), of which 85% were borne by patients and the 

remaining £11.9−£17.7 million by the healthcare services. The study did not account for 

time-dependent biases, and it was based on another study attributing about 3,000 hospital 

admissions annually to norovirus in England.[273] The study estimated the number of 

emergency admissions in England due to norovirus in adults with a primary or up to the 

first 3 secondary diagnoses codes,[273] while the study in chapter 4 considered patients of 

all ages with any diagnosis and degree of severity (i.e., not only emergency admissions). 

Laboratory reports may have also become more reflective of hospital cases in recent 

years, which may explain why the most parsimonious models resulted in very high 

adjusted R2 of 0.98 (cf. section 4.10.2). The previous study reported an adjusted R2 of 

0.89 for patients aged ≥65 years, and 0.85 for patients aged between 18−64.[273]9 

                                                 

 

9 The authors also investigated including a time variable in their regression to account for any 

unmeasured effects in improved diagnostics due to the reverse-transcriptase polymerase chain 

reaction (PCR) replacing the electron microscopy as the main molecular method of detection 
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Chapter 4 in this thesis is the only study to date that has considered the health 

opportunity costs of bed-days from patients forgone, with the true costs being equal to up 

to £297.7 million for the hospitals of the NHS in England. All in all, both the expenditure 

and costs on norovirus in England are high and above £100 million annually. 

6.3 STRENGTHS AND LIMITATIONS 

This thesis focussed on the interface between (health) economics and the epidemiology 

and transmission of infectious diseases. It shed light on an under-researched area in health 

economics, which may not receive more attention due to lack of awareness among 

researchers and decision makers about the assumptions of current costing practices. After 

all, the different existing methodologies of estimating opportunity costs have been shown 

to have been confusing for professional economists too.10 

Central to this thesis was to scrutinise the current costing conventions applied in 

economic analyses, which may lead to underestimation of the costs of infectious diseases. 

This thesis is not the first to point out the shortcomings of the conventional costing 

approaches,[4: p.58] but it is first to propose a novel way forward for bed-days and health-

maximising decision makers to overcome the issues identified. It also retains a monetary 

value to allow relative assessments in subsequent economic studies. 

For norovirus, an innovative approach was chosen to put different datasources and 

methods all together to get a comprehensive picture of the hospital burden of norovirus 

from different angles before contrasting the novel approach to reference costs. 

In the following, the strengths and limitations of the novel approach of estimating the 

opportunity costs of bed-days are discussed before the practical application to norovirus. 

                                                 

 

between 2001−2006. However, this trend variable did not significantly alter the results; neither 

did accounting for a time lag or lead of up to 2 weeks for the laboratory data.[273] 
10 Ferraro and Taylor found that only 21.6% of nearly 200 professional economists and PhD 

students of economics were able to identify the correct answer on the following question: “You 

won a free ticket to see an Eric Clapton concert (which has no resale value). Bob Dylan is 

performing on the same night and is your next-best alternative activity. Tickets to see Dylan 

cost $40. On any given day, you would be willing to pay up to $50 to see Dylan. Assume there 

are no other costs of seeing either performer. Based on this information, what is the opportunity 

cost of seeing Eric Clapton? A. $0 B. $10 C. $40 D. $50”.[122] The wording and framing of the 

question have been criticised before.[123] 
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6.3.1 Estimating the opportunity costs of bed-days 

The novel approach proposed here is in alignment with economic theory by explicitly 

considering net benefits and effectively re-connecting to the concept of choice (i.e. a 

“most valuable forgone alternative” exists and needs to be determined, depending on the 

objective of an decision maker). The approach thereby acknowledges the different 

resource use by different patients (i.e., the value of a bed-day for one patient is not equal 

to the value of a bed-day for another patient). Moreover, the approach is broadly 

applicable across settings and to other diseases. 

However, opportunity costs are highly context specific and care needs to be taken with 

identifying the second-best patient. By considering average data across all national 

hospitals in England, with different hospital sizes, case mixes and patient characteristics, 

the strong assumption is made that the average adequately represents the second-best 

patient forgone. Although this may not be the case, issues of feasibility may justify this 

assumption (e.g. observing, on a national scale, the actual number of patients displaced). 

Moreover, one may also argue that average values are reasonable since resource 

allocation is not perfectly efficient and hospitals do not constantly admit those cases with 

the highest health need.  

6.3.1.1 Delayed versus cancelled admissions 

In reality, there may be differences between cases whose admission has been delayed 

(for a few hours) to those whose admission has been cancelled. Most often, cancelled 

admission will have an non-urgent/elective component to it. 

For determining the value of the second-best patient forgone, this difference may be less 

pronounced than in clinical practice. It needs to be kept in mind that the second-best 

patient forgone is used to approximate the alternative value of a bed-day at a particular 

point in time and place; from an economic perspective, this is the same logic behind the 

costs encountered in everyday life. Thus, the non-admitted patients do not necessarily 

need to have been actually delayed or cancelled cases given the interest in only the 

“value” of the bed-days that could not be used for alternative patients at the time that the 

opportunity costs arose (at which point the patients were forgone). They may in fact thus 

be a counterfactual number, which has been hinted to earlier with the wording of 

alternative admissions as “patient-equivalents” (cf. section 2.5.2). 
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Hence, cases with the medically least severe/urgent issues do not usually constitute the 

second-best alternative forgone (but rather the third-, fourth-, …, last-best treatment 

alternative, which is seen in practice with the triage system of many hospitals for 

organising the initial care of unplanned new admissions). Likewise, cases with the 

medically most severe/urgent issues cannot constitute the second-best alternative (they 

will likely be the first-best treatment alternative). Therefore, patients with intermediate 

severity/urgency seem most appropriate to be used as alternative admissions, which have 

been approximated in this thesis with chronically ill patients as they usually require 

treatment soon but not at once. 

In addition, it needs to be kept in mind that the special situation of infectious epidemic 

and disease outbreaks were considered in this thesis, which are frequently the cause of 

seasonal bed pressures. Combined with the presence of waiting lists and high occupancy 

rates, it seems reasonable to assume that there will be a long list of patients who are 

actually displaced and could have used the beds instead; at least in acute care hospitals of 

the NHS in England. 

6.3.1.2 Variation in the value of the opportunity costs 

Opportunity costs have an inherent link to the concept of choice through the second-

best alternative use forgone. For bed-days, this may translate into seasonal and local 

variation in the value of opportunity costs, and may lead to different estimates depending 

on the (local) supply and demand for beds. In particular, the value will be higher during 

times of increased demand, e.g. during winters where the second-best patient is more 

unhealthy (has greater “need”) than the average patient throughout the year, or during 

outbreaks where the additional pressure on bed occupancy levels rises. Conversely, the 

value will be lower during times of decreased demand, e.g. in non-outbreak settings or 

summers. Likewise, the value can be impacted from the supply side by increasing 

capacity and thus reducing the actual occupancy rate. 

Future research may look more closely at these seasonal and local differences in 

opportunity costs, if feasible. In addition, tensions may possibly arise when striving for 

standardised approaches and methods (i.e., it may become more time-consuming to 

conduct and elaborate on an analysis that differs in its outcome for different settings). 

Although it seems desirable for the actual costing method to be consistent, the 

imperfections of the current standards may lead to distorted decisions when the true 
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impact is greater than currently estimated. Also, shadow prices are already used for non-

marketed resources like time and informal care, and price adjustments are generally 

considered as justified for as long as they follow a clear methodology that is unlikely to 

introduce substantial bias.[4: p.58] 

Lastly, the thesis focused on demand-side approaches driven by (empirically) revealed 

data, not on stated-preferences and contingent valuation studies (see e.g. Stewardson 2014 

and Page 2017).[155,309] Other supply-side values for a bed-day may have been obtained 

by considering the wage rate of over-hours, or e.g. in the UK from the value of £250 per 

hour plus pension and National Insurance payments of the Waiting List Initiative, which 

aims at reducing the number of patients on waiting lists by offering additional clinics at 

weekends and at night.[193] The reasoning behind these shadow-prices is that the otherwise 

forgone beds can only be obtained additionally at these marginal costs within the hospital, 

assuming full capacity. Outside the hospital, further work could also explore interactions 

between multiple hospitals, e.g. the (transaction) costs of transferrals to a different 

provider and the value of obtaining a bed in the private healthcare market. However, from 

most anlytical perspectives it is not sufficient to ignore the health impact of the patients 

forgone who would have otherwise been treated. 

6.3.1.3 Monetary value for health gains from hospitalisation 

The approach presented in this thesis relies on the existence of a monetary value for 

health gains. It is acknowledged that this continues to be an active research area, although 

recent efforts have aimed at estimating such a value for many countries.[310] Moreover, 

given the context of reimbursement decision making in England, the main focus rested 

on QALYs and took the perspective of a decision maker aiming to maximise health with 

a constrained budget. The monetary value assigned to a QALY (be it the marginal cost of 

producing a QALY or the consumption value of a QALY) will undeniably drive 

calculations, and issues of equity have not been explicitly considered here. Although other 

health outcomes could be used, the same issue applies of finding an appropriate value for 

the health gains in case it is not seen as sufficient to provide “health outcome”-per-cost 

metrics. 
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6.3.1.4 Generalisability 

This thesis focused on hospitals and infectious diseases as they provide more 

complications than non-infectious diseases that make it an interesting example of large 

and auto-correlated shocks to bed demand. In that regard, non-infectious diseases are less 

complex and so everything in this thesis still applies to them. Moreover, the proposed 

ideas are equally applicable for other healthcare facilities or (outpatient/) general 

practitioner (GP) consultations, and indeed non-healthcare resources. Other facilities with 

beds for overnight-stays share similar issues as discussed for hospitals in this thesis, while 

GPs allocate a certain amount of time to their consultation slots and could thus have seen 

potentially more patients. Non-infectious diseases are also prone to incur opportunity 

costs, which is most visible for avoidable hospitalisations when patients continue to stay 

in hospital e.g. for non-medical but social reasons. In terms of non-healthcare resources, 

one could think of the forgone leisure time and activities for people impacted in the 

community. There is thus a wealth of potential applications for the ideas presented here. 

At present, it is difficult to find studies reporting all of the input data required (as 

exemplified by the example presented in section 2.9.1). At the very least data are needed 

on the length of stay, expenditure, and health benefit of treatment for different patients; 

information that is routinely collected but not fully reported at all times. This may change 

in the future, not least due to the increasing body of research in the health domain and the 

economic interest in activities of healthcare systems as well as the increasing number of 

linkable data sources (which may become important when estimating the second-best 

patient forgone, particularly in trial-settings with limited scope of alternative patients). 

Moreover, it needs to be stressed that in situations where it proves impossible to 

determine the optimal alternative, or disprove an alternative as non-optimal, it may be 

preferable to consider only the net monetary benefit of the alternative patients forgone 

(approach New1; cf. section 2.5.5) and qualitatively acknowledge the distortion in its 

value from market imperfections. 

Lastly, this thesis only looked at one resource within one economic sector. If it was 

feasible to expand the scope to other resources and across economic sectors, it would 

technically be possible to pursue allocative efficiency, that is, comparing whether or not 

it is beneficial to allocate limited resources to interventions across economic sectors. 



D i s c u s s i o n  a n d  c o n c l u s i o n s  

 

211 

6.3.2 Application to norovirus 

The thesis was also able to demonstrate the economic ideas for estimating the 

opportunity costs from patients who cannot be admitted due to beds being unavailable by 

using norovirus-associated gastroenteritis as a case study. It provided updated figures for 

the hospital burden in England using a range of methods and datasources, which revealed 

the increased relative impact of norovirus as the second-largest contributor of the 

gastrointestinal hospital burden in England. 

Also, this thesis is first to combine individual-patient data from a norovirus outbreak 

with national hospital surveillance and routinely collected hospital statistics to apply the 

novel approach to norovirus. The time-dependent bias was accounted for by considering 

only the excess length of stays.[270-272] Thereby, more accurate methods have been used 

than previously. 

Moreover, the datasets used for England captured at least two novel norovirus GII.4 

strain emergences, New Orleans-2009 and Sydney-2012,[58,64] but the burden estimation 

in chapter 4 focussed on the period after mid-2013 to avoid biased results from the 

observed heterogeneity introduced by the rotavirus vaccination in July 2013. If a new 

norovirus strain emerges in future, the burden may likely be higher than the median values 

of this analysis suggest. Likewise, if an effective vaccine is able to reduce the norovirus 

burden, the results presented here provide a baseline against which the potential impact 

of vaccination on hospital bed-days can be evaluated, although the estimations will need 

to be updated.  

This thesis focussed on the economic meaning of costs, not the accounting meaning 

(i.e., expenditures). As such, expenditures averted on norovirus do not necessarily 

translate to monetary savings;[143] it rather means that the resources saved can be 

redeployed for the benefit of others, e.g. by freeing resources (e.g. beds, personnel time 

and/or consumables) that become available for alternative uses (e.g. for other patients). 

6.3.2.1 Burden of norovirus in hospital versus the community 

The main focus of this thesis has been on the opportunity costs of bed-days, which is 

why the illustration also focussed on the hospital burden of norovirus. However, acute 

gastroenteritis is a major concern in the community too, not least due to the 
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interdependencies between community and healthcare facilities (cf. sections 1.3.1 and 

1.3.3). 

The second Infectious Intestinal Diseases study (IID2) estimated the community burden 

of norovirus in England with 2.9 million (2.4−3.5 million) cases annually.[311] A recent 

study estimated that the number of norovirus infections may reach 3.7 million (3.3−4.1 

million) annually,[274] which is important given the presumed infectiousness of 

asymptomatic infection owing to the low viral load required for effective transmission 

(cf. section 1.3.1). 

Compared with the estimated 103,000 hospital cases of norovirus in England annually 

(cf. section 4.5.2.1), the main burden thus clearly appears in the community. However, 

hospital outbreaks of norovirus are highly disruptive, and they have been estimated to 

incur significant economic costs internationally.[41,255-257] With bed pressures being a 

recurring public health concern, particularly during winters, any analysis considering the 

impact of diseases like norovirus on hospital systems needs to include the opportunity 

costs from forgone alternative admissions. 

In addition, if outbreaks of norovirus occur in nursing homes or lead to patients visiting 

their GP, the same methodology can be applied as was done for hospitals here. 

6.3.2.2 Generalisability 

The statistical and mathematical methods used to quantify the economic burden of 

norovirus can readily used for other settings. In fact, regression analyses and multi-state 

models are widely used, and not just for infectious diseases. 

Estimating the opportunity costs of bed-days in terms of the health forgone will require 

a monetary value per health gain from hospitalisation, specific to the setting. Recent 

advances have been made to estimate this value for countries globally,[281] and the concept 

of the second-best alternative forgone is widely transferable even without a monetary 

value per QALY. 
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6.4 CONCLUSIONS 

This thesis aimed to explore the true cost of epidemic and outbreak diseases in hospital. 

The “true” cost of anything is equivalent to the value of the alternative cost, i.e. its 

opportunity cost, which can be defined as the value of a resource in its highest forgone 

alternative use. For bed-days, these opportunity costs are fundamental for understanding 

the value of healthcare systems as they greatly influence burden of disease estimations 

and economic evaluations involving stays in healthcare facilities. 

However, bed-days are an imperfectly-marketed resource, which is why current costing 

conventions using market prices or average accounting expenditures lead to inadequate 

shadow prices for the opportunity costs. This holds particularly during epidemics and 

disease outbreaks when the supply and demand of bed-days are in disequilibrium. 

Improved capture of relevant opportunity costs seems thus imperative for diseases like 

norovirus. 

Drawing on these findings, a novel approach is presented for estimating the opportunity 

costs of bed-days in terms of health forgone for the second-best patient, but expressed 

monetarily. The approach seeks to overcome the issues identified as it consists of the net 

trade-off cost of the second-best use forgone, and it links explicitly to the economic 

concepts of scarcity and choice. 

For norovirus, the relative burden in hospital has been increasing since rotavirus 

vaccination introduction in July 2013, with norovirus now being the second-largest 

contributor of the gastrointestinal hospital burden seen in England. Moreover, the 

economic impact may have been underestimated by the costing methods that do not 

capture the opportunity costs adequately. The novel approach estimated two-to-three 

times higher expected opportunity costs than conventional expenditures. All of this adds 

to the attractiveness of a norovirus vaccine, although the chosen perspective and costing 

approach may have a potentially decisive impact for reimbursement decision-making as 

current costing conventions likely undercost infectious diseases. 

Overall, improved capture of relevant opportunity costs seems imperative for diseases 

like norovirus, and it has been shown to lead to higher estimates in this thesis. Despite 

this thesis focusing for illustration on hospital-based outbreaks of infectious diseases, the 

proposed ideas are broadly applicable to other diseases, resources, and settings and likely 

to increase in future given the increasing number of linkable data sources.
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7 APPENDIX 

7.1 OPPORTUNITY COSTS AND DIFFERENT SCHOOLS OF THOUGHT IN ECONOMICS 

In this thesis I have assumed that it is generally possible for an outside observer to 

estimate the opportunity costs of resources. This is in line with the neo-classical 

convention of economics, which accepts that economic behaviours and activities are 

objectively quantifiable. It has been argued that the subjectivity of demand can still be 

incorporated in the neoclassical conception of economics: “The dependence of price 

(value) on marginal utility, subjectively determined, can be fully recognized, while 

essentially an objective theory of cost is retained. In Jevons' famous statement, marginal 

utility depends on supply which, in its turn, depends on cost of production. As stated, this 

theory is wholly objectivist in character, although, of course, the valuation of buyers and 

sellers is incorporated as a part of the objective data. Costs are objectively determinable, 

although the theory does not say that costs alone determine value. As contrasted with 

classical theory, one-way causality is missing, but not the objectivity of the 

explanation”.[5: p.11] 

However, next to the neo-classical convention exists the so-called “subjectivist” school 

of thought of economics, which understands economics as an “entirely individualistic and 

subjectivist concept”[5]. From this perspective, choices are non-quantifiable for outside 

observers due to the inherent subjectivity of demand of each individual, and the neo-

classical conception of economics is criticised for this lack of choice:[5] “Cost is measured 

by the market value of displaced product. Cost is objective in that it can be estimated, at 

least in ex post terms, by external observers, despite the fact that market values are set, 

generally, by the subjective evaluations by many producers and consumers. Market prices 

measure collective evaluations at the margins of production, and prices are themselves 

objective. These statements about cost are widely and uncritically accepted by most 

modern price theorists, most of whom fail to see that opportunity cost, so defined, has no 

connection with choice at all.”.[5] 

Although the viewpoint of the subjectivist school of economics may have some merit, 

economics so defined becomes a “purely logical exercise”.[312: p.7] Unsurprisingly, thus, 

this school of thought has been widely rejected as impractical by mainstream economists. 
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It is not favoured in practice, including in this thesis, the main aim of which was to 

investigate how to estimate the opportunity costs of bed-days adequately (by contrasting 

the conventional costing practices with a novel proposal), not whether such quantification 

is even possible (which I believes it is, particularly with revealed preference techniques). 

7.2 DISTINGUISHING OPPORTUNITY COSTS, NET BENEFITS (OR ACCOUNTING 

PROFITS), AND THE ECONOMIC PROFIT 

Opportunity costs are equivalent to the net benefit of the second-best alternative forgone 

(section 2.5.1). They should not be confused with the difference between two net benefits, 

e.g. of the best and second-best option, as there is a subtle difference in meaning between 

the two concepts: 

The net benefit may also be regarded as the “natural (or accounting) profit” of individual 

alternatives, and it is calculated as the benefits minus the expenditures. It is also possible 

to calculate the “economic profit”, which is the difference of the highest accounting profit 

of the optimal alternative and the second-highest accounting profit of the second-best 

alternative. Opportunity costs are equal only to the second-highest accounting profit. 

To illustrate, O’Donnell (2010)[34] gives the example of four different occupations (p. 

5): 

 independent entrepreneur (with annual revenues: AU$240,000, expenditures: 

AU$170,000, and thus an accounting profit of AU$70,000), 

 manager (wage: AU$50,000, expenditures: AU$0), 

 programmer (wage: AU$60,000, expenditures: AU$0), 

 teacher (wage: AU$40,000, expenditures: AU$0). 

Faced with these four alternatives, the best decision is being an independent 

entrepreneur with a net benefit of AU$70,000 (the highest valued occupation), with 

opportunity costs of AU$60,000 (the highest valued alternative forgone) and an economic 

profit of AU$10,000 (the accounting profit of highest valued occupation minus the 

second-best alternative forgone). 

Translating this to bed-days, the difference between different net benefits may indicate 

the potential economic loss associated with not taking the optimal course of action (and 

thus e.g. indicate the health outcome lost when giving up a bed-day during an outbreak). 

Looking specifically for norovirus the alternatives investigated were (section 4.10.8): 
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 Norovirus cases (with annual [gross monetary] benefit: £150.2 million, 

expenditures: £107.6 million, and thus an accounting profit of £42.6 million), 

 Non-gastroenteritis patients (with annual [gross monetary] benefit: £276.2 

million, expenditures: £86.1 million, and thus an accounting profit of £190.1 

million). 

If one was to assume for a moment that these two patient groups are each other’s next-

best alternative (which is unlikely to be true for the norovirus patients, who will not be 

the next-best alternative of the non-gastroenteritis patients), then the optimal treatment 

choice would be the non-gastroenteritis patients at a net benefit of £190.1 million, with 

opportunity costs from the norovirus cases of £42.6 million and an economic profit of 

£147.5 million (the estimated net benefit achievable of £190.1 million minus the expected 

opportunity costs of £42.6 million). 

However, given that the non-optimal alternative of norovirus cases were treated in 

reality at an estimated net benefit of £42.6 million, the opportunity costs rise to 297.7 

million (£107.6 million plus £190.1 million) when accounting for the optimal net benefit 

forgone from the non-gastroenteritis patients, and the economic profit turns into an 

economic loss of -£255.1 million (the estimated net benefit achievable of £42.6 million 

minus the expected opportunity costs of £297.7 million). 

Moreover, opportunity costs are not equivalent to any trade-off costs. The net benefit 

forgone from the norovirus cases of £42.6 million represents the “trade-off costs” of these 

two options rather than the opportunity costs. In practice, many comparisons may identify 

“trade-off costs” of two different interventions or actions as the opportunity costs.[34] 

Implicitly or explicitly, the assumption is being made that the chosen comparator(s) 

involve the available alternatives and the opportunity costs will be determined from the 

other alternative. Based on this assumption, the true opportunity costs will not just be the 

value of any different resource use: Only the alternative with the second-highest value 

among a range of alternatives qualifies for being the second-best alternative (hence the 

qualification in Adam Smith’s example to consider a nation of hunters and two animals; 

no other occupation nor animals exist that may provide a higher value).[5] 

In such circumstances, the term “opportunity costs” should be used with caution given 

its inherent link to a valuation ranking of multiple alternatives.[34] O’Donnell (2012) 

advised referring to “trade-off costs” instead as the true opportunity cost is always a trade-

off cost, but not all trade-off costs will be opportunity costs.[34] 
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7.3 DECISION-ANALYTICAL MATHEMATICAL MODELS 

Decision-analytical models aim to explore a decision problem under uncertainty.[124] 

Although the gold standard in healthcare is to base decisions on randomised controlled 

trials (RCTs), such studies may not always be available and compare all relevant 

alternatives over a sufficiently long time horizon for a representative population.[124,313] 

Decision-models can help overcome these issues, and also bridge the gap from 

individuals to populations.[313] Generally, the most frequently used modelling techniques 

can be summarised as follows (of which this thesis used a multi-state model as part of 

chapter 4, and a compartmental model in chapter 5): 

1. The “decision tree” model follows a flowchart-like structure of different options 

with probabilities for their associated outcomes and expenditures.[314] It is most 

suitable for non-recurring events in patient (sub-)populations and short time 

frames.[124] 

2. The “multi-state model” represents different options with the associated (health) 

states that can be occupied recurrently by individual (sub-)populations over time. 

In case future states only depend on the current state and not previous ones, this 

is called the “memoryless” Markovian property and the multi-state model often 

referred to as a “Markov-model”. This property may be avoided with a sufficiently 

large number of states though to the disadvantage of computational 

performance.[124] 

3. The “individual agent-based model” tracks each individual person in the model 

separately. This micro-simulation approach allows each agent (e.g. patient) to 

occupy and change states separately according to different probabilities,[124] which 

enables specifying in greater detail e.g. disease histories.[315] However, this 

approach is computationally demanding and rises the question of whether the 

patient heterogeneity cannot be captured by other modelling techniques that 

aggregate individuals with similar characteristics into sub-groups.[124] 

4. The “discrete event model” is a form of micro-simulation that is not continuously 

progressing but only discretely when an event occurs. The state of the model thus 

does not change in between events. The model allows for tracking individuals, 

which increases the computational burden.[124,314] 

5. The “compartmental model”, or “system dynamic model”,[314] tracks aggregated 

sub-groups of individuals in different compartments representing health states. 

The rate of change between compartments is described by a set of ordinary 

differential equations, ODEs.[316] The application of compartmental models to 

infectious diseases originates from a paper of Kermack and McKendrick,[294] who 

described the three health states of susceptible, infected, and recoevered/removed 

by death (SIR-model) to explore the plague mortality on an island in India in 

1905/1906. These types of models are indeed also most widely used for modelling 

infectious disease dynamics. 
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Note that these modelling techniques may also be combined; e.g. a Markov model with 

subsequent decision trees.[124] 

Each of these models may follow a deterministic or stochastic structure. Deterministic 

models will always result in the same values due to fixing parameters and disregarding 

any chance variation, while stochastic models take random chance into account and may 

thus reflect natural processes more accurately,[316] particularly when looking at small 

numbers or short time frames.[315] 

Models differ for infectious and non-infectious diseases due to the non-self-limiting 

nature of contagious diseases arising from possible transmission of pathogens11 but also 

the indirect protection through “herd immunity”.[37,316] Models that include these indirect 

effects of vaccination are usually called “dynamic” or “transmission-dynamic” as they 

account for a reduced number of infectious individuals in a population over time given 

that the risk of transmission is dependent on the number of infected people (i.e., the 

force/rate of infection).[313] Otherwise if the force of infection is treated as an 

exogenously-set fixed parameter, the model is said to be “static”.[316] 

Different algorithms exist for helping analysts choose the appropriate modelling 

technique,[124,314,316] although the most adequate model will be the most parsimonious 

one.[314] Moreover, all models – regardless of animal, healthy volunteers or mathematical 

– are a simplification of the complex reality. Thus, as famously stated by George Box 

repeatedly: “Remember that all models are wrong; the practical question is how wrong 

do they have to be to not be useful.”.[318] 

                                                 

 

11 An important metric for infectious diseases is the “basic reproduction ratio”, abbreviated with 

R0: It represents the average number of secondary cases infected by a typical case during the 

period of infectiousness in a completely susceptible population.[317] If transmission generates 

less than one new case, i.e. R0<1, the infection will not be able to establish itself and die out, 

while otherwise when generating more than one new case, i.e. R0>1, the infection sustains in 

a population and may result in outbreaks and epidemics (unless considering stochastic 

extinction).[317] Typical estimates of the basic reproduction ratio for different infectious 

diseases are R0=2−4 for influenza, R0=12−18 for measles, and R0=5−100 for malaria.[293] 
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