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The spatiotemporal evolution of human mobility and the related
fluctuations of population density are known to be key drivers of
the dynamics of infectious disease outbreaks. These factors are
particularly relevant in the case of mass gatherings, which may act
as hotspots of disease transmission and spread. Understanding
these dynamics, however, is usually limited by the lack of accurate
data, especially in developing countries. Mobile phone call data
provide a new, first-order source of information that allows the
tracking of the evolution of mobility fluxes with high resolution in
space and time. Here, we analyze a dataset of mobile phone records
of ∼150,000 users in Senegal to extract human mobility fluxes and
directly incorporate them into a spatially explicit, dynamic epide-
miological framework. Our model, which also takes into account
other drivers of disease transmission such as rainfall, is applied to
the 2005 cholera outbreak in Senegal, which totaled more than
30,000 reported cases. Our findings highlight the major influence
that a mass gathering, which took place during the initial phase of
the outbreak, had on the course of the epidemic. Such an effect
could not be explained by classic, static approaches describing
human mobility. Model results also show how concentrated ef-
forts toward disease control in a transmission hotspot could have
an important effect on the large-scale progression of an outbreak.

mobile phone call data | cholera epidemics | spatially explicit
epidemiological models | waterborne disease

Human mobility is undisputedly one of the main spreading
mechanisms of infectious diseases. Understanding the propa-

gation of an epidemic in a population at any spatial scale of analysis
inevitably calls for the understanding of the underlying mobility
patterns (1–6). Researchers have commonly focused on infectious
diseases transmitted through direct contact between persons (e.g.,
refs. 1–4). The key role of human mobility has only recently been
acknowledged also for water-related diseases (where transmission is
mediated by water, which influences the habitat’s suitability for the
pathogen and/or its possible intermediate hosts), as highlighted by
the development and widespread application of spatially explicit
epidemiological models (7–10). Such models translate our com-
prehension of the mechanisms driving disease transmission [such as
rainfall (10)] and spread [such as hydrologic transport of pathogens
(8, 11) besides human mobility] into a simplified mathematical
form. They may be used not only to predict the spatiotemporal
pattern of the spread of a disease (12–14) but also to test alternative
model implementations (15), or to evaluate the effects of various
interventions on disease dynamics (16–18).
To include population movement in epidemiological models,

researchers often rely on approaches such as gravity (e.g., ref. 19)
or radiation (20) models, where the fluxes between any two sites are
expressed as a function of their relative distance and the embed-
ded population distribution. Such models have primarily been
developed and tested for countries in the western world, where
transportation networks are dense and efficient, supraregional travel
is cheap, and regular commuting patterns are predominant. Lack

of data has so far frustrated a thorough validation of such models
in the developing world, where mobility drivers and patterns may
be different than those of western countries. In some applications,
the absence of information about mobility fluxes has been cir-
cumvented by inferring the parameters of the mobility model
directly from epidemiological data (9, 10, 17). This, however,
contributes to increasing uncertainty in model identification because
many different factors concur in the spreading of an epidemic.
Another important shortcoming of current mobility models is
their inability to adapt to seasonal and subseasonal changes in
mobility patterns.
With the increasing diffusion of mobile phones, which have

become very widely used even in developing countries (21, 22), a
new source of information about human mobility has emerged.
Each time a phone emits or receives a call or text message, the
antenna that the cell phone is logged into is registered by the
service provider, along with the time of the event (23). It is thus
possible to track the movement of cell phone users as they advance
from antenna to antenna. Suitably aggregated and properly ano-
nymized to prevent privacy issues (24), a sample of this data can be
used to estimate fluxes of people between areas in a region by
assigning a set of antennas to each geographical area in the study
domain (e.g., based on administrative boundaries). The resolu-
tion in time can be as high as the typical frequency of calls allows,
whereas the spatial resolution is limited only by the typical dis-
tance between two antennas (23). Using mobile phone records of
a sufficiently large number of users, one can thus estimate hu-
man mobility fluxes with high accuracy, including spatiotemporal
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variability across a variety of scales (24), and without resorting to
any particular model.
A number of recent studies focus on the use of mobile phone

data to extract human mobility patterns in developing countries
at different scales in space and time (25–27). Others compare the
movement patterns extracted from mobile records to traditional
data sources such as censuses (28) and surveys (29). Several
studies deal with the comparison with human mobility models
(21, 30). In the context of infectious disease spread in developing
countries, this new source of information enables previously
unseen kinds of analyses. Examples are the derivation of magnitude
and destination of population fluxes following a sudden outbreak
(25, 31), and the quantification of the importance of human
mobility and its seasonal variations on the spread of disease in
terms of increased outbreak risk in and infectious pressure on
connected areas (5, 30, 32–34).
Mass gatherings, such as pilgrimages, sport events, or music

festivals, can be critical in the spread of infectious diseases via
various transmission routes (35, 36). When it comes to orofecally
transmitted diseases, such as shigellosis (37) or cholera (38, 39),
insufficient safe drinking water supply and sanitary infrastructure
related to overcrowding are often the main causes of local dis-
ease outbreaks and subsequent spread by homecoming infected
attendees. To model the effect of mass gatherings, one needs to
account for the spatiotemporal dynamics of human mobility and
the associated short-term fluctuations of population distribution.
Mobility models and static data sources, such as censuses or
surveys, are therefore unsuitable. Conversely, mobile phone records
contain all required information at the desired timescales and thus
represent an excellent new data source for epidemiological models.
Here, we study the cholera epidemic that spread throughout

Senegal in 2005. A distinctive feature of this outbreak was its
sudden flare. It started from the order of magnitude of hundreds
of cases per week during the first 3 mo of the year, localized in
the region of Diourbel and surroundings, and abruptly jumped to
thousands of cases at the end of March, rapidly spreading to 10
out of 11 regions of the country, with over 27,000 reported cases
(Table 1). Anecdotal evidence (38, 40, 41) suggests that this first
peak was related to a religious pilgrimage, the Grand Magal de
Touba (GMdT), that took place in late March when an esti-
mated 3 million pilgrims traveled to Touba in the region of
Diourbel. During later stages, the outbreak evolved, showing
distinct dynamics in different regions of the country, rainfall and
the associated floods being important drivers, especially in the
capital city of Dakar (39).
Here we develop a spatially explicit, fully mechanistic model

for the 2005 Senegal cholera outbreak, based on previous work
(10, 14, 42). In addition to human mobility, we take into account
rainfall as an important driver of disease transmission (10, 39),
and we incorporate the effect of overcrowding by assuming an in-
crease in exposure and contamination rates caused by unusually high
density of people, and the related pressure on water and sanitation
infrastructures (Materials and Methods). Daily population fluxes be-
tween the 123 arrondissements of Senegal (Fig. S1A) are estimated
from a dataset of roughly 150,000 randomly selected mobile phone
users tracked during the entire year 2013 (Materials and Methods and
ref. 43). We specifically aim at testing the role played by human
mobility and mass gatherings in the spread of a cholera epidemic,
with implications for disease control.

Results
Fig 1 shows the evolution of the estimated number of mobile
people (i.e., people having left their home arrondissement on a
given day) throughout the year 2013. Seasonal fluctuations,
weekly patterns, and sudden peaks can clearly be identified. The
latter correspond to mass gatherings, most notably the GMdT
[which took place twice in 2013 (Materials and Methods)], and
during which the number of people traveling outside their home

arrondissement almost doubles with respect to an average day.
Fig. 1B shows the estimated fraction of people present in every
arrondissement of Senegal during the GMdT. Major differences
can be noted with respect to the yearly average (Fig. 1C). People
traveled to Touba from all over the country, and the estimated
number of people present during the GMdT in the arrondissement
where the city is located was nearly 6 times its usual population.
Model results and estimated uncertainties of the best per-

forming model are shown in Fig. 2 (total cases and the regions
most severely hit) and Fig. S2 (all regions). The values of the
calibrated parameters are reported in Table S1. The model accu-
rately reproduces the important peak of cases in Diourbel coinciding
with the GMdT (coefficient of determination between modeled and
reported weekly cases R2 = 0.78 in the region of Diourbel) as well as
the spread of the disease throughout Senegal by pilgrims returning to
their homes. The second peak, most probably related to the rainy
season, is also well reproduced (R2 = 0.72 in the region of
Dakar). The overall value of R2, computed using all data points
in all regions, is equal to 0.77. Fig. 3 shows the spatial distribu-
tion of cases in the country during the GMdT, and during two
other key periods of the outbreak according to the reported cases
and to our model.
A comparison of different models (Supporting Information and

Table S2) shows that the ones including both human mobility
fluxes between arrondissements and the effect of overcrowding
outperform other models. Including either of the two mecha-
nisms individually, however, is not sufficient to reproduce all
features of the epidemic correctly (Fig. S3). In addition, a model
adopting a calibrated gravity model performs poorly compared
with models using mobile phone data to estimate human mo-
bility. The inclusion of rainfall as a driver of the disease enables
our model to capture the autumn peak in addition to the one
related to the GMdT (Table S2 and Fig. S3). Finally, it appears
that both the correction of bias in mobile phone ownership and
the calibration of the initial number of infected in Diourbel
improve the model performance.
Potential effects of localized interventions in Touba during the

GMdT, such as improving sanitation and access to clean drinking
water (Materials and Methods), are reported in Fig. 2. Under the
assumptions of our model, these actions could have led to con-
siderably lower numbers of new cases during the pilgrimage as
well as all over the country during later stages of the outbreak
(Supporting Information). For instance, a reduction of the rates
of exposure and contamination by 10% (20%) in Touba during
the GMdT could have led to a reduction of the total number of
cases of 23% (38%) in Diourbel and 18% (34%) in the whole
country (Fig. S4 and Table S3).

Table 1. Regions of Senegal (as of 2005) with their population
(2005 estimates), total number of reported cases during the
epidemic, cumulative incidence, and mobile phone sample size
(relative to 2013 population)

Region
Population,

×106 Cases
Incidence,

‰

Sample
size, ‰

Dakar 2.62 6,573 2.51 22.64
Diourbel 1.22 11,772 9.61 4.11
Fatick 0.64 1,928 3.00 4.63
Kaolack 1.06 1,014 0.96 5.19
Kolda 0.89 57 0.06 3.86
Louga 0.68 1,806 2.64 5.43
Matam 0.50 0 0 7.12
Saint-Louis 0.75 1,653 2.20 8.99
Tambacounda 0.58 87 0.15 6.11
Thiès 1.28 2,515 1.97 9.60
Ziguinchor 0.31 124 0.40 9.79
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Discussion
The case study of the 2005 Senegal cholera outbreak illustrates the
crucial role played by human mobility (and its spatiotemporal var-
iability) in a cholera epidemic whose sudden flare and subsequent
spread can be explained by the repercussions of a mass gathering
that took place during the initial phase of the outbreak. Indeed, the
temporary high density of people in Touba during the pilgrimage
and the related pressure on water, sanitation, and health infrastructure
are likely to have created favorable conditions for cholera trans-
mission. After the initial peak, homecoming infected pilgrims spread
the disease throughout vast parts of the country. No approach to
quantify human mobility other than mobile phone data analysis could
have provided the required level of detail to capture such phenomena.
In addition, the comparison of different models shows that the actual
epidemiological dynamic cannot be reproduced accurately without
including mobility fluxes and the related effect of overcrowding, nor
does the use of a gravity model lead to acceptable results.

The high temporal and spatial resolution of the mobility pat-
terns extracted from mobile phone data allows identification of
disease transmission hotspots suggesting intervention strategies
to control the evolution of an epidemic, whose expected benefits
can be evaluated using epidemiological models. In our case
study, concentrated effort to reduce the transmission rate at the
mass gathering site, for example, providing safe drinking water or
sanitation for a higher number of people, could have had im-
portant effects, preventing numerous infections not only locally
but throughout the whole country (Supporting Information).
Although our model has a high explanatory power at the

whole-country scale and in regions with high cumulative incidence,
it does not perform equally well in less affected regions. Although
the timing of disease introduction and rainfall-related autumn
peaks is well captured in all regions, the simulated temporal
evolution of the number of cases deviates from the reported
numbers of cases, especially in some of the regions less impacted
by the disease. Possible reasons for this include higher influence

A B C

Fig. 1. (A) Daily evolution of the total number of moving people (i.e., people leaving their home arrondissement) throughout 2013 estimated from
mobile phone records. Numbered peaks correspond to the following mass gatherings: GMdT (1 and 4), Gamou de Tivaouane (2), and Magal de Kazu Rajab (3).
(B and C) Number of people present in each arrondissement on December 22, 2013, during the GMdT (B) and averaged over the year (C) divided by
the number of people living there. Regions (according to the 2005 subdivision; see Supporting Information) are numbered as follows: Dakar (1), Diourbel
(2), Fatick (3), Kaolack (4), Kolda (5), Louga (6), Matam (7), Saint-Louis (8), Tambacounda (9), Thiès (10), and Ziguinchor (11).

A B

C D

Fig. 2. Reported (red line) and modeled number of new cases per week for the entire country of Senegal (A), and for the regions of Diourbel (B), Dakar (C), and
Thiès (D). Blue lines correspond to runs of the model (Eqs. 1–4) with the best posterior parameter set. Shaded bands correspond the 2.5–97.5 percentiles of the
uncertainty related to parameter estimation (dark blue) and of the total uncertainty assuming Gaussian, homoscedastic error (light blue). Modeled cases under the
assumption of a 10% (solid green line) and 20% (dashed green line) reduction in transmission in Touba during the GMdT are also shown.
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of demographic stochasticity when the number of infected is low
(Supporting Information), but also biased case reporting and/or
identification (39) in regions with lower numbers of cases or with
low population density (e.g., Matam). Also, one should consider
that our likelihood formulation emphasizes peak values because
it includes a square error term (Supporting Information).
Even if mobile phone data provide an excellent source of in-

formation about human mobility, several downsides still exist. One
of them is the strong assumptions (Materials and Methods and ref.
34) made when translating mobile phone records to human mobility
patterns, especially considering that they are difficult to validate due
to the lack of alternative data sources. Studies comparing different
methods and their underlying assumptions would be necessary to
determine the sensitivity of the resulting mobility patterns. In
addition, a potential source of inaccuracy in the analysis of
mobile phone data is the possible presence of a bias in device
ownership. A Kenya-based case study (44) has shown that mobile
phone owners are more likely to be wealthy, male, and well edu-
cated, and that a bias exists between urban and rural populations.
Urbanites with higher incomes tend to travel more often and far-
ther, leading to overestimations of frequency and distance of trips
(45). In our study, this effect was at least partially addressed by the
introduction of a parameter (Materials and Methods) accounting for
the underrepresentation of people staying at their home node. The
values taken by this parameter during calibration might indeed
indicate the presence of a bias, but might also be due to the fact
that long-distance human mobility has played a major role in the
propagation of the outbreak only during the pilgrimage, whereas
local factors, such as precipitation and flooding, might have been
more important in later stages. Additional sources of bias could
arise from the fact that not all social classes are equally represented
among the pilgrims (46), as well as from the uneven coverage of the
mobile phone network between different areas of the country.
The reconstruction of the 2005 mobility matrix from that of

2013 (Materials and Methods) is based on the implicit assumption
that general mobility patterns on relevant scales did not change
significantly between the two years. Although several ways of recon-
structing the 2005 mobility matrix have been compared (Supporting
Information), their validity cannot be verified, due to the lack of al-
ternative data sources. Among numerous factors that might have

influenced mobility patterns is the cholera outbreak itself, which
might have led to behavioral change of individuals in 2005, in turn
affecting the disease dynamics (3, 42, 47).
In conclusion, we demonstrate that mobile phone records allow

for an accurate quantification of spatiotemporal fluctuations in
human mobility, whether short term, seasonal, or during rare
events such as mass gatherings. The resulting mobility patterns
allow for a deeper understanding of epidemiological dynamics.
Inclusion in epidemiological models is straightforward and may
lead to higher accuracy with respect to other approaches, as
human movement patterns can be directly derived from data rather
than inferred from models (e.g., gravity or radiation).

Materials and Methods
Mobile Phone Data and Inference of Human Mobility Patterns. Human mobility
has been estimated from a dataset containing the locations of calls and text
messages (hereafter calls) made by 146,352 randomly selected users throughout
the year 2013 at arrondissement level (Fig. 1 and Table 1). The dataset has been
temporarily released by an important Senegalese mobile phone provider,
for the D4D-Senegal challenge (43) and can no longer be legally accessed. A
record in the dataset consists of an anonymous user identification, a time
stamp, and the arrondissement where the call was made. First the home of
each user, e.g., the arrondissement where the most calls were made during
night hours (1900 to 0700 hours), was determined. Then, for every day t, the
quantity QijðtÞ was computed as the number of calls made while in arron-
dissement j by users with home node i divided by the total number of calls
made by users with home node i. Under the assumption that the number of
phone calls made by a user while in arrondissement j is proportional to the
time spent there, the value QijðtÞ represents the community-level average
fraction of time that users living in arrondissement i spend in arrondisse-
ment j during day t. QiiðtÞ thus represent the fraction of time spent at the
home arrondissement (34). The quantity QijðtÞ is provided (Datasets S1 and
S2) to ensure the reproducibility of the results only. For any other use, a
request should be submitted to Orange/Sonatel.

As the Islamic calendar is based on a lunar scheme with 354 d per year, the
dates of the pilgrimages change within every Gregorian year. The GMdT, for
instance, took place twice in 2013, on January 1 and December 22, whereas, in
2005, it was held just once, on March 29. To develop a model for the 2005
cholera outbreak, it was thus necessary to reconstruct the 2005 mobility
matrix accordingly. For the purpose of this study, we averaged the human
mobility matrix throughout 2013, excluding only the periods of the two
occurrences of the GMdT.We used the resulting mobility matrix for all days in

A B C

FED

Fig. 3. Spatial distribution of reported (A−C) and modeled (D−F) cases from March 28 to May 29, the first weeks after the GMdT (A and D), from June 30 to
September 4 (B and E), and from September 5 to December 31 (C and F).
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2005, except for the period of the GMdT (March 29± 3 d), which, in turn,
was assigned the mobility of the December 2013 event. Alternative ways of
reconstructing the mobility matrix of 2005 from that of 2013, also accounting
for seasonal components in the mobility and/or for other pilgrimages, have
been tested but were not retained in model selection (Supporting Information,
Fig. S1C, and Table S4).

Spatially Explicit Epidemiological Model. The spatially explicit epidemiological
model used herein builds on previous work (10, 14, 16, 42). Themodel domain is
the country of Senegal, each arrondissement (Fig. S1A, N= 123) being a node
iwith population Hi (Supporting Information). The population of each node i is
subdivided into three compartments, namely susceptibles Si, infected Ii, and
recovered Ri. Every node is considered to have an ambient bacterial concen-
tration Bi of Vibrio cholerae. We thus get the following set of differential
equations describing the evolution of 4×N state variables (terms and param-
eters of the equations will be explained hereafter):

dSi
dt

= μðHi − SiÞ−OiðtÞF iðtÞSi + ρRi [1]

dIi
dt

= σOiðtÞF iðtÞSi − ðγ + μ+ αÞIi [2]

dRi

dt
= γIi + ð1− σÞβiðtÞOiðtÞF iðtÞSi − ðρ+ μÞRi [3]

dBi

dt
=−μBBi +

p
aHi

½1+ λJiðtÞ�OiðtÞGiðtÞ [4]

where

OiðtÞ= exp

 
ω

Hi

XN
j=1

MjiðtÞHj

!
[5]

F iðtÞ= β
XN
j=1

MijðtÞ
Bj

K +Bj
[6]

GiðtÞ=
XN
j=1

MjiðtÞIj . [7]

The population is assumed to be in demographic equilibrium, with per
capita birth and natural death rate μ. Equations of different nodes are
coupled via the human mobility matrix MijðtÞ, which is derived matrix QijðtÞ
estimated from mobile phone data. To account for a possible underestimation
of the number of people staying at their home node due to, e.g., bias in mobile
phone ownership (44, 45), we introduce a calibration parameter c that relates
the two matrices as follows:

MiiðtÞ= cQiiðtÞ [8]

MijðtÞ= ci′ðtÞQijðtÞ, j≠ i [9]

ci′ðtÞ=
1− cQiiðtÞP

h≠iQihðtÞ, [10]

where ci′ðtÞ ensures that rows sum to 1.
Susceptibles living at node i get infected at rateOiðtÞF iðtÞ. F iðtÞ is the rate

at which a person living at node i comes into contact with contaminated
water at node j during day t and becomes infected depending on the bac-
terial concentration Bj through a semisaturation function with parameter K

and rate of exposure β. OiðtÞ accounts for the effects of the increase in ex-
posure and contamination rate due to the increased population density
(overcrowding). This increase is modeled as an exponential function with the
exponent composed of parameter ω and the number of people present at
the node at time t divided by its actual population. We assume that only a
fraction σ of infections are symptomatic. Asymptomatically infected hosts do
not significantly contribute to the bacterial load in the environment, nor die
of cholera (14, 16, 48), and can thus, for the purpose of the model, be
considered recovered immediately. Symptomatically infected people may
recover at rate γ or die from cholera-unrelated causes at rate μ or from
cholera at rate α, whereas those who recover lose their acquired immunity at
rate ρ or die from causes not related to cholera.

Bacteria are shed at rate p by infected GiðtÞ present at node i at time t and
reach the local environmental compartment, whose size is proportional to
the population Hi with a proportionality constant a. The contamination of
the environment is increased by local rainfall JiðtÞ via parameter λ (10)
(Supporting Information), and by overcrowding through the factor OiðtÞ. The
environmental bacteria population decays with rate μB. We define Bi

*=Bi=K.
Expressing the system of equations in this term, parameters a and K get
absorbed in θ=p=aK so that the number of free parameters is reduced by 2.

The model (Eqs. 1–4) was solved numerically. Model outputs are the
number of new cases per arrondissement and week, which are upscaled to
the regional level for calibration and comparison with reported data (Table
1 and Supporting Information). Six parameters were estimated by using
values from the literature, and another six were calibrated (Table S1), in-
cluding the number of cholera cases present in the region of Diourbel in
January 2005 (initial condition). Calibration was done using a method based
on Markov chain Monte Carlo (MCMC) (Supporting Information and ref. 49).

To determine relevant processes to be included in the model and to find an
appropriate compromise between accuracy and model complexity, hereby
preventing overfitting, eight candidate models were compared using the De-
viance Information Criterion (DIC) (50). Processes and mechanisms tested for
their significance are the coupling of the local models in individual arron-
dissements through human mobility fluxes, the overcrowding effect, the cor-
rection of bias in mobile phone ownership, the inclusion of precipitation, and
the calibration of the initial number of infected in Diourbel as a parameter. We
also include a model that makes use of a gravity model instead of mobile phone
data to determine human mobility. The model presented above (Eqs. 1–4) is
selected as the best performing candidate. Descriptions of all other candidate
models, as well as results of the model comparison, are reported in Supporting
Information. A discrete, stochastic version of the model has also been imple-
mented to verify the validity of the assumption of continuous variables un-
derlying Eqs. 1–4, which proves reasonable (Supporting Information and Fig. S5).

Potential Effects of Local Interventions. To investigate the potential effects of
local interventions, we ran our best fit model with 10% and 20% reduction of
the rates of exposure to contaminated water and bacterial shedding. Such
reductions are assumed to be concentrated in Touba during the GMdT, and
could have been achieved by providing additional drinking water and san-
itation facilities to the pilgrims (Supporting Information).
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