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A B S T R A C T

To mark the centenary of the 1918 influenza pandemic, the broadcasting network BBC have put together a 75-
min documentary called ‘Contagion! The BBC Four Pandemic’. Central to the documentary is a nationwide
citizen science experiment, during which volunteers in the United Kingdom could download and use a custom
mobile phone app called BBC Pandemic, and contribute their movement and contact data for a day.

As the ‘maths team’, we were asked to use the data from the app to build and run a model of how a pandemic
would spread in the UK. The headline results are presented in the TV programme. Here, we document in detail
how the model works, and how we shaped it according the incredibly rich data coming from the BBC Pandemic
app.

We have barely scratched the depth of the volunteer data available from the app. The work presented in this
article had the sole purpose of generating a single detailed simulation of a pandemic influenza-like outbreak in
the UK. When the BBC Pandemic app has completed its collection period, the vast dataset will be made available
to the scientific community (expected early 2019). It will take much more time and input from a broad range of
researchers to fully exploit all that this dataset has to offer. But here at least we were able to harness some of the
power of the BBC Pandemic data to contribute something which we hope will capture the interest and en-
gagement of a broad audience.

1. Introduction

In a nationwide citizen science experiment, 360 Production, com-
missioned by the British Broadcasting Corporation (BBC), launched an
app called BBC Pandemic that was available for download to smart-
phones via App Store or Google Play. Using the app, the volunteers
could participate in two studies: (1) one focusing on Haslemere, a town
in Surrey, where there was a campaign to enroll a considerable number
of people and volunteers’ mobile phone locations were simultaneously
tracked with permission over three consecutive days, and (2) a bigger
study for users across the United Kingdom that, with permission, re-
corded volunteers’ hourly locations to the nearest square kilometre over
24-h period chosen by the volunteer. At the end of each of the study
periods volunteers were asked to input whom they encountered during
that period. Here we focus exclusively on the national dataset, con-
sisting of recorded movement data and self-reported contact data. We
were tasked with using this data to develop a mathematical model for
the spread of influenza, and thereby to simulate how a pandemic-like
strain of influenza might spread through the United Kingdom. This
virtual outbreak was to start in Haslemere, a town in Surrey, in the
south of England, to follow the programme's narrative, with the

documentary's presenter acting as a hypothetical index case. Detailed
data from Haslemere formed the basis for an individual based model
(detailed in the companion paper by Kissler et al., 2018b) used to si-
mulate an outbreak in Haslemere that was to seed the virtual national
outbreak.

To meet the tight production and filming deadlines, we had to make
quick decisions, often responding to requested outputs and changes in
under a day. The bulk of our work here took place in three weeks:
starting from the maths team finishing modelling and filming for the
previous part of the programme (the part on Haslemere outbreak Kissler
et al., 2018b) and getting the main part of the data on which we could
start to investigate and make decisions on the model for the national
simulations. There were many challenges here, chiefly associated with
working with very large datasets which have never been used before.
We had no specification imposed on the model structure, indeed the
detail of how it worked was not included in the programme, but we
were aiming for an output that would give a detailed geographic picture
of pandemic spread.

We were able to make extensive use of the new and very promising
dataset to develop, parameterise and run a detailed national simulation,
all in time for the required schedule. We are presenting in this
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document what we actually did, starting with building from the data, to
the model construction, and resulting simulation outputs. With the
luxury of even a few more weeks, we would certainly have investigated
alternative approaches and explored robustness to model choices and
parameters: we comment further on this in the discussion section.

All of the results presented here and in the TV Programme make use
of the app data collected only up to October 30, 2017 (i.e. about a
month's worth of data as the app launched on September 27, 2017). As
we write this document, the app is still collecting data and will continue
to do so during the rest of 2018, and the final dataset will be published
with a separate paper (expected early 2019). Until then, the results
from the datasets here should be treated as preliminary only. The app
data consists of three interlinked data streams: (i) user profiles, (ii)
location logs, and (iii) user encounter data. The user profiles gives us a
brief information about the user, and the key thing used here is their
age. The location logs give GPS position of the user (to square kilometre
resolution, one record per hour) and we used this to extract detailed
movement profiles. The self-reported encounter data gives a list of basic
information on people they met in that day, and we use this to build
age-structured contact matrices below. In total, the data used to shape
the model comes from information contributed by 28,947 users.

2. Data analysis and preparation

2.1. BBC data – from location logs to movement patterns

2.1.1. Data extraction
From available location logs and user profiles data we create a

single file with user characteristics (age, gender, max-distance-tra-
velled), and location coordinates for each hour during a 24-h period
starting with the time of the first location log. To calculate travel dis-
tances we take the first recorded location as a reference location, and
calculate distance between reference and destination coordinates using
Haversine distance with radius set to Earth's radius in Haslemere
(R=6,365,295m). We are assuming that the reference location is
usually ‘home’ or somewhere nearby, and we eliminate all entries
whose reference location is not in the UK. To later run the model, we
assign each reference location to one of 9370 model patches (defined in
Section 2.3) using function over() from sp R-package.

2.1.2. Distance travelled – within 100 km
We abstracted from this data the (time-weighted) distribution of

distance from reference location on the scale of kilometres. Distances
were binned into one kilometre ranges (so 0–1000m, 1000–2000m,
etc.). Then a tally was made of all of these, summing over all users and
all recordings for each user. For this part of the analysis, we consider
only distances up to 100 km and discard the rest (but see below for long
distance jumps). This was all done separately for users whose home
locations were within urban areas and for those within rural areas
(shown in Fig. 1).

An interesting way to look at these counts was as cumulative den-
sity, in other words: what proportion of the time do users spend more
than distance X away from home. Both the raw counts and the cumu-
lative densities are shown in Fig. 2. From the cumulative density plots,
it can be seen that the rural users typically spent more time far away
from home.

To go from movement patterns accumulated from many individuals
to the ‘right’ kernel in a gravity-like patch model is an important and
interesting open question. We believe this warrants much further at-
tention from researchers, as we move into an era where such data is
becoming available (BBC Pandemic data will be widely available). Here,
we were limited by availability of good methods, and not enough time
to develop and test anything sophisticated. We took the best approach
we could (described below), but we still feel this point deserves much
further careful work.

The distribution of distances for our recordings gives a simple

measure of how much time a user spends a given distance away from
‘home’. For our purposes, we were interested in transmission between
model patches (typically several or many kilometres apart). The bulk of
recordings are within 1000m of home, plus the app resolution is only of
the order of 1000m. So to make a kernel for between-patch movement,
we used only the values for over 1000m away (effectively dropping the
first bin count and replacing it with a duplicate of the second count to
represent movement to very nearby other patches). Then the counts
were normalised, to give a distribution of where people are, given they
are away from home. At this point we have two lists of length 100 to
give the proportion of time away from home that is spent at each
kilometre binned distance. Denote these as Fu(i) for urban and Fr(i) and
rural (for i=1–100).

We also explored differences in movement patterns with respect to
many other factors, including the participants’ age and gender, illu-
strated in Fig. 3. The difference by gender is interesting, particularly
over the mid-range of distance, and deserves further attention, but we
decided not to pursue it for inclusion in the model here. The split by age
group is even more intriguing, especially given different age pattern
observed in a smaller dataset of self-reported distances and contacts
from southern China (Read et al., 2014), where elderly age groups
appear to move the least. Again, we did not use this distribution directly
here, but return to it in the discussion.

2.1.3. Distance travelled – long jumps
A model based purely on density of movement from above would

have transmission rates tailing off sharply over tens of kilometres. An
epidemic simulation of the UK would be strongly wave-like, and jumps
across the sea to Northern Ireland would be rare, and epidemic travel
would be very slow indeed across less densely population regions (such
as around the England–Scotland border). The epidemic would then
effectively get stuck, politely waiting some time for infection to

Fig. 1. Distribution of rural and urban mid-layer areas in the UK.
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stochastically cross those boundaries. In reality, infection can occa-
sionally ‘jump’ very long distances, and these rare events become im-
portant particularly across natural boundaries and low-density areas, so
we wished to include this in our model.

One method to implement long range jumps, just to allow these rare
events to happen sometimes, is to add a small uniform rate of infection
jumping into a patch. A very simple assumption such as constant ex-
ternal seeding (e.g. Gog et al., 2014) might be appropriate when fitting
such a model to data, but this is not ideal for a realistic forward si-
mulation of an outbreak. Given the richness of the BBC pandemic data,
we were able to explore and adopt a slightly more specific mechanism
for long-distance transmission within the UK.

We looked at recordings where the reference and current locations
were over 200 km apart (so users were more 200 km away from where
they initiated the app). The origin and destination points are plotted in
Fig. 4(a). Visually, these correspond well to the most densely populated
parts of the UK, which are shown in Fig. 4(b). (Interestingly but not
surprisingly, Dublin also very clearly appears as destination, but not as
the origin as we removed the users who initiated the app outside of the
UK).

Motivated by this, we picked out the most densely populated pat-
ches. A cut-off of population density over 10,000 people per square
kilometre gave 336 patches (out of a total of 9370), corresponding to
the top 4.4% most densely populated places, weighted by population
numbers. These places are marked in Fig. 4(c). The majority of these
places are in London. But, crucially, other major urban centres of the
UK were also represented, including patches within Belfast, Edinburgh,
Glasgow, Cardiff, Plymouth, and several in the major centres of the
North West of England.

These patches were wired up to be connected to each other with a
small trickle rate, that was chosen to be small enough that it did not
shape the majority of transmission, but it gave a mechanism for the
epidemic wave to ‘jump’ across the low-density natural barriers (such as
the sea), and establish in major cities where it could then spread more
locally to the rest of the region.

This clearly warrants further evaluation with the final dataset in
future, together with exploration of the effect of alternative assump-
tions on simulated epidemics. An obvious criticism of what we have
here is that many of the app recordings are in the major urban centres
anyway, so we would have to control for this bias carefully in de-
termining a structure for long-distance transmission events. This would
matter more particularly if exploring the behaviour over many sto-
chastic runs rather than needing a single plausible run. However, for
this purpose, we just needed the general arrangement to allow long-
distance jumps, and the approach described here is more realistic than a
uniform seeding probability, and was possible to be developed and
implemented in the time available.

2.2. Contact data to mixing matrices

2.2.1. Extraction of contact data
In the contact data part of the app, participants give the estimated

age of each of their reported contacts, encounter location (work, home,
school or other), encounter type (physical or conversational), and
whether or not participant has spoken previously with the contact. On
inspection, 37 participants were discarded from further analysis as their
data appeared anomalous (extreme numbers of contacts, suspected re-
peated entries, etc.).

Fig. 2. Distribution of distances from home for up to 100 km, split by rural and urban. (a) Total number of recording in distance bins of kilometre width. (b) Probability of being further
than x metres away during a recoding, i.e. 1 – normalised sum of counts up to that distance.

Fig. 3. Probability of being further than x metres away during a recoding, i.e. 1 – normalised sum of counts up to that distance, from home for up to 100 km, split by (a) age group, (b)
gender.
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At the time of the BBC Pandemic filming and gathering of the initial
data set, the app version had a slider for reporting the estimated age of
the contact with default set to 50. The effect of the slider is that there is
a clear excess of the contacts with reported age equal to 50. This will be
fixed in a subsequent app update, and thus it will be possible to ret-
rospectively investigate the extent of the effect once the data from a
period after the update is available. Here we applied a quick work-
around: We suspect that if users were going to enter someone with
estimated age somewhere near 50, they will sometimes just leave the
slider at 50, leading to an excess of reported contacts with the age of 50.
We estimated the size of this excess by interpolating the number of
contacts of neighbouring ages and redistributed the excess using a bi-
nomial distribution (shifted to age range 40–60 with p=0.5).

We set up 15 age classes to be our age-structure units to work with
in the model: 14 blocks of 5 years of age (0–4, 4–9, …) and single class
for age 70 and over. Both the age of the participants and contacts (after
the compensation for the slider default) were mapped to these classes,
and the resulting counts give the raw contact matrix C=(Cij) where Cij

is the number of encounters between participants of age group j and
contacts of estimated age i. The total number of participants in each age
class is pi. The raw contact matrix was normalised by these to give the
mean contact matrix M=(Mij) where Mij= Cij/pj. We do this sepa-
rately for conversational and physical contacts. Note that the first two
columns of C are zero (j=1 and j=2) as we have no users in these age
groups (see below) and the columns are left as zero in M.

2.2.2. Building age-structured transmission matrices
We continue from the mean contact matrix from the BBC data as

above in the form Mij, and also bring in 2016 census population esti-
mates (from ONS, 2017) to obtain UK age structure and the population
vector ni, where i denotes which age group (i=1, …, 15). The columns
of Mij give the ‘average’ number of contacts of age i that users of age
class j meet each day. Our underlying assumption is that this is re-
presentative of the population as a whole, and thus if we were to
multiply that column by nj then we would have the absolute number of
encounters each day between age group i and j.

Note that through age restriction of the app to age 13 years and over

we have no users in groups 1 and 2 (age 0–4 and 5–9) and partial set of
users in group 3 (age 10–14). The assumption that the 13 and 14 year
olds are representative of the full group 10–14 is a limitation here, but
we could see no fast and reliable way around this.

We fill in the full mixing matrix for the modeling work as follows.
Built a ‘transpose’ matrix to get the average number of contacts for user
of age class i to contact of age class j: Tij=Mjini/nj. This now has data in
rows 3–15. Take the average of M and T, but carefully: Where we have
both entries, take mean of M and T. Where we have one or other entry,
just take whichever is present (M or T). This leaves an empty two by
two block.

Again, this is done separately for conversational and physical con-
tacts, and in each case leaves and empty two by two block for the
mixing between the youngest age classes. For physical contacts, our
matrix looks to be comparable with the corresponding POLYMOD ma-
trix (Mossong et al., 2008). For conversational contacts, our matrix
looks to be about a factor of 5 larger than POLYMOD (Mossong et al.,
2008). We will need to do further work to identify exactly why this
might be, but candidates include slightly different question approach, a
more social group participating in the app-based study and the number
of reported contacts being limited in a paper-based study. We required
a single matrix to use in the age-structure model below. Motivated by
the comparisons above, we took a decision to use a matrix that is BBC
physical plus one fifth of BBC conversational. This still leaves the two
by two gap, and we decided to pad with POLYMOD values (Table S5
from Mossong et al., 2008, using the first1 two matrices for all contacts
and for physical contacts).

The output from this section is a matrix whose jth column is to be
interpreted as mean number of contacts for those of age j. We call this
B=(Bij) (B for BBC).

A graphic representation of this matrix is shown in Fig. 5. This
shows a classic tri-diagonal pattern. The strong diagonal stripe,

Fig. 4. Population density and long jumps. (a) Latitude and longitude points of origin (blue) and destination (orange) of trips longer than 200 km. (b) Population density of UK on a log
scale. (c) Map of hyper-connected mid-layer areas in the UK defined as the areas with the population density> 10,000 persons per square kilometre. Grey lines designate the patch
boundaries given by the mid-layer geography defined in Section 2.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

1 This was an error: mistakenly thinking it would be the summary combined matrix for
all countries, but was in fact Belgium only, but the effect of fixing these few values would
be tiny.
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particularly among the younger age groups (e.g. 15–20), showing that
most age groups mix strongly with their own or nearby age groups. The
clear off-diagonal stripes are likely to be generated by interactions
between parents and their children. There is also a blur of interactions
between the broadly working-age groups, where many age groups mix
in a working environment.

Clearly many of the decisions here are somewhat ad hoc and not
ideal or fully explored and tested, and forced by needing a solution in a
very short space of time. However, the result is a matrix which has clear
structure, and not much visual noise. Note that as our age classes are
not of equal population size the resulting matrix B is not symmetric
(Fig. 5). Indeed as the oldest age class is largest, the bottom row is
larger than the last column.

2.3. Geography of the UK: choice of ‘patches’

To build the UK model, we needed to decide on a spatial resolution
that is fine enough to include the underlying heterogeneity in popula-
tion density in rural and urban areas in the UK, but that is not too
detailed to preclude us from running simulations relatively quickly. We
used publicly available information on UK administrative geographies
and demographic data from the 2011 census to create a realistic un-
derlying structure for our model.

We created a mid-layer geography for UK consisting of 9370 pat-
ches, by unifying 3 different geographies: (i) Mid-layer Super Output
Areas for England and Wales consisting of 7201 patches (available from
ONS Geography Open Data, 2016); (ii) Scotland Intermediate Zone
Boundaries with 1279 patches (available from Scottish Government
Spatial Data Infrastructure, 2016); and (iii) Northern Ireland Super
Output Areas consisting of 890 patches (available from Northern
Ireland Statistic and Research Agency, 2014).

The shapefiles for different geographies were joined using QGIS
2.18. Census data from 2011 for each mid-layer was downloaded from
ONS (Nomis, 2011) and matched to their respective geographies. We
set the reference longitude and latitude for each mid-layer patch to the
coordinates of their respective centroids found by using function
gCentroid() from R-package rgeos. The area of each patch is ex-
tracted from the spatial polygon data given by the shapefiles, and used
to calculate population densities.

For each mid-layer patch we assign rural or urban classification

according to local government classifications of output areas, resulting
in a rural–urban distribution shown in Fig. 1.

For England and Wales, we take the 2011 rural–urban classification
of middle layer super output areas (ONS, 2016) consisting of eight le-
vels (urban consisting of major conurbation, minor conurbation, city
and town, and city and town in a sparse setting, and rural consisting of
town and fringe, town and fringe in a sparse setting, village and dis-
persed, village and dispersed in a sparse setting) and reduce it to two
levels: urban and rural.

For Scotland, rural–urban classification is not available for the mid-
layer geography so we take the available 2-fold classification for the
Output Areas (OAs) (Scottish Government, 2014) and map the OAs to
InterZone areas. We classify the patch (InterZone layer) as urban if all
OAs that fall within that InterZone are urban, otherwise we classify it as
rural. This results in 854 urban and 425 rural areas.

For Northern Ireland we reduce the original 3-fold classification
(Northern Ireland Statistic and Research Agency, 2016) (urban: popu-
lation of 4500+, rural: 2250–4500, mixed urban/rural: under 2250) to
two levels by redefining urban as areas with population over 4500 and
rural as areas with population under 4500 (mixed urban/rural areas are
re-assigned as rural under this classification).

3. Building the UK model

3.1. General model structure

To take best advantage of the available new data (described above)
we chose a two-tiered model structure: within- and between-patches
(where ‘patches’ are the 9370 geographic structures described above).
The key idea here is that once the transmission chains have successfully
established within a patch, the dynamics of the patch might as well be
autonomous: occasional further imports of infection will do little to the
local dynamics from then onwards.

In brief summary: the within-patch model is a discrete time SIR-
style model with a realistic infectious profile, which implicitly includes
an ‘exposed’ phase (so the model is essentially SEIR). Taking advantage
of our new data, we use a full age-structured model. The between-patch
model is a gravity-style model, with a stochastic implementation. The
kernel used is more complex than most existing gravity-type models,
again taking advantage of patterns of real movement gleaned from our
dataset.

3.2. Within-patch model

The within-patch model is run once it is determined that a chain of
infection has established within a patch (from the between-patch
model). At this point, it can be run as an autonomous simulation, so in
practice it is run separately from the between-patch and values are
stored. The required outputs are (a) the force of infection and (b) in-
cidence, both per day.

3.2.1. Discrete time
The core of the within-patch model is a discrete time (in days) SIR

model. Ignoring age-structure (elaborated below), it would look like
this:

+ =
= −
= ∑ −

−

−

=

S t

I t

t

S t e
S t e

R I t

( 1)

( )

Λ( )

( )
( )(1 )

β(τ) ( τ)

Λ t

Λ t

τ

( )

( )

1
τ

0
max

where S(t) are the remaining susceptibles (as a proportion of the po-
pulation) at day t, I(t) gives the proportion who had infection starting
on exactly day t and Λ(t) is the force of infection on day t. The dummy
variable τ is used to represent how many days ago infection started, and
β (τ) is the relative transmission coefficient corresponding to someone
infected τ days ago.

Fig. 5. Representation of matrix B with darker shade indicating more contacts. (For in-
terpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Note that it would be more typical to include the R0, the basic re-
production ratio, in the coefficient β, but it is also common to include it
in the age structured matrix below. To avoid the error of factoring it
twice, we explicitly separate the factor R0, and instead remember to
normalise both the β and age matrix to unity.

We use R0= 1.8 as the basic scenario. A typical range explored for
R0 for past pandemics, and for reasonable range for future pandemics is
R0= 1.4—2.0 (Ferguson et al., 2006). Here we choose R0= 1.8 as a
‘quite transmissible’ pandemic, but not the extreme upper end. Note
that the overall R0 in the national model will be approximately the
within-patch R0: the probability that a single introduced infection in an
otherwise susceptible country will directly infect other patches is ex-
tremely low.

To get the relative values of β (τ), we use the infectiousness in-
formation shown in Fig. SI8 from the Supplementary Information of
Ferguson et al. (2006) to define β τˆ ( ) and give our estimated values in
Table 1.

To construct the β, the β̂ need to be normalised to give total 1, to
make R0 correct for the model,

=
∑

β τ
β τ

β τ
( )

ˆ ( )
ˆ ( )

.
τ

Note that on the day infection starts, there is no transmission, nor on
the day after (β (1)= 0). The bulk of infection is on days 2 and 3 after
each infection starts. There is a small continued transmission on days 4
and 5, and then that is the end of transmission. So, for this choice of β
then we can set τmax=5.

3.2.2. Age-structure
Starting from the discrete time model above, we incorporate the

age-structure as follows. We model the population structure with 15 age
classes, as described above in Section 2.2. Now, S(t) represents the
proportion of those in age class i who are susceptible at day t, and simi-
larly Ii. The general structure of the discrete SIR model extends easily:
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−
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(t 1) (t)
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Some care needs to be taken over the extension Λ, to being a rate
that a single susceptible in class i will become infected (by any other
class):

∑= −
=

Λ t R β τ A I t τ( ) ( ) ( )i
τ

τ

j
1

0 ij

max

The matrix A (with entries Aij) is based on our data matrix B, which
is described above. Recall, Bij gives the mean number of contacts of age
i per day for someone of age j. This is almost what we want, but as our
variables are proportions, we must scale up by the (infecting) popula-
tion size of age class j (nj) and scale down by the (getting infected)
population size of age class i (ni):

=A B
n
n

.j

i
ij ij

Finally, the matrix A must be normalised so that the model's R0 still
works as intended. Its largest magnitude eigenvalue will be real and
unique (by the Perron–Frobenius theorem). We rescale the entire ma-
trix to make that eigenvalue equal to 1.

3.2.3. Initial conditions and outputs
The between-patch model already takes account of the possibility of

stochastic fade-out soon after initial introduction. Thus the within-
patch model is effectively conditioned on infection successfully estab-
lishing, meaning it can be run as an entirely deterministic model. We set
the initial proportion infected as 1% of each age class, and distribute
them equally as being in day 1–5 of their infection. For all age classes i:

− = = …
=

I T T
S
( ) 0.002 for 1, ,5

(0) 0.99.
i

i

This is clearly somewhat arbitrary, but all that is essential here is
something to kick off the infection within patch such that it peaks in a
sensible time period. For R0= 1.8 and all other parameters as we used,
the incidence within patch peaks at around three weeks.

Two key outputs are needed from the within-patch model: incidence
and force of infection. Incidence, cumulative or instantaneous, is a
matter of accounting using the variables above. For force of infection,
take a total force of infection which comes from all age groups, while
accounting for the transmission rates per day β(τ):
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⎞
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τ
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This generates a number that is proportional to the effective number
of infected hosts in the patch, scaling using the realistic infectious
profile. The exact value of the scaling is not important, as it is joined by
other free factors in the between-patch model.

Note that there is no application of age-structured weighting (other
than size of the age classes) here. The same one as built for within patch
would not necessarily be applicable here. The ideal one needed here is
related to encounter rate between age groups when one person is vis-
iting another patch. It might be that it is possible to learn about the
structure of this matrix from the full BBC pandemic data eventually,
including how it might depend on distance between patches and so on,
but for this purpose a flat weighting was used.

3.3. Between-patch model

The model for between-patch transmission is a stochastic gravity-
like patch model. We have the 9370 patches as described above.
Number them, and denote their population size Ni for patch i and the
distance between patches i and j as dij (measured in metres).

The rate of a susceptible patch i having a successful infection chain
initiated within it at time t is denoted by λi(t). This will depend on
which other patches are currently infected, denote this set of indices as
I t( ). Whether or not a patch is in the set of 336 with the highest po-
pulation densities, which are wired up to give a tiny possibility of a
long-range jump, is denoted with the indicator function Ji (=1 when in
this set, =0 otherwise, so JiJj=1 iff both i and j are in this set). The
indicator-like function ru(i) returns ‘r’ or ‘u’ as appropriate for the rural/
urban designation of the patch i.

Motivated by previous work on the spread between cities in the US
in the 2009 pandemic (Gog et al., 2014; Kissler et al., 2018a), we use
this form:

I

∑ ⎜ ⎟= − ⎡

⎣
⎢

⎛
⎝

⎡
⎢⎢

⎤
⎥⎥

⎞
⎠

+ ⎤

⎦
⎥

∈

λ t ξϕ t τ N F
d

J J( ) ( )
1000

ϵi
j t

j i
μ

i i j
( )

ru( )
ij

The dependence on population size is assumed to follow that of the
2009 pandemic in the US, and μ, the dependence of recipient popula-
tion size, is set at 0.32 (Kissler et al., 2018a). The additional small rate
for infection between densely populated places is set at ϵ=0.5Fu(100)
(outputs did not appear to be very sensitive to the value here, although
not tested systematically, but this ballpark of being about half of the
rate of two places 100km apart gave reasonable results). The ceiling
function is used on distances to translate from real numbers to the

Table 1
Numerical values of transmission rate per day of infection, estimated from Fig SI8 of
Ferguson et al. (2006).

τ 1 2 3 4 5

β τˆ ( ) 0 1.6 0.8 0.2 0.2
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indices used to abstract the movement data (where F(k) corresponds to
distance from home in range 1000(k− 1) to 1000k metres.

The function ϕ is gives the linkage mechanism across the scales to
the within-patch dynamics of potential infector patches. The time that
patch j was infected is denoted τj, and so if I∈j t( ) then τj < t. The
elapsed time since the local outbreak kicked off in patch j is then t− τj.
So ϕ(t− τi) gives something proportional to the probability that a
randomly chosen member of patch j is infectious at time t.

Finally, the overarching multiplicative constant ξ encompasses ev-
erything else that scales the rate of infection. This then implicitly in-
cludes frequency of travel from home, average duration of visit, a
proportionality of rate of contact with people in the other patch: these
factors are purely to do with movement so far, not the virus. The main
virus factor here is transmission rate. However, rather than just fac-
toring that in to determine if first transmission event happens or not,
imagine that the non-virus factors and ϕ are scaled to correspond to one
infected person being in our otherwise susceptible patch. Then we could
use a classic branching theory result (which assumes that secondary
infections are Poisson distributed) to give the probability, given a single
initial infected, that a chain establishes successfully, which will depend
on R0:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

ξ
R

const 1 1 .
0

We could find no easy way to parameterise the remaining constant
by comparing across other fitted systems. However, upon inspection of
simulation output and comparison with typical time and speed scales,
this constant was fixed at 22.5 (so ξ=10 at R0= 1.8). Given that it is
pervasive in the force of infection, it might be feared that the dynamics
are sensitive to this constant, however based on strategic simulations
over a range of parameters (time-limitations precluded a formal sensi-
tivity analysis) it does not seem to be so. A simple explanation is that
the bulk of the transmission is driven by short range spread as each
patch's internal epidemic spikes, so infection is very likely in that time
interval, and scaling the total rate does little. As many other things, this
needs further investigation. Crucially though, this factor was kept fixed
when we explored additional scenarios, and only R0 changed (which
also changed the within-patch dynamics).

All of this generates the forces of infection λi(t) for all the patches
where infection has not yet established. For each of these, the prob-
ability of infection establishing during timestep t is given by

= = − −τ t eℙ( ) 1 .i
λ t( )i

and this is then ready to be implemented stochastically.
In the TV programme we first simulated a detailed outbreak in the

town of Haslemere, and this was to be the seed of the national outbreak.
We assumed that the Haslemere outbreak was somewhat underway, say
two weeks in, before we effectively connected it to the national model,
hence we set τ=−14 for Haslemere (time is measured in days), and all
other patches start susceptible.

3.4. Additional scenarios

It takes about four to six months for the new vaccine to become
available, once a new strain of influenza virus with pandemic potential
is identified and isolated. As a part of the modelling exercise for the BBC
programme we were asked to explore what control options could be
easily implemented early in the outbreak before the vaccine is made
available and to show graphically what the effect of such controls
would be.

Hand hygiene is an important factor in influenza transmission and
increased frequency of hand-washing is easily implemented. We assume
that everyone complies with the frequent hand-washing for the dura-
tion of the outbreak. That is, in addition to their normal hand-washing,
everyone washes their hands on additional 5–10 occasions every day

throughout the outbreak, reducing the (local) force of infection by a
factor r, and thus we replaced R0 with rR0.

We use the information in meta-analyses of hand hygiene and per-
sonal protective measures (Rabie and Curtis, 2006; Saunders-Hastings
et al., 2017), to quantify the effect of frequent hand-washing, r. Given
the data from the studies in the form:

Control group Intervention group

Number of ILI cases a b
Number of no ILI c d

The probability that someone in the control group gets infected
during the outbreak is − − = +λ1 exp( ) a

a c , and − − = +rλ1 exp( ) b
b d for

someone from the intervention group (where λ here is the cumulative
force of infection in the entire outbreak). We can therefore estimate r as

=
+
+

r
b d
a c

log(1 ( / ))
log(1 ( / ))

.

Looking at the individual studies we selected the one with the highest
quality of data (Godoy et al., 2012) and obtain the estimate r=0.784.
We apply this factor to give a modified R0 of 1.41: this is then applied
both within- and between-patch to give an alternative simulation out-
come.

There are other personal protective measures and basic hygiene
measures individuals can undertake, including the use of hand sani-
tisers, hand hygiene motivated by influenza exposure (following con-
tact with index case or with contaminated surfaces), or the use of face
masks. We chose the frequent hand-washing as a measure that is easiest
to implement and one for which we could find some reliable data. Our
assumption of 100% compliance for the duration of the outbreak is
clearly optimistic, however it may be that other very modest control
measures could be put in place at the same time. On balance, a re-
duction in transmission of 22% is not unrealistically high, and a suitable
scenario to present in the programme to illustrate graphically how
fairly small adjustments could accumulate to dramatic total effect at the
national level.

4. Results

The output of a single run can be summarised as the date at which
each patch gets infected (or if it never gets infected in the time simu-
lated). Fig. 6 shows the timing of arrival of the pandemic wave in the
absence of control measures on the left, and with extra hand hygiene on
the right.

Firstly, the general shape of the spread is clear: infection reaches
London early on in both cases, and then it spreads through England and
Wales, with longer range jumps initiating infection in Scotland and
Northern Ireland. There is some finer structure though in both simu-
lations which is more visible when zoomed in, in particular in the South
East, as shown in Fig. 7.

Regardless of the extra control measures, there are some patches
which never become infected: these are mostly the large patches with
very low population density in the North of Scotland, but there are also
some relatively connected patches which just happen to escape infec-
tion (e.g. in Wales in both simulations).

The difference that the extra control measures make to the speed of
the spread is striking. The simulation of the basic spread (no extra
control measures) has most of the country being infected by around
week 7, where as it takes to week 11–12 to achieve the same reach if the
control measures are in place.

For both simulations, we can also look at the cumulative number of
cases, as shown in Fig. 8. As the national spread has arrived in most
places by week 7, it will then peak a few weeks later in even those later
places, so the bulk of infection is concluded by 80–90 days: about three
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months. With the control measures, the accumulation of cases is dra-
matically slowed, and gets close to peak only around 140 days. As well
as being slowed, the total number of cases is much lower.

The extra control measures do not stop this pandemic from
spreading through the UK, but they do both slow it down and reduce its
impact. This is in agreement with wider ideas of using non-pharma-
ceutical interventions to mitigate pandemics, explored in detail by

Hollingsworth et al. (2011). Slowing down the outbreaks and reducing
their impact are both extremely valuable. An extra month before many
towns are reached could be enough time to allow further control
measures to be rolled out, and certainly it would mean national re-
sources (such as hospital beds) being less stretched by all places having
epidemic peaks near-simultaneously, and generally be a much more
manageable scenario.

Fig. 6. Geographic patterns of spread. Here, the disk area is proportional to geographic area of the patch to make it possible to see detail, but caution here as this is NOT the same as
population density (many of the large disks are actually very sparsely populated areas). The colour is the week of arrival of the pandemic wave in rainbow order. The two parts (a) and (b)
give the results for the simulation of the basic spread and for the modified case with reduction in R0, respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. South East detail. This is the same as previous figure, but zoomed in to the South East and disks shrunk to make finer detail visible. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

P. Klepac et al. Epidemics xxx (xxxx) xxx–xxx

8



The mortality rate was not explicitly included in the model, as it
does not shape the overall spread of the pandemic or incidence num-
bers. However, the number of deaths can be deduced by a simple
multiplication. The ‘reasonable worst case’ in the current UK pandemic
planning modelling work puts the case fatality rates at 2.5% (Scientific
Pandemic Influenza Advisory Committee, 2016) and many estimates of
the mortality rate in the 1918 pandemic are in this ballpark, though this
depends on which wave of the pandemic, which age group, which
country and is notoriously hard to estimate (as neither the numerator
nor denominator to any great accuracy) (Simonsen et al., 1998;
Nishiura, 2010). Assuming here a devastating pandemic with 2% case
fatality rate, the basic spread corresponds to 863,000 deaths. The
number of these deaths that could be averted with control measures
that reduce transmission by 22% is 260,000. Though extreme, this
example serves to strikingly underline the value of basic hygiene
measures: even without being able to avert the pandemic, there is clear
potential for simple control measures to save very many lives.

5. Discussion

Here, we have presented a mathematical modelling analysis based
on the volunteer data collected from the BBC Pandemic app, as an initial
exploration of the data to generate potential scenario's of spread for the
BBC documentary ‘Contagion! The BBC Four Pandemic’. This article is
to document the science that underlies the visualisations in the televi-
sion programme, and to highlight the promise that this dataset holds for
improving future epidemic models.

As noted throughout the manuscript, this work was done under
extreme time pressure, and could perhaps be seen to mimic the pres-
sures when modelling an outbreak situation in real time. Real-time
modelling was especially important during the recent 2013–2016 West
African Ebola epidemic where it helped project near-future demand for
hospital beds (Camacho et al., 2015; Funk et al., 2016), and helped
design and evaluate Ebola vaccine trials (Camacho et al., 2017). Al-
though we were similarly tasked with creating and parametrising a
model on short notice, a major difference is that we did not have an
incoming stream of case-data on which to parametrise the model, which
ultimately leads to increasingly robust predictions and reduced un-
certainty as the outbreak unfolds. Instead, here a single best model and
the two simulation runs were required for illustration, rather than a
range of simulations that explore the uncertainty of our predictions and
their sensitivity to parameter values.

We attempted to make the transmission model as realistic as pos-
sible, but due to the programme narrative, some liberties were taken. In
particular, we were asked to ensure that the epidemic was seeded in
Haslemere. The simulated spread pattern across the UK therefore does
not include any further international introductions. Pandemics are
global events, and in a real pandemic setting we would expect

additional importations of infection, some of which would trigger
successful infection chains within the UK. It is commonly believed that
these epidemic establishment sites are likely to be major population
centres, but the evidence for this is far from clear. Gog et al. (2014), for
example, note that the autumn 2009 A/H1N1pdm influenza pandemic
wave in the United States appears to have been initiated in a relatively
minor city. So, while the single introduction in Haslemere may be
contrived, there is also no reason to reject the possibility of a major
outbreak being introduced in a such a town.

Perhaps the first step towards making the BBC Pandemic data of
broader scientific use will be to compare it with previous studies con-
tact patterns and human mobility. The most obvious point of compar-
ison for the contact data is the POLYMOD study. We have already taken
some initial steps to compare the BBC Pandemic contact data with the
POLYMOD contact data, which shows similar tridiagonal structure but
the size of our dataset reduces the amount of noise in the contact ma-
trix. However, more work needs to be done to identify how data from
the two studies, which were collected via two very different study de-
signs, might be correctly integrated. The analysis of contact patterns in
UK schoolchildren undertaken by Conlan et al. (2011) provides an
additional point of comparison, particularly important as this age-group
is under-represented in our dataset by design (the app was available to
people aged 16 and older, or with parental consent to those 13 and
older). Young children are also under-represented in the largest study of
UK social networks to date, with more than 5000 respondents (Danon
et al., 2013). Datasets that provide joint social and movement data are
incredibly rare. One such study by Read et al. (2014) captures both
social contact and mobility data for 1821 individuals in Guangdong,
China, and also contains the self-reported information about the dis-
tance at which particular contacts took place. Preliminary analysis of
age-structured mobility patterns shows some differences between two
datasets as BBC Pandemic data suggests the youngest group is least
mobile, rather than the eldest one as in Guandong dataset (though a
look at more refined age groups is warranted). Further analyses need to
be done on general human mobility patterns that can be gleaned from
our data. Most studies on human mobility consider distances of cell-
phone towers locations between consecutive calls which seem to follow
truncated power-law distribution (Candia et al., 2008; González et al.,
2008; Song et al.,2010), which does not appear to be the case in BBC
pandemic dataset. A thorough analysis of contact and mobility patterns
will be reported in a separate publication once data collection is com-
plete; the main focus of this manuscript is the spatial modelling and the
multi-patch model.

We considered age structure within each patch, but kept that
structure separate from the mechanisms that transmit disease between
patches. We are assuming age-structure as likely to be mainly important
for local dynamics. In large part, this choice is shaped by never before
having appropriate data to challenge this simple view. Here, particu-
larly as we have the movement data and the contact data combined, we
could explore whether age-mixing between patches is important, i.e. if
it matters exactly who does the travelling. Fig. 3 shows there are likely
to be fine structures in age and gender movements, and simply saying
the very young or very old do not travel much is again our assumption
and again, this is ready to be challenged with the full BBC Pandemic
data. The availability of high-resolution contact and mobility data un-
derscores the need for a better understanding of how contacts and
mobility translate into disease transmission dynamics. This link is so far
poorly understood; often, contact matrices are built into transmission
models, but doing this correctly requires some care. Kucharski et al.
(2014) note, for example, that the average mixing of one's age group is
a better prediction of infection risk than an individual's own distribu-
tion of contacts. A limitation of the BBC Pandemic data is that it does not
record which contacts occurred at which distances, though it does
distinguish between contacts made at home and at work/school. It is
therefore difficult to infer how mixing patterns vary with distance, but
is undoubtedly of interest to infectious disease epidemiologists. To

Fig. 8. Cumulative cases (in millions) against time in days. For the basic spread in blue,
and with extra control measures in gold. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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untangle the relationship between mobility, contacts, and the risk of
infection, we need fine-scale epidemiological data in addition to the
sort of data collected by the BBC Pandemic app. This will allow us to
parametrise models and test various hypotheses of how mobility and
interpersonal mixing contribute to the transmission of disease.

Any further work undertaken using these data will have to take into
account a range of possible biases. While mobile phones are becoming
increasingly widespread, mobile phone users still likely do not re-
present a random sample of the population. Furthermore, the demo-
graphic who is likely to use the BBC Pandemic app is likely not a random
sample of mobile phone users. The high volume of app users provides
some hope that the trends observed in the BBC Pandemic data do cap-
ture general trends; even if we the app does not account for everyone, it
does represent a significant portion of the UK population. However,
close attention should be paid to which sectors of the population are
represented in this dataset. A focussed analysis of the user log data
should help reveal to what extend the users of the app differ from the
general population. It is also important to bear in mind that the de-
mography of the app users who participated prior to airing the pro-
gramme may differ from the demography of those who participate after
the programme airs.

We have tried to comment explicitly along the way above in places
where we have taken decisions on how to proceed with the data ana-
lysis or modelling where in the natural course of research we would like
to have explored and tested alternative approaches, but here needed to
choose something and continue in the interests of time. This has made
this whole project very challenging and occasionally a little frustrating
as it differs so much from the comfort of our ideal practice and there is
so much more we want to explore. At times, this has also been rather
daunting as we know the output will be presented to a large audience as
a likely representation of a future pandemic. We have done our best
here, but there is so much we do not know still, and in particular it
really matters if the next pandemic is like 1918, 2009, or maybe
something we can not imagine at all.

For the programme we have presented just two simulation runs (one
for basic spread, one with control measures), and we did not select
which run to present based on the outputs – we just chose the first
simulation generated by each of the final models, and this is very dif-
ferent to what we would normally present in a scientific paper. As well
as doing many runs to represent the full range of behaviour from the
stochastic model, a typical paper would vary model assumptions and
parameters to show how sensitive (or not) results are to these varia-
tions, and this in itself would be useful to know which parameters and
assumptions need further elucidation. Here we do none of that, and
instead give specific figures for the number of people who will be in-
fected. The TV programme must present the outputs in a very short
space of time to a completely general audience, so this is a sensible
approach. But here, we emphasise that this is (a) a single run and (b) is
conditioned on our assumptions, e.g. that everyone is susceptible to this
new pandemic (which might not be the case, e.g. 2009).

Despite all the challenges, this project has been hugely exciting for
two massive reasons. Firstly, we have had a glimpse of the extent of the
new BBC Pandemic data set. Even from this brief preliminary work, it is
clear there is an immense wealth of data here, surpassing previously
available sources to science. In particular, the combination of the
contact and movement data will surely yield up new and unexpected
insights into how we are connected and how diseases can travel. The
full dataset will be available to all scientists, and seeing how this bears
fruit in future will be exciting. While the data gathered for the BBC
Pandemic programme were intended to help parametrise disease
transmission models, it is likely that they will apply far beyond epide-
miology. We envision for example sociologists, economists, engineers,
and others using these data to inform their investigations. Secondly, we
know that this will go towards communicating our scientific area to a
huge public audience. It may be that we have included rather more
detail in our model than can be seen during the few minutes that it will

have to play out in the broadcast programme, but getting some of the
key ideas across and offering the visual output of the national pandemic
spread movie we hope will capture the viewers’ interest. And for the
many users who have generously taken part in the app already, we hope
that seeing these preliminary results will encourage them that their
contributed data will be of use to science.
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