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Abstract

Objective—To examine current vaccine sentiment on social media by constructing and analyzing 

semantic networks of vaccine information from highly shared websites of Twitter users in the 

United States; and to assist public health communication of vaccines.

Background—Vaccine hesitancy continues to contribute to suboptimal vaccination coverage in 

the United States, posing significant risk of disease outbreaks, yet remains poorly understood.

Methods—We constructed semantic networks of vaccine information from internet articles 

shared by Twitter users in the United States. We analyzed resulting network topology, compared 

semantic differences, and identified the most salient concepts within networks expressing positive, 

negative, and neutral vaccine sentiment.

Results—The semantic network of positive vaccine sentiment demonstrated greater cohesiveness 

in discourse compared to the larger, less-connected network of negative vaccine sentiment. The 

positive sentiment network centered around parents and focused on communicating health risks 

and benefits, highlighting medical concepts such as measles, autism, HPV vaccine, vaccine-autism 
link, meningococcal disease, and MMR vaccine. In contrast, the negative network centered around 

children and focused on organizational bodies such as CDC, vaccine industry, doctors, mainstream 
media, pharmaceutical companies, and United States. The prevalence of negative vaccine 

sentiment was demonstrated through diverse messaging, framed around skepticism and distrust of 

government organizations that communicate scientific evidence supporting positive vaccine 

benefits.

Conclusion—Semantic network analysis of vaccine sentiment in online social media can 

enhance understanding of the scope and variability of current attitudes and beliefs toward 

vaccines. Our study synthesizes quantitative and qualitative evidence from an interdisciplinary 
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approach to better understand complex drivers of vaccine hesitancy for public health 

communication, to improve vaccine confidence and vaccination coverage in the United States.
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1. INTRODUCTION

1.1 Vaccine hesitancy

Suboptimal vaccination coverage in the United States continues to pose significant risk of 

disease outbreaks, in part, due to vaccine hesitancy [1]. Vaccine hesitancy refers to a 

combination of beliefs, attitudes, and behaviors that influence an individual’s decision to 

vaccinate despite vaccine availability; these behaviors include refusal, delay, or reluctant 

acceptance despite having active concerns [2,3]. Strategies to address vaccine refusal have 

focused on individual reasons for not vaccinating, however, evidence of successful 

interventions remains limited. A review of vaccine hesitancy interventions expressed weak 

support for current strategies in mitigating vaccine resistance [4]; interventions targeted 

toward anti-vaccination groups are likely to be ineffective, unsustainable, and potentially 

more detrimental compared to no intervention at all [4–6].

Vaccine hesitancy stems from socio-cultural, political, and otherwise non-medical factors 

that are poorly understood [7]. The underlying causes of vaccine hesitancy should not be 

attributed to scientific illiteracy alone [8], but rather viewed as a deliberative and structured 

process that requires contextualized examination at local levels [9,10]. In the case of our 

study, we focus on semantic and rhetorical qualities of vaccine communication amongst the 

general public within contexts of differing vaccine sentiment.

1.2 Social network analysis and digital epidemiology

The advent of the Internet and social media has provided new platforms for persuasion and 

rapid spread of (mis)information, bringing forth new challenges and opportunities to an age-

old public health problem. Social Network Analysis (SNA) broadly studies social 

interactions of contact networks with significant implications for public health [11], such as 

contributing evidence that belief systems are a primary barrier to vaccination [12]. Novel 

public health tools such as SNA employ computational frameworks in the context of digital 

epidemiology [13]. Online social media such as Twitter are novel avenues to acquire real-

time data of attitudes, beliefs, and behaviors, particularly for underrepresented demographic 

groups who disproportionately comprise Twitter users [14]. By leveraging online data, 

studies can examine the dynamics of massively interacting populations, such as online health 

sentiment and its potential impact on infectious disease outbreaks [15,16].

1.3 Semantic networks

Semantic networks are graphical representations of knowledge based on meaningful 

relationships of written text, structured as a network of words cognitively related to one 

another [17,18], in this study, vaccine information. Within the semantic network, nodes are 
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words that represent concepts found in text. The connections between nodes are referred to 

as edges which represent relationships between connected concepts. Semantic networks 

allow extraction of meaningful ideas by identifying emergent clusters of concepts rather than 

analyzing frequencies of isolated words [19]; in this way, analyzing online social media can 

enhance understanding of complex health behavior, particularly for vaccine hesitancy.

Similar studies have analyzed websites using search engine results and natural language 

processing (NLP) [20,21]. Text network analysis traditionally employs semi-automated 

techniques in which information is extracted and analyzed using both human and 

computerized methods, dealing with challenges such as coreference resolution, synonym 

resolution, and ambiguity [22]. To limit these issues, we constructed semantic networks 

manually and then performed network analysis within our study.

Both proximate and non-proximate determinants of vaccine hesitancy necessitate an 

interdisciplinary approach [23,24]. Our study presents a novel framework that applies 

methods of network analysis to semantic networks [25] within the context of vaccine 

sentiment.

1.4 Study objective

Our objective was to examine current vaccine sentiment on social media by constructing and 

analyzing semantic networks of vaccine information from highly shared websites of Twitter 

users in the United States.

1.5 Public health significance

The Strategic Advisory Group of Experts on Immunization (SAGE) Working Group on 

Vaccine Hesitancy (WG) reported specific research needs to better understand context-

specific causes underlying vaccine hesitancy [26]. To help address this gap, we utilized 

quantitative network methods in analyzing qualitative aspects of vaccine information---an 

efficient approach to investigating the scope and variability of current attitudes and beliefs 

toward vaccines. Such findings are pivotal in informing and improving public health 

communication of vaccine confidence.

2. METHODS

2.1 Data retrieval and document selection

We used ChatterGrabber [27], a web-scraping tool that randomly samples public tweets of 

Twitter users in the United States. (Details on ChatterGrabber including search term 

conditions, qualifiers, and exclusions are in Appendix A). Webpage links from collected 

tweets identified current sources of vaccine information based on the frequency of link 

shares during the time of data collection. Our analysis focuses on the textual content of 

relevant webpage articles (also referred to as documents) and not the tweeted text per se. 

Document types selected for analysis included blog posts, media stories, informational 

articles, and news reports. We excluded academic publications, court documents, and media 

formats such as images, PDF files, and videos.
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A total of 26,389 tweets were collected between April 16, 2015 and May 29, 2015 from 

which we obtained 8,416 unique web links. To generalize findings from a representative 

pool of popular vaccine articles, we screened the top 100 most shared links for relevance 

from which we randomly sampled 50 for analysis; we excluded articles concerning non-

human vaccines.

2.2 Vaccine sentiment coding

Articles were read for content and manually coded as having either positive, negative, or 

neutral sentiment toward vaccines. Coding was determined by whole-text assessment which 

included examining the title/headline and the source/domain of articles. In general, 

differences between sentiment were determined based on consistency of statements that 

clearly identified group affiliation, such as encouraging vaccination and highlighting benefits 

(positive sentiment) or discouraging vaccination and highlighting risks (negative sentiment). 

Articles that were ambiguous or mixed in sentiment were coded as neutral. Three 

researchers (GJK, SRE, LM) independently coded a subset of 10 articles for sentiment; there 

was no inter-annotator variability and resulted in consistent sentiment coding.

2.3 Construction of vaccine sentiment networks

Document text networks were merged by sentiment group, thereby aggregating similar 

documents into a single semantic network, one for each vaccine sentiment (positive, 

negative, and neutral). We standardized node and edge labels to resolve lexical differences 

and grammatical dependencies across disparate sources. Details on semantic network 

annotation, construction, and analysis of vaccine sentiment networks are described in 

Appendix B.

2.4 Semantic network analysis

Our analysis of the positive, negative, and neutral sentiment networks was focused on the 

greatest connected component (or subgraph). We applied several measures of network 

analysis to the generated semantic networks in order to limit biased interpretation of selected 

network metrics [25] (Appendix B). Descriptive statistics included network size, density, 

and diameter, where network size is the total number of nodes (i.e., vaccine concepts); 

density measures the interconnectedness of nodes [28]; and diameter characterizes 

compactness of the network. We evaluated multiple measures of centrality which describes 

the importance, influence, or significance of concepts within the semantic network in 

various ways [29]; specific types include degree centrality, betweenness centrality, closeness 

centrality, and eigenvector centrality [30].

Community detection algorithms [31] describe cohesive groups in the network [32], and 

clusters of important vaccine concepts were visualized by the network’s maximum k-core 

(the maximal connected subgraph in which all nodes have degree of at least k) [33]. We 

assessed differences in emphasis framing, which is the salience of certain story elements 

over others [34], for central concepts from networks of differing sentiment. Closeness 

vitality [49] measures how much the distances between all pairs of nodes change when a 

particular node is removed. This is an indicator of how much each node contributes to the 

overall structural cohesion of the network.
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NetworkX [35] and iGraph [36] were used in network construction and analysis; 

visualizations were created in Gephi [37].

3. RESULTS

3.1 Document characteristics

From the sample of webpages (n=50), we coded 23 documents as having positive vaccine 

sentiment, 21 documents with negative vaccine sentiment, and 6 documents were classified 

as neutral. Table 1 summarizes document characteristics grouped by vaccine sentiment. Blog 

posts were the most shared document type overall, followed by news and “alternative news” 

for positive and negative sentiment articles respectively. Content of positive sentiment 

documents focused on specific childhood, adolescent, and adult vaccines, whereas negative 

sentiment documents focused primarily on childhood vaccines and vaccination in general.

3.2 Document text networks

Network properties of vaccine documents are summarized in Table 2. Negative sentiment 

documents (n=21) formed the largest semantic networks with a mean network size of 90.9 

concepts (nodes) per document, compared to smaller networks of positive sentiment (n=23) 

and neutral sentiment documents (n=6) with a mean of 51.3 and 43.8 concepts per document 

respectively.

3.3 Vaccine sentiment networks

Document text networks were aggregated by vaccine sentiment to form 3 semantic networks 

representing positive, negative, and neutral sentiment. Network measures are summarized in 

Table 2. Network visualizations are in Appendix C.

In regards to the greatest component subgraph, size indicates the number of concepts in the 

network, whereas density describes interconnectedness of the concepts. The greatest 

component of the negative network was largest in size (1140 concepts) but less dense 

(0.0027) than the positive network (0.0061) also much smaller in size (585 concepts). 

Community detection analysis [31] identified 21 distinct communities within the positive 

network, 31 communities in the negative, and 10 communities in the neutral network. 

Compared to the original number of merged documents per sentiment network, the number 

of cohesive communities exceeded the number of original documents within the negative 

and neutral networks, whereas the positive network formed fewer communities than the 

original number of documents used in merging. Community findings and density measures 

for the positive network suggest a more cohesive and interconnected belief system among 

positive sentiment concepts compared to the larger, less-connected network of negative 

sentiment. Correspondingly, the average clustering coefficient (i.e., the tendency of nodes to 

form groups) and average node centrality for degree, betweenness, closeness, and 

eigenvector centrality were higher for the positive network compared to the negative. 

Positive and negative networks exhibited structural similarities in regards to diameter (12 

and 13, respectively) and average path length (4.5 and 4.8, respectively). Visualizations of 

maximum k-core subgraphs for each sentiment network highlight clusters of significant 

concepts in Figure 1.
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3.3 Central concepts

Figure 2 plots significant concepts of each sentiment network by centrality measures for 

degree, betweenness, and closeness centrality (Appendix D). The most central concepts 

(greater than 2 standard deviations from the mean) ranked by eigenvector centrality are 

plotted in Figure 3 and listed in Table 3.

Excluding expected nodes such as vaccines and vaccination, the most central concepts for 

the positive network included parents, measles, children, SB 277, autism, community, 
religious groups, anti-vaccination, vaccine-autism link, HPV vaccine, meningococcal 
disease, and MMR vaccine. Significant concepts within the negative sentiment network were 

children, thimerosal, CDC, vaccine industry, mercury, autism, flu shots, mainstream media, 
doctors, SB 277, vaccine ingredients, mandatory vaccines, and pharmaceutical companies. 

And the most central concepts of the neutral network were SB 277, anti-vaccination, parents, 
children, pertussis vaccine, homeschool, education, pertussis, vaccine-autism link, side 
effects, Dwoskin Family Foundation, whole-cell vaccine, effective, acellular pertussis 
vaccine, and high-dose flu vaccine.

3.4 Dynamic visualizations

Dynamic, interactive visualizations and network data files from this study are available 

online (Appendix E).

4. DISCUSSION

4.1 Semantic network analysis of vaccine sentiment

A long line of research in the psychology of memory and semantic processing has provided 

evidence for semantic network-like organization of internal representations and spreading 

activation as a process by which memories are activated and meaning is processed [53, 54, 

50, 51]. In this model, when an item in memory is activated, e.g., by a person reading about 

it or hearing about it, the activation spreads from that node in the person’s internal semantic 

network to nearby nodes. Spreading activation is also hypothesized as the model for the 

automatic activation of attitudes [55].

From this perspective, closeness centrality is a useful metric to understand the organization 

of the vaccination semantic networks (though other centrality measures are quite similar in 

ranking, as the results show). Closeness centrality is a direct measure of which concepts are 

likely to be activated repeatedly in each of the semantic networks, even as different concepts 

are mentioned.

Many central concepts of the positive network were present in the negative network, but not 

vice versa. For example, while positive and neutral sentiment documents explicitly 

addressed the concept of anti-vaccination, negative sentiment articles did not. In regards to 

highly central concepts of the negative network, the positive network lacked any reference to 

the vaccine industry and mainstream media; CDC and doctors also held lesser significance 

in the context of positive vaccine sentiment.
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Significant concepts within the positive network were related to health and medicine, such 

as measles, autism, HPV vaccine, vaccine-autism link, meningococcal disease, and MMR 
vaccine. In contrast, significant concepts of the negative network referred to organizational 

bodies such as CDC, vaccine industry, doctors, mainstream media, pharmaceutical 
companies, and United States. A notable contrast was the emergence of parents as the most 

central concept in the positive network, versus children, the most central node in the 

negative network.

Documents expressing positive and neutral vaccine sentiment were characterized by dense 

semantic networks with fewer concepts, compared to the semantic network of negative 

sentiment which presented a high number of vaccine concepts with low connectivity. 

Compared to the positive sentiment network, the negative sentiment network has more 

components, lower edge density, a larger diameter, and larger average path length [Table 2]. 

Hence, positive sentiment documents indicated greater cohesiveness in vaccine-positive 

discourse compared to vaccine-negative documents which addressed a broad range of topics 

as potential contributors to vaccine hesitancy.

4.2 Message framing

Our study revealed sentiment-specific terminology used in framing positive and negative 

messages within vaccine communication. This included differences in term valence such as 

required vaccines versus mandated vaccines and side effects versus adverse effects, the 

selective targeting of parents versus children, and the overall presentation of evidence-based 

science versus social commentary related to issues of governance for the positive and 

negative vaccine sentiment networks, respectively.

Overall, the prevalence of negative vaccine sentiment was demonstrated through diverse 

messaging, framed around institutional distrust and skepticism towards the organizations 

that deliver scientific evidence of positive vaccine benefits. This is also shown by the list of 

top nodes for the closeness vitality measure for each network [Table D4], which is an 

indicator of the concepts which are responsible for providing structural cohesion to the 

semantic network [49]. Positive and negative vaccine articles largely differed in the framing 

of trust. Positive articles emphasized trust in vaccination by relying on scientific evidence as 

trusted authority. Negative articles framed trust issues not around vaccination science itself, 

but around the institutions that govern or finance matters of personal health. Neutral vaccine 

articles exemplified various sources of news coverage that expressed a mix of both positive 

and negative attitudes toward vaccines. Top news stories at the time of data collection 

included a new study debunking the vaccine-autism link and the passing of California Senate 

Bill 277 [38], which removed exemptions from school vaccination requirements. News 

coverage generally expressed positive vaccine sentiment, reporting official statements and 

statistics. In contrast, news coverage by negative vaccine articles additionally introduced a 

range of tangential topics, often proposing arguments through rhetorical questions and 

reframing official statistics.
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4.3 Limitations

We assumed that popular vaccination information shared on Twitter is representative of 

prevalent vaccine sentiment, but may not reflect the broad spectrum of vaccine sentiment in 

the general population. Coding documents for neutral sentiment was difficult since 

documents presented a mix of both positive and negative attitudes, and not truly vaccine-

neutral. Because health behaviors are founded upon a variety of beliefs and attitudes that 

change over time, vaccine sentiment categories are difficult to delineate since they do not 

exist as polarized groups.

While we attempted to resolve issues of meaning and context by manually transcribing 

implicit statements into explicit statements, reference resolution grew increasingly difficult 

across different documents. Consequently, there is potential inconsistency from the manual 

annotation of document text into network data, particularly when dealing with ambiguous 

language such as slang, hyperbole, and poetic devices. Despite these limitations, employing 

human interpretation of text greatly enhances qualitative aspects of data and is arguably 

more accurate than current NLP methods which lack explicit domain-specific knowledge or 

situational information [22]. Lastly, our analysis did not assess the qualitative relationships 

of connected concepts. Future studies incorporating edge data can provide detailed insight 

into the comparison of belief structures of varying vaccine sentiment.

Our study presents only a broad overview of general network measures. Greater depth into 

specific metrics, such as community detection analysis, can provide useful insight and 

should be addressed in future studies.

4.4 Implications for public health and vaccine communication

The SAGE WG on Vaccine Hesitancy [26] states that communication is a tool to address 

vaccine sentiment rather than a determinant of hesitancy. However, poor communication can 

undermine vaccine acceptance in any setting [39]. Our study lends itself to the development 

of effective communication strategies for target populations by identifying specific factors 

that influence vaccine hesitancy---an integral component of every immunization program 

[39].

Semantic network analysis of vaccine sentiment in online social media can enhance our 

understanding of the scope and variability of attitudes and beliefs toward vaccination. Our 

findings emphasize the need to improve the framing and messaging of public health 

communication, that not only highlights the vaccine benefits, but also addresses specific 

issues related to vaccine hesitancy and institutional distrust. Enhancing public trust in 

relevant scientific institutions and engaging in efficient public health communication is 

critical in improving vaccine confidence and vaccination coverage [40].

4.5 Conclusion

We discussed findings from a novel framework that uses semantic network analysis as an 

efficient and effective way to analyze vaccine sentiment. This study adds to a growing body 

of vaccine hesitancy research by investigating emerging topics and the various discourse 

surrounding current vaccine perspectives. Findings related to significant concepts, the 
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structure of its relations, and semantic qualities can better inform targeted vaccine 

communication strategies and enhance effectiveness of public health efforts to increase 

vaccine confidence.
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Appendix A: ChatterGrabber parameters, search terms, and summary of 

results

ChatterGrabber search terms were selected through an iterative process involving manual 

selection and testing of data retrieval as detailed in [27].

A1

Description of ChatterGrabber parameters

Location United States

Tweet Data Text, ID, Time Posted, Retweet Count, Favorite Count

User Data Screen Name, Language

Media Data Url, Display Url

A2

ChatterGrabber search terms

Conditions Qualifiers Exclusions

vaccine autism bullshit

vaccinat autistic penn & teller

vacine conspiracy penn and teller

vacinate gave my enter the kingdom of heaven

MMR gave me heroin

antivac oprah eye of a needle

aspergers thread

poison molds

jenny mccarthy record

kristin cavallari efficacy

conspiracy shoot up

mercury needle exchange

aluminum morphine

truther knit

bravo crochet

anti fracking
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Conditions Qualifiers Exclusions

manufacturers insulin

have known malware

vaccine choice pincushion

your child addict

your right fuel

cancer needlework

fertility felt

constitution caffeine

risks scaling

dangerous space

A3

Twitter data via ChatterGrabber

n

Total number of collected tweets 26389

Number of unique urls 8416

Number of unique domains 2372

Number of web articles selected for analysis 50

Appendix B: Network methods

Network annotation and construction

To create document networks, article text was manually transcribed into structured belief 

statements, or relevant information extracted from natural language text. Similar to methods 

of information extraction used by the Knowledge Vault project [41], document text was 

formatted as triples, in which (subject, predicate, object) correspond to (node, edge, node) in 

the network. For example, the sentence “Vaccines prevent communicable diseases” is 

represented by (vaccines, prevent, communicable diseases). Three researchers initially 

annotated a subset of 10 documents to gauge inter-annotator variability in transcribing 

article documents into network datasets. All co-references were resolved and the original 

text was adhered to as much as possible. Discordant results were resolved through consensus 

in order to maintain standard formatting of network data. Final network datasets were 

synthesized by standardizing terminology, resolving grammatical dependencies and lexical 

differences in the semantic network.

The resulting standards for network vocabulary were based on term frequency. For example, 

synonymous nodes labeled “communicable diseases”, “infectious diseases”, and “contagious 
diseases”, we applied the most commonly used term across same-sentiment documents (in 

this case “infectious diseases”) to replace labels of all semantically equivalent nodes.
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Definitions of network measures

Network size is the total number of nodes or vaccine-related concepts. Density measures the 

interconnectedness of nodes, calculated as the proportion of existing edges (or relations 

between concepts) over all possible edges in the network [42]. Diameter characterizes the 

compactness of the network, measured as the longest path of all shortest paths across all 

node pairs.

Degree centrality characterizes how connected a node is to other nodes in the network, 

measured by its number of connections (and normalized by the total number of network 

connections) [43]. Betweenness centrality measures the frequency of a given node on the 

shortest paths to all other pairs of connected nodes, representing the probability of a concept 

to be involved in connecting two other concepts in the semantic network [43,44]. Closeness 

centrality measures closeness, calculating the sum of the shortest paths between a node to all 

other nodes in the network [43]. Nodes with smaller path lengths have higher closeness 

centrality and are interpreted to be more important concepts than nodes with longer paths 

[45]. Lastly, eigenvector centrality provides a more complex measure of node influence by 

assigning relative scores to all concepts in the network, based on the number and quality of 

its relationships; a concept is significant to the extent that it is connected to other significant 

concepts [46].

Community detection using the Newman-Girvan algorithm detects communities by 

consecutively removing each edge with the highest edge betweenness from the graph [31]. 

Edge-betweenness refers to the number of shortest paths from one node to another that 

traverse through that edge. Cohesive groups in the network are measured by modularity, in 

which a good partition has more intra-community edges than expected at random; 

modularity values other than zero represent deviations from randomness [32].

Appendix C: Network visualizations

[C1-C3]: Full semantic networks of vaccine sentiment

Visualizations for full semantic networks of [C1.] positive vaccine sentiment, [C2.] negative 

vaccine sentiment, and [C3.] neutral vaccine sentiment. Node size represents betweenness 

centrality.
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C1. 
Full semantic network of positive vaccine sentiment.
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C2. 
Full semantic network of negative vaccine sentiment.
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C3. 
Full semantic network of neutral vaccine sentiment.

[C4-C6]: Greatest component subgraph of vaccine sentiment networks

Visualizations of the greatest component subgraph for networks of [C4.] positive vaccine 

sentiment, [C5.] negative vaccine sentiment, and [C6.] neutral vaccine sentiment, where 

increasing node size represents greater betweenness centrality.
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C4. 
Greatest component subgraph of the positive sentiment network.
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C5. 
Greatest component subgraph of the negative sentiment network.
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C6. 
Greatest component subgraph of the neutral sentiment network.

Appendix D: Degree centrality, betweenness centrality, closeness centrality, 

and eigenvector centrality

[D1-D3]: Significant vaccine concepts by centrality

Centrality characterizes the importance, influence, or power of vaccine-related concepts in 

the semantic network. The table lists measures for the most central concepts (greater than 2 

standard deviations from the network mean) by degree centrality, betweenness centrality, 

closeness centrality, and eigenvector centrality for [D1.] positive sentiment, [D2.] negative 

sentiment, and [D3.] neutral sentiment networks.

D1

Most central nodes and centrality measures for the positive sentiment network.

Positive vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality

Mean = 0.0061 Mean = 0.006 Mean = 0.2292 Mean = 0.0626
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Positive vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality

Std Dev = 0.0107 Std Dev = 0.0203 Std Dev = 0.038 Std Dev = 0.0936

vaccines 0.1079 parents 0.2718 parents 0.3687 parents 1

parents 0.0993 vaccines 0.2176 vaccines 0.3482 vaccines 0.8209

measles 0.0993 measles 0.1546 children 0.3415 measles 0.7458

vaccination 0.0856 anti-vaccination 0.1261 measles 0.3382 vaccination 0.6373

autism 0.0616 religious groups 0.1018 community 0.3227 children 0.5382

HPV vaccine 0.0565 vaccine-autism link 0.0917 religious groups 0.3219 SB 277 0.4207

vaccine-autism link 0.0531 meningococcal disease 0.0905 autism 0.3188 autism 0.4025

meningococcal disease 0.0531 children 0.0825 SB 277 0.3158 community 0.3937

anti-vaccination 0.0479 autism 0.0799 vaccine-autism link 0.3148 religious groups 0.3905

children 0.0445 HPV vaccine 0.0732 anti-vaccination 0.3121 anti-vaccination 0.3802

MMR vaccine 0.0411 community 0.0574 vaccination 0.3100 vaccine-autism link 0.3608

religious groups 0.0394 SB 277 0.0571 herd immunity 0.3058

measles vaccine 0.0377 measles vaccine 0.0523 vaccine refusal 0.3024

SB 277 0.0342 side effects 0.0510 vaccination exemption 0.3013

disease 0.0308 Gardasil 0.0496 personal belief exemption 0.2909

vaccination exemption 0.0291 disease 0.2829

autism risk 0.0291 measles vaccine 0.2706

schools 0.2685

HPV vaccine 0.2674

vaccine delay 0.2603

meningococcal disease 0.2551

D2

Most central nodes and centrality measures for the negative sentiment network.

Negative vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality

Mean = 0.0027 Mean = 0.0033 Mean = 0.2161 Mean = 0.0318
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Negative vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality

Std Dev = 0.0058 Std Dev = 0.0148 Std Dev = 0.0365 Std Dev = 0.06

vaccines 0.1054 vaccines 0.3280 vaccines 0.3582 vaccines 1

children 0.0623 children 0.1889 children 0.3375 children 0.6188

thimerosal 0.0588 CDC 0.1274 vaccine industry 0.3275 thimerosal 0.5248

CDC 0.0527 vaccine industry 0.1213 autism 0.3249 CDC 0.5054

vaccine industry 0.0518 autism 0.1028 mercury 0.3245 vaccine industry 0.4898

autism 0.0386 thimerosal 0.0869 thimerosal 0.3209 mercury 0.4440

doctors 0.0351 doctors 0.0863 CDC 0.3197 autism 0.3894

mainstream media 0.0351 mercury 0.0629 SB 277 0.3072 flu shots 0.3367

mercury 0.0334 mainstream media 0.0624 mainstream media 0.3070 mainstream media 0.3342

flu shots 0.0263 mandatory vaccines 0.0583 flu shots 0.3037 doctors 0.2862

pharmaceutical companies 0.0263 flu shots 0.0576 doctors 0.3028 SB 277 0.2659

mandatory vaccines 0.0255 pharmaceutical companies 0.0552 vaccine ingredients 0.2990 vaccine ingredients 0.2632

vaccination 0.0237 informed consent 0.0485 mandatory vaccines 0.2969 mandatory vaccines 0.2457

SB 277 0.0228 people 0.0474 toxic chemical ingredients 0.2958 pharmaceutical companies 0.2400

United States 0.0202 vaccine ingredients 0.0453 vaccine-autism link 0.2952 vaccine-autism link 0.2041

measles 0.0193 United States 0.0449 vaccine safety 0.2933 toxic chemical ingredients 0.1999

vaccine ingredients 0.0184 measles 0.0444 intelligent questions 0.2905 aluminum 0.1889

informed consent 0.0184 vaccination 0.0438 vaccines are safe 0.2895 vaccination 0.1853

people 0.0184 vaccine safety 0.0399 monosodium glutamate 0.1811

pandemic H1N1 swine flu 
vaccine

0.0184 adverse effects 0.0354 hepatitis B vaccine 0.1793

Merck 0.0184 vaccine-injured children 0.1763

measles mortality 0.0184 vaccine safety 0.1721

evidence 0.1655

informed consent 0.1643

intelligent questions 0.1612

formaldehyde 0.1609

pregnant women 0.1598

pandemic H1N1 swine flu 
vaccine

0.1595
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Negative vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality

Big Pharma 0.1591

vaccines are safe 0.1565

quackery 0.1552

vaccine damage 0.1547

SV40 0.1545

science 0.1531

D3

Most central nodes and centrality measures for the neutral vaccine network.

Neutral vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality

Mean = 0.0149 Mean = 0.0342 Mean = 0.1533 Mean = 0.0975

Std Dev = 0.0204 Std Dev = 0.0839 Std Dev = 0.0296 Std Dev = 0.11

SB 277 0.1824 vaccines 0.5749 vaccines 0.2335 SB 277 1

vaccines 0.1118 Dwoskin Family Foundation 0.4092 side effects 0.2208 vaccines 0.4304

anti-vaccination 0.1059 pertussis vaccine 0.3947 pertussis vaccine 0.2199 anti-vaccination 0.4177

pertussis vaccine 0.0824 vaccine-autism link 0.3620 whole-cell vaccine 0.2133 parents 0.3863

pertussis 0.0824 SB 277 0.3294 effective 0.2133 children 0.3830

high-dose flu vaccine 0.0647 children 0.2643 pertussis vaccine 0.3540

anti-vaccination 0.2554 home-school 0.3209

side effects 0.2347 education 0.3206

acellular pertussis vaccine 0.2077

D4

Top ranked nodes by closeness vitality for the three networks

Closeness vitality

Negative sentiment network Neutral sentiment network Positive sentiment network

Mean = 19148.407 Mean = 7029.871 Mean = 8449.754

Std Dev = 24052.786 Std Dev = 16597.291 Std Dev = 9778.734
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Closeness vitality

Negative sentiment network Neutral sentiment network Positive sentiment network

thimerosal 239154 vaccines 127564 meningococcal disease 79948

MTHFR C677T defect 222220 Dwoskin Family Foundation 109972 vaccination 77396

millions of dollars 210944 vaccine-autism link 100468 polio vaccine opposition 74438

children with autism 201122 SB 277 49768 Wakefield study 64018

measles mortality 179468 acellular pertussis vaccine 48048 HPV vaccine 63748

vaccine court 172456 artificial vaccine 43430 vaccines 61934

National Vaccine Injury 
Compensation Program

168948 anti-vaccination 41638 autism 61016

anti-vaccination 145200 Generation Rescue 37594 orthodox Hasidic Jews 55846

measles 141736 immune response 34424 measles 47038

adverse effects 141140 Focus for Health 32640 hepatitis A vaccine 44804

Appendix E: Data files

Data files and dynamic web-based interactive visualizations of semantic networks can be 

accessed online at: http://staff.vbi.vt.edu/swarup/vaccine_sentiment/.
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Figure 1. Maximum k-core subgraphs show clusters of significant vaccine concepts within the 
semantic networks
Visualizations of maximum k-cores (i.e., the maximal connected subgraph in which all 

nodes have degree of at least k) for networks of [a.] positive vaccine sentiment (k = 4), [b.] 

negative vaccine sentiment (k = 4), and [c.] neutral vaccine sentiment (k = 2) where 

increasing node and text size represents increasing betweenness centrality.
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Figure 2. Significant vaccine concepts by measures of degree centrality, betweenness centrality, 
and closeness centrality
The figure includes centrality measures for significant concepts from positive, negative, and 

neutral sentiment networks. Degree centrality (point size), betweenness centrality (x-axis), 

and closeness centrality (y-axis) are plotted.

Kang et al. Page 27

Vaccine. Author manuscript; available in PMC 2018 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Significant concepts ranked by eigenvector centrality
The figure plots the most central nodes by eigenvector centrality score for networks of 

positive, negative, and neutral vaccine sentiment.
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Table 2
Summary of measures for article text networks and sentiment group networks

The table describes network characteristics of extracted web documents; joint semantic networks of positive, 

negative, and neutral vaccine sentiment; and the corresponding greatest connected component. Measures 

describe network size, density, and average centrality.

Vaccine sentiment Positive Negative Neutral

Document text networks

Number of documents (Total=50) 23 documents 21 documents 6 documents

Average number of nodes (per document) 53.1 nodes 90.9 nodes 43.8 nodes

Average number of edges (per document) 49 edges 90.7 edges 39.7 edges

Average degree (per document) 1.9 1.98 1.8

Vaccine sentiment networks

Average degree 3.356 2.95 2.348

Number of connected components 21 49 12

Greatest component subgraph

Nodes / Total network nodes 585 / 652 nodes 1140 / 1257 nodes 171 / 201 nodes

Edges / Total network edges 1042 / 1094 edges 1783 / 1854 edges 216 / 236 edges

Average degree 3.562 3.128 2.526

Diameter 12 13 17

Density 0.0061 0.0027 0.0149

Number of communities 21 31 10

Average path length 4.492 4.77 6.78

Average degree centrality 0.0061 0.0027 0.0149

Average betweenness centrality 0.006 0.0033 0.0342

Average closeness centrality 0.2292 0.2161 0.1533

Average node connectivity 1.3117 1.1835 1.035

Average clustering coefficient 0.196 0.14 0.131
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