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There is perhaps no other procedure in epidemiology which is so apparently simple, but so 

practically and theoretically complex as matching in case-control studies. The paper by 

Mansournia et al [1] in this issue of the Journal is the most recent in a long line of papers 

which explore and clarify the methodological issues involved, including a previous paper by 

the same first author [2]. The issues and solutions discussed are not original, but 

Mansournia et al nevertheless make a major contribution in systematically and 

comprehensively addressing the key issues associated with matching in case-control studies. 

Unfortunately, it seems that each generation of epidemiologists needs to learn these 

concepts all over again. 

 

Mansournia et al make extensive reference to a paper which I recently published in the 

British Medical Journal[3], in which I wrote that matching can ‘introduce confounding by the 

matching factors…’. They note that the bias introduced by matching is actually selection 

bias, not confounding. Thus, unadjusted estimates in matched case-control studies involve a 

combination of confounding by the matching variable (already present in the source 

population) and selection bias by the matching variable (introduced by the selective study 

recruitment, including the matching). Both biases can be removed by adjusting for the 

matching variable, just like other ‘confounder’ adjustments. Thus, other authors have 

referred to ‘selection confounding’[4 5]), and my own rather lazy use of language (and the 

space constraints of a short BMJ piece), led me to describe matching bias as confounding, 

rather than selection bias,  an error which I am pleased to take the opportunity to correct 

here. 
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 The original draft of my paper included a Directed Acyclic Graph (DAG) which showed ‘that 

the bias introduced by matching was in fact selection bias (see figure 1 – the labelling has 

been changed to make it consistent with that of Mansournia et al), but unfortunately this 

was not included in the published version of the paper. One of the frustrating things I have 

experienced in teaching matched case-control studies is that methodological issues difficult 

to explain in words, or with numerical examples, can easily be addressed in DAGs, but this 

requires the audience to be familiar with those methods.  

 

However, it is also striking that DAGs are not useful for all of the problems of bias in 

matched case-control studies (or many other epidemiological problems), and sometimes are 

not useful at all. This mirrors more general recent debates about the strengths and 

limitations of DAGs[6-13]. I would therefore like to take the opportunity to explore these 

issues further with regards to matched case-control studies, and the five main issues 

discussed by Mansournia et al. In this context, it is of interest that Mansournia et al use 

DAGs to address only some of these issues, and use statistical theory and numerical 

examples to address the others. 

 

Bias introduced by case-control matching is an intentional selection bias  

As noted above, matching in case-control studies introduces selection bias, since selection 

into the study (S) creates a backdoor pathway from E to C to S to D. This can only be 

removed by controlling for the matching factor (C). Figure 1 illustrates the power of DAGs to 

address these issues. The figure shows both confounding in the source population (the 

direct arrows from C to E and D), and the selection bias introduced by the matching (E-C-S-

D). Both can be removed by control for the matching factor (C). However, the DAG does not 
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tell us the likely strength and direction of the two biases; the confounding could be in any 

direction (in table 1 it is strongly negative[1 3]) whereas the matching bias is always towards 

the null, but you cannot tell this directly from this DAG. 

 

A related striking finding from Mansournia et al (see Figure 2 in their paper) is that there is 

no net bias after matching if the exposure has no effect on the disease (i.e. there is no direct 

arrow from E to D). In this situation, the confounding in the source population (E-C-D) is 

exactly cancelled out by the selection bias introduced by the matching (E-C-S-D)[2]. The 

reasons for this are not immediately clear, and are certainly not established by the DAG 

(why should these two biases be in opposite directions and of the same magnitude?), which 

is presumably why Mansournia et al use other evidence and arguments to establish this 

point.  

 

Adjustment of matching variables should account for both the actual matching protocol and 

further confounding effects 

Adjustment for the matching variable blocks both the backdoor path through selection (E-C-

S-D), and the ‘standard’ confounding backdoor path (E-C-D). The DAG makes it clear that 

controlling for the matching factor (e.g. age), blocks both of these paths, but it does not 

make it clear that a different level of precision may be required in the two adjustments. For 

example, if there is strong confounding by age, then five-year age-groups (or smaller) may 

be required to adjust for confounding, even if the matching (and resulting selection bias) has 

only been done in ten-year age-groups. In general, control for selection bias should involve 

at least as much precision as was involved in the original matching [14], although in practice 

such rigorous precision may not always be required[3]; for example, if controls have been 
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matched on exact age (to the day), control for age may still be quite adequate if five-year 

age-groups are used. This could be represented in a DAG (David Richardson, personal 

communication) by having two versions of ‘C’ in the DAG (the coarse version C*, and the 

finer version C), but this solution relies on external knowledge to draw the correct DAG (of 

course, this is true of all DAGs). A related issue is that DAGs are non-parametric, and as 

Mansournia et al note, cannot easily address situations where adjusting for age as a 

continuous variable does not adequately control for age, because precise age matching 

creates a discontinuous ‘saw-tooth’ age-disease association[1]. 

 

Identically matched sets should be collapsed together 

This was the main point of my BMJ paper, i.e. that a pair-matched design does not 

necessarily require a pair-matched analysis. Once again, this is not readily apparent from the 

DAG, and relies on statistical theory[1]. This can be represented in the DAG by having a 

coarse (C*) and a finer(C) version of the matching factor in the DAG (David Richardson, 

personal communication). 

 

Case-control matching on a non-confounder associated with disease may lead to selection 

bias 

If there were no direct arrow from C to D, then there is no confounding, but selection bias is 

introduced by the matching process, creating the backdoor path through S. This is an 

example where DAGs can help clarify an important methodological issue. 

 

Matching may lead to overadjustment, thus harming precision or creating uncorrectable bias 
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If the matching factor has little or no association with the disease (i.e. there is no arrow, or 

just a weak arrow, from C to D), but is strongly associated with exposure, and is also strongly 

associated with selection (because of matching), the result of matching is to create a strong 

backdoor pathway through the selection/matching process. In extreme situations, blocking 

this backdoor pathway results in a loss of precision, because there are very few instances 

where the cases or controls are discordant with respect to exposure. Once again, the DAG 

cannot show this easily, since it is not (easily) possible to indicate the strengths of the 

various associations. 

 On the other hand, DAGs can clearly show us why certain variables are causally 

inappropriate for adjustment (such as an intermediate variable, or a variable affected by 

both exposure and disease)[15 16] They thus identify variables which should be avoided for 

matching, since matching on them will cause both the unadjusted and matching-adjusted 

analyses to be biased[1]. 

 

Conclusions 

So where does this leave us? I seem to spend half my time advocating the increased use of 

DAGs, and the other half warning about the dangers of their overuse[13]. DAGs have 

clarified a number of key concepts in epidemiology, including the difference between biases 

resulting from (inappropriate) conditioning on common effects (collider bias) and lack of 

conditioning on common causes of the exposure and outcome (confounding)[5 15-17] . 

They clarify that confounding occurs not only when the exposure and disease are both 

affected by another variable (C), but also under less intuitive conditions.  

Traditional definitions of confounding involve three criteria (C is predictive of disease, 

associated with exposure, and not affected by exposure or disease), which are traditionally 
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treated as necessary but not sufficient for C to be a confounder. I always wondered what 

these strange situations where a variable could satisfy all three criteria, but still not be a 

confounder. This was clarified (for me, at least), by the advent of DAGs, which revealed the 

existence of a type of collider bias called ‘M bias’[16], in which C satisfied the traditional 

criteria but was not a confounder at all: adjustment for it instead produced confounding! 

This occurs when there are variables which are causes of exposure and C but not disease, 

and independent variables which are causes of C and disease but not exposure. Adjustment 

for C then opens a path between the two types of variables, thus unblocking a backdoor 

pathway from exposure to disease[16].  

 

Unhelpfully, Hernan et al gave the name of ‘selection bias’ to all forms of collider bias[5], 

even those in which no selection of participants from the source population has occurred 

(e.g. M bias can occur even when all of the source population is included in the study). For 

causal inference, it can be argued that ‘collider bias’ is the more general concept, whereas 

selection bias is a particular type of collider bias where the common effect that is 

conditioned on is selection into the study[15 18]. 

 

More generally, as illustrated here, not all problems in epidemiology can be solved by DAGs, 

nor can DAGs provide a practical perspective on how likely particular biases are, or how 

strong they may be [9 13 18] Thus, I completely agree with the conclusion of Mansournia et 

al that it is ‘highly misguided if not destructive to ignore the practical difficulties of locating 

and recruiting valid population control groups while attempting to avoid theoretical biases 

that are likely to be minor’. A related example of this is ‘collider anxiety’, where potential 

confounders are not adjusted for because there is a hypothetical risk that their control 
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might create M-bias [18], even though in many plausible scenarios this bias is likely to be 

very small[16].  

 

My own experience is that although there are many problems where drawing the right DAG 

may help solve a problem, there are others where you need to solve the problem first 

before you can draw a sensible DAG, which in turn depends on deep subject matter 

knowledge[8 11 12]. The same issues apply here, in which some of the key issues in 

matched case-control studies require deep understanding of statistical theory[1], and not all 

can be easily addressed with DAGs. As with all mathematical and statistical methods, DAGs 

are an aid to thought, not a substitute for it[9].  
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Figure 1: Directed Acyclic Graph (DAG) for a matched case-control study 

 
 

 

 

 

 


