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Abstract

Background: Monozygotic twins have long been studied to estimate heritability and explore epigenetic influences
on phenotypic variation. The phenotypic and epigenetic similarities of monozygotic twins have been assumed to
be largely due to their genetic identity.

Results: Here, by analyzing data from a genome-scale study of DNA methylation in monozygotic and dizygotic
twins, we identified genomic regions at which the epigenetic similarity of monozygotic twins is substantially
greater than can be explained by their genetic identity. This “epigenetic supersimilarity” apparently results from
locus-specific establishment of epigenotype prior to embryo cleavage during twinning. Epigenetically supersimilar
loci exhibit systemic interindividual epigenetic variation and plasticity to periconceptional environment and are
enriched in sub-telomeric regions. In case-control studies nested in a prospective cohort, blood DNA methylation
at these loci years before diagnosis is associated with risk of developing several types of cancer.

Conclusions: These results establish a link between early embryonic epigenetic development and adult disease.
More broadly, epigenetic supersimilarity is a previously unrecognized phenomenon that may contribute to the
phenotypic similarity of monozygotic twins.
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programming, DOHaD
Background
Epigenetic mechanisms govern cell type-specific dif-
ferences in gene expression potential [1]. DNA methyla-
tion, which occurs predominantly at CpG dinucleotides in
the mammalian genome, is a stable epigenetic mark
critical to genomic imprinting, silencing of retrotranspo-
sons, and cell type-specific gene expression. Thirty years
ago it was proposed that aberrant DNA methylation could
function as an “epimutation” and contribute to human
disease, analogously to genetic mutations [2]. Indeed,
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DNA methylation is implicated in cancer [3] and a host of
human diseases. Advancing our understanding of the role
of DNA methylation in human disease is complicated,
however, by the cellular heterogeneity of epigenetic marks,
the influence of genetics on epigenetics, and the potential
for reverse causality [4, 5].
The characteristics of metastable epialleles (MEs) cir-

cumvent these obstacles, offering outstanding opportuni-
ties to understand how interindividual epigenetic variation
contributes to human disease. MEs are epigenetic variants
that are set stochastically in the early embryo and main-
tained during subsequent cellular differentiation [6]. Con-
sequently, MEs function as epigenetic polymorphisms, i.e.,
stable and systemic (not cell type-specific) individual vari-
ants. Epigenetic metastability was discovered due to visible
phenotypic differences among isogenic inbred mice [7].
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Interindividual variation in gene expression and phenotype
is correlated with stable individual differences in DNA
methylation at murine MEs [8].
Reasoning that monozygotic twins offer a human ana-

log of inbred mice, we explored a publicly available
genome-scale CpG methylation data set for monozy-
gotic (MZ) and dizygotic (DZ) twins [9] based on the
widely utilized Illumina Infinium Human-Methylation
450 (HM450) array. We discovered that many candi-
date MEs exhibit inordinately high epigenetic similarity
in MZ twin pairs—a phenomenon we have termed “epi-
genetic supersimilarity”. We propose a model to explain
this phenomenon, characterize genomic and epige-
nomic features of epigenetically supersimilar loci and,
in a large prospective epidemiologic study, show that
methylation at these loci in peripheral blood DNA years
before diagnosis is associated with risk of specific types
of cancer.

Results
Epigenetic supersimilarity in MZ twins
Rather than being predominantly determined by genet-
ics, interindividual variation in DNA methylation at MEs
is determined, at least in part, stochastically [6] and in-
fluenced by the nutritional milieu of the preimplantation
embryo [10–12]. We therefore expected that, at MEs,
methylation concordance within MZ twin pairs would
be greater than that of unrelated individuals, but com-
parable to that within DZ twin pairs. To test this, we an-
alyzed a genome-scale DNA methylation data set from
Grundberg et al. [9], who used the HM450 array to as-
sess methylation in adipose tissue from adult female
twins of European-descent (97 MZ twin pairs and 162
DZ twin pairs). As did Grundberg et al., we discarded
low-quality probes potentially affected by single nucleo-
tide polymorphisms (SNPs) and, of the remaining
344,303 probes, focused our analysis on the 10%
(34,405) with the highest interindividual variance (here-
after referred to as the top 10%).
Within regions previously identified as candidate or

bona fide MEs [13, 14], we assessed twin–twin methyla-
tion concordance inversely by probe-specific mean
square error (MSE) of β values. MSE assesses the devi-
ation of a twin pair from the line of identity, providing a
direct measure of discordance. Contrary to our expect-
ation, MZ twin concordance in putative ME regions was
between 2.5- and 16.5-fold higher than that of DZ twins
(Fig. 1). This suggested that establishment of DNA
methylation at these regions is under genetic control. To
test this, we examined the probe-specific narrow-sense
heritability (h2) estimates (based on the ACE method
[15]) from Grundberg et al. [9]; h2 is the proportion of
phenotypic variation in a population that is attributable
to genetic variation [16]. Strikingly, 1058 probes (3% of
total) showed h2 estimates > 1 (Fig. 2a). Most of the
probes within the candidate MEs featured in Fig. 1 were
among them (Fig. 2a), indicating that these superordin-
ate h2 values are not simply a result of sampling error.
Clearly, h2 values > 1 are difficult to interpret. To bet-

ter understand this observation, we calculated MSE for
all 34,405 top 10% probes [9]. To elucidate the extent to
which DZ and MZ twins are more similar than pairs of
unrelated individuals, probe-specific MSEs were normal-
ized relative to randomized pairs (RZ), simulating pair-
wise MSE within the general population. DZ/RZ MSE
and MZ/RZ MSE were generally < 1, as expected
(Fig. 2b). Genetic influences on CpG methylation gener-
ally occur when the local sequence context in cis (i.e., a
haplotype) affects establishment of methylation [17].
Given that DZ twins are identical by descent at 50% of
haplotypes [18] and MZ twins at 100% of haplotypes, a
model based on genetic determination predicts that the
mean normalized DZ MSE should be no more than
twice the mean normalized MZ MSE. Hence, for probes
to the left of the green line (y = 2x) in Fig. 2b, MZ twin
pairs show greater-than-expected similarity in DNA
methylation. We refer to this phenomenon as “epigen-
etic supersimilarity” (ESS). According to the central limit
theorem, assuming that probe-specific methylation is de-
termined by many unobserved (genetic) factors, the
mean intra-pair errors should be normally distributed.
Indeed, normalized DZ MSE are, but normalized MZ
MSE are skewed to the left (P = 7.0 × 10–66) (Fig. 2b).
Each probe with DZ/MZ MSE > 2 (corresponding to
those left of the green line in Fig. 2b) is > 5 standard
deviations (sd) away from the expected normal mean
(P < 0.0001) (Additional file 1: Figure S1a), well beyond
the range of sampling error. Most of the probes for
which Grundberg et al. estimated h2 > 1 are character-
ized as ESS (Fig. 2b). Our initial validation studies
found that many ESS probes with interindividual β
range < 0.4 in the Grundberg et al. data set [9] are es-
sentially unmethylated in several human primary tis-
sues. We therefore refined the selection criteria to
MSE DZ/MZ > 2 and an interindividual β range > 0.4,
identifying 1580 probes (4.6% of the 34,405) as ESS
(Additional file 1: Figure S1b and Additional file 2:
Table S1). Across all probes with β range > 0.4, normal-
ized DZ MSE remained normally distributed, but nor-
malized MZ MSE were shifted even further to the left
(Additional file 1: Figures S1b, c).
To further test whether the superordinate heritability

estimates of Grundberg et al. might somehow result
from the genetic identity of MZ twin pairs, we analyzed
their data on methylation quantitative trait loci
(mQTL), i.e., sequence variants correlated with methy-
lation at specific CpG sites [19]. Grundberg et al. [9]
combined their genotyping and HM450 data on 603



Fig. 1 Methylation in MZ twin pairs is highly concordant at candidate metastable epialleles (MEs). Each plot shows probe-specific β values for 97
MZ (blue, twin 2 > twin 1) and 162 DZ (red, twin 2 < twin 1) twin pairs, at loci previously identified as bona fide or candidate MEs [13, 14]. Insets
show locus-average mean square errors (MSE) across all the MZ and DZ twins. MSE is much lower in MZ compared to DZ twins. a VTRNA2-1, 15
probes, 10.6-fold lower MSE (in MZ vs. DZ). b DUSP22, 11 probes, 16.5-fold lower. c PAX8, eight probes, 2.5-fold lower. d CYP2E1, three probes,
10.8-fold lower. e SFT2D3, four probes, 3.1-fold lower. f CFD, one probe, 6.6-fold lower
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adipose tissue samples and applied a conservative sig-
nificance threshold (P < 1.2 × 10–9), identifying 9708
mQTL probes within the top 10% of interindividual
variance. Among these, as expected, the strength of the
mQTL association was positively associated with herit-
ability (Fig. 2c, top). There was no such association
across ESS probes (Fig. 2c, middle). If the superordinate
heritability associated with ESS results from the genetic



Fig. 2 (See legend on next page.)
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Fig. 2 Some HM450 probes exhibit epigenetic supersimilarity (ESS). a Distribution of probe-specific narrow-sense heritability (h2) estimates from
[9]. (Shown are data on 24,839 probes; 9566 probes with h2 < 0.001 were excluded for clarity.) Of the probes, 1058 show h2 > 1, including most of
the probes illustrated in Fig. 1 (red box plot). b Normalized DZ MSE vs. MZ MSE for the 34,405 probes (top 10%) from Grundberg et al. [9]. Histograms
(right and top) show distribution; red curves show best normal fit. Normalized DZ MSE (mean ± standard deviation = 0.76 ± 0.13) is normally distributed,
but normalized MZ MSE (0.63 ± 0.23) is skewed left (P = 7.0 × 10–66). Probes with h2 > 1 are shown in blue. Probes to the left of the green line (y = 2x) are
classified as ESS. c Associations between probe-level mQTL and heritability estimates (both from Grundberg et al. [9]). Among the 9708 probes that are
both in the top 10% of interindividual variance and positive for mQTL (top panel) mean heritability is 0.64 (gray vertical line) and positively associated with
the strength of mQTL. Among ESS probes positive for mQTL (middle panel), mean heritability is 0.90 and not associated with mQTL. Mean heritability of
ESS probes negative for mQTL (0.99, bottom panel) is similar to that of mQTL-positive ESS probes. d Model to explain ESS in MZ twins. Numbers on the
dice represent different methylation states at a specific locus. If de novo methylation occurs after embryo cleavage (top), each MZ embryo undergoes
independent establishment. If de novo methylation occurs prior to embryo cleavage (bottom), both MZ embryos inherit the same methylation state.
e Consistent with this model, bisulfite pyrosequencing in three tissues of 17 cadavers indicates that ESS probes also show systemic interindividual
variation. Two examples are shown, OR2L13 and HLA-DQB2
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identity of MZ twins, the mean heritability of ESS
probes with mQTL should be higher than that of those
without mQTL. This was not the case (Fig. 2c, middle
and bottom). This analysis, using mQTL data from the
same samples in which we identified ESS, provides
strong evidence that ESS is not simply a consequence
of the isogenicity of MZ twins.

Testing a model for ESS
During MZ twinning, if de novo DNA methylation at a
particular locus occurs prior to embryo cleavage, both
twins will inherit the same epigenotype at the locus sim-
ply because of developmental timing, rather than as a
consequence of their genetic identity [14]. This provides
a potential explanation for ESS (Fig. 2d). If correct,
methylation at ESS loci must be established in the
cleavage-stage embryo. If the epigenetic state is main-
tained during subsequent cellular differentiation, these
loci should show systemic interindividual variation in
DNA methylation.
To test this, we selected 13 ESS regions and assessed

systemic interindividual variation (SIV) by bisulfite pyro-
sequencing in liver, kidney, and brain of cadaver tissues
[13]. Methylation tended to be correlated in these tissues
derived from the different embryonic germ layers (Fig. 2e;
Additional file 1: Figure S2). Overall, 9 (69%) of the 13
loci showed evidence of SIV (Additional file 2: Table S2).
For a broader evaluation, we analyzed a previously pub-
lished data set from Lokk et al. [20], who profiled mul-
tiple tissues from each of several individuals using the
HM450 platform. From each of four individuals, we con-
sidered data for all SNP-free and high-quality HM450
probes for tissues representing the three embryonic
germ layer lineages: gall bladder (endodermal), abdom-
inal aorta (mesodermal), and sciatic nerve (ectodermal).
Individual- and tissue-specific methylation were esti-
mated as the average across the three tissues and the
four individuals, respectively, and variation was quanti-
fied as the range of these averages (Fig. 3a). Though
most probes showed little of either (Fig. 3b, histograms),
tissue-specific was generally greater than interindividual
variation (Fig. 3b). To focus on robust SIV we restricted
our analysis to probes with interindividual variation that
was at least 0.2 delta β and three times greater than
tissue-specific variation (Fig. 3b, shaded region). These
cutoffs identified 1042 probes with evidence of SIV
(Additional file 2: Table S1). Bisulfite pyrosequencing in
cadaver tissues (Fig. 3c; Additional file 1: Figure S3)
confirmed SIV at 8 (67%) of 12 regions evaluated
(Additional file 2: Table S3).
Perfect overlap between ESS and SIV probe sets was

not anticipated for two reasons. First, as they survey only
four individuals, the Lokk et al. data cannot capture all
interindividual variation. Second, epigenetic states estab-
lished prior to gastrulation may not be maintained in all
differentiated lineages (i.e., early embryonic establish-
ment is necessary but not sufficient for SIV). Nonethe-
less, relative to the 5388 non-ESS probes with
interindividual range > 0.4, the 1580 ESS probes were
6.3-fold enriched for SIV (P < 10–10, chi-squared test;
Fig. 3d), supporting our model for the developmental
basis of ESS (Fig. 2d).

ESS and SIV sites share genomic and epigenomic
features, and are enriched for MEs
ESS appears to be a marker for individual-specific epi-
genetic states that are established in the cleavage-stage
embryo. Such states could be established under genetic
influence, or stochastically; only the latter are consistent
with epigenetic metastability [6]. The mQTL data of
Grundberg et al. (Fig. 2c) demonstrate that ESS is not
generally associated with genetic effects. To test this
more generally we evaluated additional data sets in
which the HM450 platform was used to assess mQTL in
at least 100 individuals [21]. Volkov et al. [22] profiled
SNPs and DNA methylation in adipose tissue of 119
men and identified 15,208 CpG sites with significant cis-
mQTL. Shi et al. [23] assessed mQTL in histologically
normal lung tissue from 210 individuals and reported esti-
mates of the proportion of methylation variance explained



Fig. 3 Epigenetically supersimilar (ESS) probes are enriched for systemic interindividual variation (SIV). a Analytical strategy applied to data of
Lokk et al. [20] on abdominal aorta, gall bladder, and sciatic nerve from each of four individuals. Interindividual and tissue-specific variation
were quantified as the range of the individuals’ mean beta values (μ1, μ2, μ3, μ4) and the tissues’ mean beta values (μaa, μgb, μsn), respectively.
b Tissue-specific vs. interindividual variation for 344,151 probes. Histograms (top and side) indicate the density distribution. Green lines illustrate
cutoffs used to identify 1042 SIV probes (shaded region, interindividual > 0.2 and tissue-specific < 1/3 of interindividual variation). c Examples of
bisulfite pyrosequencing data confirming systemic interindividual variation in selected loci: PF4 and LDHC. d The 1580 probes with evidence of
ESS are 6.3-fold enriched for SIV (P < 10–10, chi-squared test)
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by neighboring SNPs (which we refer to as βSNP). We con-
sidered probes with βSNP > 0.33 as exhibiting substantial
mQTL. Of the 34,304 probes Shi et al. identified with sta-
tistically significant cis-mQTL, only 4306 (12.6%) showed
substantial mQTL (Additional file 1: Figure S4). Although
both the Grundberg et al. [9] and Volkov et al. [22] data
were based on adipose tissue, less than half of the mQTL
probes identified by either were identified in both (Add-
itional file 1: Figure S5). Conversely, most of the Shi et al.
substantial mQTL probes were also identified by the other
two studies (Additional file 1: Figure S5). Moreover, > 80%
of the probes Shi et al. reported as substantial mQTL in
lung also exhibited significant mQTL in independent
studies of breast and kidney [23]. For these reasons, we
focus our subsequent analyses on the Shi et al. substantial
mQTL probe set. (Nonetheless, we have included data on
all three mQTL lists in our annotation of ESS and SIV
probes in Additional file 2: Table S1.)
Relative to the probe sets from which they were

drawn, those with evidence of either ESS (Fig. 4a) or SIV
(Fig. 4b) were enriched for substantial mQTL (15- and
24-fold, respectively, both P < 10–10, chi-squared test).
Substantial mQTL affected 25.1% of ESS and 17.9% of
SIV probes (Additional file 2: Table S1). We consider
ESS probes without evidence of substantial mQTL to be
candidate MEs. Likewise, since our SIV analysis is analo-
gous to previous ME screens [13, 14], SIV probes with-
out evidence of substantial mQTL are also candidate
MEs. Indeed, most of the HM450 probes identified as
MEs in a previous screen that employed genome-wide



Fig. 4 Regions of epigenetic supersimilarity (ESS) and systemic interindividual variation (SIV) share genomic and epigenomic features. a Normalized DZ
MSE vs. MZ MSE for the 6968 probes with range > 0.4, of which 489 (red) show substantial mQTL. Inset: ESS probes are 15-fold enriched for substantial
mQTL (P < 10–10, chi-squared test). b Tissue-specific vs. interindividual variation at 344,151 probes, of which 2702 (red) are substantial mQTL. Inset: SIV
probes are 24-fold enriched for substantial mQTL (P < 10–10, chi-squared test). c After filtering out substantial mQTL, ESS and SIV hits overlap more than
two-thirds of probes at previously identified MEs [13]. d Relative to all probes in the top 10% of interindividual variance, ESS and SIV probe sets are
enriched for CpG islands (both comparisons P < 10–10, chi-squared test). e Gene set enrichment analysis shows that both ESS and SIV probes
are enriched for genes expressed in cancer (P = 4.7 × 10–8 and 4.8 × 10–9, respectively). Each row represents a different type of cancer in The
Cancer Genome Atlas [24] (key to abbreviations in Additional file 2: Table S5). f Association of probe sets with epigenomic feature annotations
derived from 111 reference epigenomes [25]. ESS and SIV probes are enriched for active promoters (TssA) and underrepresented at enhancers
(Enh) (all four comparisons P < 10–10)
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bisulfite sequencing [13] overlap with mQTL-filtered
ESS or SIV hits (Fig. 4c). After excluding those with sub-
stantial mQTL, ESS probes remained 5.6-fold enriched
for SIV (P < 10–10; Fig. 4c), indicating that the common
epigenetic behavior of these probes sets is not due to
genetic effects. Importantly, most ESS probes do not
show substantial mQTL (Fig. 4a), further evidence that
ESS is not simply a consequence of the genetic identity
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of MZ twins. To directly assess the influence of local se-
quence on interindividual variation at ESS loci we vali-
dated several top hits, performing genotyping and
methylation analysis by pyrosequencing in peripheral
blood DNA of 64 Gambian children [13]. Each geno-
typing assay targeted a nearby common SNP with
minor allele frequency > 25%. Two regions negative for
mQTL (CYP2E1 and DUSP22) and two with some
mQTL-positive probes (SPATC1L and ZFP57) showed
substantial interindividual variation even among indi-
viduals of the same genotype (Fig. 5a–d). These regions
show strong linkage disequilibrium, indicating that SNP
genotype is generally an indicator of haplotype. Not-
ably, the SNP we genotyped at ZFP57, rs3129057, was
recently reported to be the strongest index SNP in
phase with haplotype-dependent allele-specific methy-
lation (Hap-ASM) in the region [17]. Significant mQTL
was detected for ESS CpGs at DUSP22, SPATC1L, and
ZFP57 (Fig. 5b–d). At these same loci, however, interin-
dividual variance of methylation was associated with
haplotype, providing the novel insight that the local se-
quence context can influence epigenetic metastability.
The pyrosequencing results were further validated by
clonal bisulfite sequencing for selected individuals at
SPATC1L and ZFP57 (Fig. 5e and f ), confirming that
even in regions of substantial mQTL, individuals with
the same local sequence context can exhibit dramatic
interindividual variation in DNA methylation.
Relative to negative control probes with interindividual

variation comparable to ESS probes but no evidence of
ESS or SIV (Additional file 1: Figure S6 and Additional
file 2: Table S4), ESS and SIV probes were 3.6- and
5.0-fold enriched for CpG islands, respectively (Fig. 4d;
P < 10–10 for both comparisons). Likewise, ESS and
SIV probes were 3.3- and 2.4-fold enriched in subte-
lomeric regions (<2 Mb from chromosome ends;
Additional file 1: Figure S7a; P < 10–10 for both com-
parisons). Since subtelomeric regions are rich in gen-
etic variation, we tested whether the subtelomeric
enrichment might be due to mQTL. However, similar en-
richments were found in the ESS and SIV probe subsets
not associated with substantial mQTL (Additional file 1:
Figure S7b). The ESS and SIV gene lists each included six
genomically imprinted genes, no different from what is ex-
pected by chance; imprinted loci among these two classes
are ANO1, GNAS, GRB10, NAP1L5, NLRP, and VTRNA2-
1 (ESS) and DLGAP2, KCNQ1OT1, NAP1L5, NLRP2, and
VTRNA2-1 (SIV) (http://www.geneimprint.com/). Gene
set enrichment analysis (GSEA) using data from The Can-
cer Genome Atlas [24] showed that, relative to negative
controls, both ESS and SIV probes are more likely to be
annotated to genes expressed in a wide range of tumors
(Fig. 4e). Across 111 reference epigenomes encompassing
a wide range of cell lines and primary tissues [25], both
probe sets were enriched for active promoters and de-
pleted for enhancers (Fig. 4f). ESS and SIV CpGs were
identified independently but exhibit highly overlapping
genomic and epigenomic features, indicating that they
share similar fundamental biological properties.

Periconceptional environment affects establishment of
methylation at ESS and SIV CpGs
Mouse [10, 11, 26] and human studies [13, 14, 27, 28]
have shown that establishment of DNA methylation at
MEs is sensitive to periconceptional environment. Previ-
ous studies tested this using a “natural experiment”
exploiting seasonal variation in maternal nutritional status
in The Gambia [12]. Here, we analyzed an independent
set of 128 blood samples collected from 2-year-old
Gambian participants in the Early Nutrition and Immune
Development (ENID) trial [29] who were conceived at the
peak of either the rainy or the dry season [30]. Based on
the notion that MEs are largely free of genetic influence,
we set out to test whether ESS and SIV probes without
substantial mQTL show season-of-conception effects. To
our surprise, we found comparable and highly significant
enrichments for season-of-conception effects in ESS and
SIV probe sets regardless of substantial mQTL (Additional
file 2: Tables S17 and S18). We therefore examined the
unfiltered probe sets and found that both ESS and SIV
probes, but not negative control probes, were significantly
enriched for season-of-conception effects (P = 3.3 × 10–9

and 1.4 × 10–23, respectively; Fig. 6a). Consistent with pre-
vious studies of candidate MEs in independent cohorts
[12–14], being conceived during the rainy season generally
resulted in higher levels of DNA methylation at both ESS
and SIV loci (Fig. 6b). These findings further support the
conjecture that, regardless of mQTL, many ESS and
SIV probes are MEs. This season of conception effect
also provides independent support for our model
(Fig. 2d) that ESS arises due to early embryonic es-
tablishment of epigenotype.

Prospective associations between DNA methylation in
blood and later cancer
Although the probe signature of ESS was identified from
a study of adult twins, it appears to be a consequence of
methylation establishment in the early embryo and
hence must be stable from embryonic development to
adulthood. Since ESS is associated with genes expressed
in tumors (Fig. 4e), we asked whether interindividual
variation in DNA methylation at ESS loci predicts risk
of later cancer in adults. To test this, we examined
data from the Melbourne Collaborative Cohort Study
(MCCS), which enrolled 41,514 healthy adult volun-
teers between 1990 and 1994 [31]. Peripheral blood
samples and information on health-related behaviors
were collected at enrollment, and incident cases of

http://www.geneimprint.com/


Fig. 5 (See legend on next page.)
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Fig. 5 Interactions between DNA methylation and local sequence context at some top ESS regions. a–d Average methylation vs. SNP genotype
at ESS regions within CYP2E1, DUSP22, SPATC1L, and ZFP57. In each panel, gene diagram (top) shows location of ESS region where methylation
analysis was performed (asterisk) relative to that of a SNP that was genotyped in 64 Gambian children. Grid summarizes normalized linkage disequilibrium
(D’) across these ~3-kb regions in a Gambian population in Western Gambia (GWD, 1000 Genomes Project [80]). With the exception of G/G individuals at
rs3129057 (ZFP57), there is substantial interindividual variation in average methylation within each genotype class. At CYP2E1 (a), average methylation is
not associated with SNP genotype (P= 0.31). At DUSP22, SPATC1L, and ZFP57 (b–d) average methylation is associated with genotype (P = 0.002, 0.02, and
0.0001, respectively). At these same loci, interindividual variance differs between the two homozygous genotypes; i.e., C/C vs. T/T at DUSP22 (P= 0.02),
G/G vs. A/A at SPATC1L (P= 0.04), and G/G vs. A/A at ZFP57 (P = 1.9 × 10–6). e, f Clonal bisulfite sequencing data at two homozygous individuals at each of
SPATC1L and ZFP57, respectively, confirm dramatic interindividual variation in DNA methylation in the absence of local sequence variation. Black, empty,
and gray circles represent methylated, unmethylated, and indeterminate CpG sites, respectively. Vertical red line indicates the position of the SNP

Fig. 6 Sites of epigenetic supersimilarity (ESS) and systemic
interindividual variation (SIV) are enriched for effects of periconceptional
environment on DNA methylation. a Relative to all probes on the
HM450 array, mQTL-filtered ESS and SIV probes (but not negative
control probes) are highly enriched for significant (FDR < 10%)
associations with season of conception in rural Gambia. b Heat
map of average effect of season of conception at loci that show
a significant seasonal difference in methylation (FDR < 10%). At
both ESS and SIV probes, as in previous studies of MEs in independent
cohorts [13, 14], children conceived in the rainy season have higher
methylation
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cancer were ascertained prospectively by linkage to the
Victorian Cancer Registry, which receives mandatory
notification of all new cancer cases in Victoria,
Australia. The systemic nature of interindividual vari-
ation at ESS probes enabled us to use DNA methyla-
tion in peripheral blood as an indicator of methylation
in various tissues. A control was matched to each inci-
dent case on sex, country of birth, and age at enroll-
ment, using density sampling. Using the Illumina
HM450 platform, DNA methylation at baseline was
assessed on 3464 case-control pairs overall in studies
of seven types of cancer [32] (Additional file 2: Table S6);
average time from sample collection to diagnosis was
9.2 ± 4.9 years (mean ± sd).
Regardless of potential genetic influences, our data in-

dicate that interindividual epigenetic variation at ESS
probes occurs systemically and is stable over time. We
therefore evaluated ESS probes without regard to
mQTL. Combined effects across multiple CpGs (i.e., dif-
ferentially methylated regions) are more likely to demon-
strate long-term stability and affect gene expression [33].
Hence, rather than analyze individual probes, we focused
on the 198 clusters of multiple ESS probes separated by
no more than 500 bp (523 CpGs total; Additional file 2:
Table S7). Analysis of expression [34] and methylation
data [9] from Grundberg et al. showed that at many ESS
clusters, average methylation in adipose tissue is associ-
ated with gene expression, not only in adipose tissue but
also in skin and lymphoblastoid cell lines (Additional
file 1: Figure S8 and Additional file 2: Table S8). These
results provide evidence that methylation at ESS loci in
one tissue yields information about epigenetic regula-
tion in additional tissues. To test for probe-specific as-
sociations between peripheral blood DNA methylation
at baseline and risk of specific cancer diagnosis we per-
formed conditional logistic regression, adjusting for es-
timated leukocyte composition (using the Houseman
algorithm [35]) and other covariates. Statistical signifi-
cance of associations at the cluster level were then eval-
uated by permutation testing (tabulated results in
Additional file 2: Table S11). Relative to negative con-
trol clusters (Additional file 2: Table S12), the 198 ESS
clusters were four-fold enriched for associations with
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later cancer (P = 1.5 × 10–5). To minimize multiple testing,
we focused on the ten ESS clusters with the largest num-
ber of CpG sites. Remarkably, at seven of these, peripheral
blood DNA methylation at baseline was significantly as-
sociated with later cancer (Fig. 7; Additional file 2:
Table S13); three (SPATC1L, VTRNA2-1, and DUSP22)
were significantly associated with multiple types of can-
cer. Elevated methylation in a cluster of six CpG sites
at SPATC1L was associated with reduced risk of colo-
rectal and prostate cancer (Fig. 7b, f ), and elevated
methylation in a cluster of 12 CpGs at VTRNA2-1 was
associated with higher risk of lung cancer and mature
B-cell neoplasm (Fig. 7d, e). Interestingly, elevated
methylation in a cluster of eight CpG sites at DUSP22
was associated with increased risk of mature B-cell neo-
plasm (Fig. 6e) yet reduced risk of urothelial cell carcin-
oma (Fig. 7g). The 154 negative control clusters showed
few and relatively weak associations with later cancer
(Additional file 1: Figure S9). Results are also shown
for the 128 ESS clusters that included no probes with
substantial mQTL (Additional file 1: Figure S10 and
Additional file 2: Table S14).

Discussion
Because they offer the potential to test the hypothesis
that interindividual epigenetic variation (in the absence
of genetic variation) determines human phenotype, MZ
twins have long been a focus of epigenetic investigation
[36–40]. Such studies depend upon the existence of sto-
chastic (i.e., non-genetically mediated) epigenetic differ-
ences within pairs of MZ twins. Conversely, herein we
have identified a set of human genomic regions at which
MZ twins exhibit non-genetically mediated epigenetic
similarity. Based on the frequent occurrence of SIV in
ESS regions, and their epigenetic plasticity to pericon-
ceptional environment, we propose that ESS arises due
to establishment of DNA methylation prior to embryo
cleavage during MZ twinning.
Accordingly, at ESS loci one would expect greater epi-

genetic similarity in MZ twins that separate later com-
pared to those that separate earlier. This can be tested
based on chorionicity; cleavage before day 4 of gestation
results in MZ twins each with their own placenta
(dichorionic); later cleavage results in a shared placenta
(monochorionic). In one of the earliest genome-scale
studies of DNA methylation in twins, Kaminsky et al.
[38] studied buccal epithelial cells and reported that
monochorionic MZ twins exhibit greater epigenetic dis-
cordance than dichorionic, contrary to our thesis. A
slightly larger study, however, recently assessed genome-
scale DNA methylation in blood and came to the exact
opposite conclusion [41]. Given that monochorionic
twins share hematopoietic stem cells during fetal devel-
opment [42], blood is not the ideal tissue in which to
study epigenetic correlates of chorionicity. Definitive
studies in non-blood tissues and focused on ESS regions
are needed. Another predicted consequence of ESS is
that estimates of methylation heritability from twin
studies will be inflated relative to those from family-
based designs. Indeed, whereas Grundberg et al. esti-
mated median genome-wide narrow-sense h2 = 0.34 [9], a
recent large family-based study (also using the HM450 plat-
form) estimated an average genome-wide h2 = 0.19 [43].
After decades of epigenetic studies in MZ twins, it is

remarkable that ESS has not been previously reported.
Despite their seemingly unsupportive findings in mono-
chorionic vs. dichorionic twins, Kaminsky et al. proposed
that in addition to their genetic identity, “epigenetic simi-
larity at the time of blastocyst splitting may also contrib-
ute to the phenotypic similarities in MZ co-twins,” exactly
as our findings suggest. The excessive h2 estimates in twin
studies of epigenetic heritability have, in fact, been waiting
to be discovered. Grundberg et al. obtained but did not
comment upon HM450 probe-specific h2 estimates > 1.
Likewise, in a more recent study using the HM450 array
to assess genome-scale DNA methylation in whole blood
of MZ and DZ twins, van Dongen et al. [44] reported
3792 probes for which their heritability model failed to
converge. Of the 631 of these “NA” probes among the
high-variance set from which our ESS probes were drawn,
365 (58%) are classified as ESS. Hence, two recent large
studies of DNA methylation in MZ and DZ twins
detected but did not explore these very interesting
genomic regions.
Our findings indicate complex relationships among

genetic variation, ESS, and epigenetic metastability. To
clarify, mQTL assesses pairwise associations between
methylation at a specific CpG site and a specific genetic
variant [19], while hap-ASM describes allelic biases in
methylation that are associated with haplotype [17]. Be-
cause of the linkage disequilibrium among neighboring
SNPs and the regional correlation of CpG methylation,
mQTL (specifically, cis-mQTL) provides a means of
assessing hap-ASM [17]. Our analyses focused on
mQTL because many targeted analyses of hap-ASM [21]
show poor overlap with probes on the HM450 platform
[17]. Our results show that ESS loci are enriched for
mQTL. Although this may seem to suggest that ESS is a
consequence of genetic determination, we’ve provided
several lines of evidence to the contrary. According to
our model (Fig. 2d) mQTL is consistent with ESS, be-
cause any epigenetic state (whether under genetic influ-
ence or not) that is established prior to embryo cleavage
during MZ twinning and thereafter maintained with
high fidelity will exhibit ESS. Seminal studies in isogenic
mice led to the concept that interindividual variation at
MEs is determined stochastically, free of genetic influence
[45]. Our characterization of ESS loci (many of which
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Fig. 7 At clusters of probes showing epigenetic supersimilarity (ESS), peripheral blood methylation at baseline is associated with risk of later cancer.
Manhattan plots illustrating results of conditional logistic regression analyses of the association between baseline probe-specific methylation (HM450)
and risk of later a breast cancer, b colorectal cancer, c kidney cancer, d lung cancer, e mature B-cell neoplasm, f prostate cancer, and g urothelial cell
carcinoma. Only probes within clusters of ≥ 2 probes are shown. Probes plotted with positive values (red) have positive coefficients (i.e., more
methylation in cases than controls) and probes plotted with negative values (green) have negative coefficients (delta beta value scale indicated). The
dotted lines indicate P = 0.05. Among the ten most CpG-rich ESS clusters, colored boxes indicate seven at which methylation is significantly associated
with later cancer: ZFP57 (colorectal cancer, P = 0.008), SPATC1L (colorectal cancer, P = 0.009, and prostate cancer, P = 0.01), OR2L13 (lung cancer,
P = 0.010), VTRNA2-1 (lung cancer, P = 0.025, and MBCN, P = 0.009), DUSP22 (MBCN, P = 0.001, and UCC, P = 0.001), HCG4B (prostate cancer, P = 0.007),
and PF4 (UCC, P = 0.013)
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appear to be MEs) suggests the novel concept that estab-
lishment of epigenotype at MEs need not be completely
free of genetic influence. In particular, mQTL and epi-
genetic metastability appear to occur at the same loci
(Fig. 5) and ESS loci—even those associated with sub-
stantial mQTL—are labile to perioconceptional envir-
onment (Fig. 6; Additional file 2: Tables S17 and S18).
Like nutrition [10–12] and other environmental influ-
ences [27, 46], perhaps haplotype (i.e., local sequence
context) may be viewed as a determinant of the micro-
environment that shifts the probability distribution of
stochastic methylation processes during early embry-
onic development. Building upon this, our validation
studies indicate allelic biases in epigenetic metastability.
In the clearest example, at ZFP57 (Fig. 5d), the most com-
mon allele in the population showed greater interindividual
variation, consistent with the thesis that propensity for
stochastic epigenetic variation may be both genetically
inherited and evolutionarily advantageous [47].
It may seem surprising that ESS loci include some

genomically imprinted genes. Based on their parent-of-
origin-specific epigenetic regulation one would expect
the mean MSE at imprinted loci to be similar in MZ
and DZ twin pairs. Our data at VTRNA2-1, however,
show this is clearly not the case (Fig. 1a). Known
imprinted genes were not significantly enriched among
ESS loci, but there is evidence that two more of our top
hits (PAX8 and DUSP22) are imprinted in humans, in at
least some tissues [48, 49]. Our interpretation is that in-
terindividual variation at imprinted loci may in some
cases occur stochastically; for example, the VTRNA2-1
hypomethylation that is observed in 10–20% of individuals
[13, 50, 51] may reflect loss of the maternally inherited
methylation mark in the early embryo. At the population
level many ESS loci exhibit clusters of three methylation
states (Fig. 1 and Additional file 1: Figure S8). This sug-
gests these loci behave as bistable epigenetic switches
(i.e., the combination of two alleles yields three pre-
ferred average states). This is actually consistent with
the bimodal distribution of somatic CpG methylation
genome-wide (i.e., methylation at most loci is either
close to 0 or close to 100%). In this regard the presence
of imprinted loci—paradigmatic bistable epigenetic
switches—among ESS loci is not surprising.
Although identified purely on the basis of the methyla-
tion MSE ratio of adult DZ to MZ twins, ESS probes are
threefold enriched in subtelomeric regions. This makes
sense; subtelomeric regions are packed with transposable
elements, known to be targets of de novo DNA methyla-
tion in the pre-implantation embryo [52]. We found a
similar enrichment in our genome-wide screen for MEs
[13] but filtered out most of those hits due to proximity
to SNPs. Our current results, showing that the subtelo-
meric enrichment is not associated with mQTL, suggest
we were overly conservative. Intriguingly, since epigen-
etic regulation in subtelomeric regions regulates telo-
mere shortening [52], our Gambian data showing
season of conception effects at ESS regions suggest that
periconceptional events could influence the process of
telomere maintenance, deregulation of which is an al-
most universal characteristic of aging and cancer.
Because of their early embryonic establishment and

systemic interindividual variation, ESS loci are attractive
candidate regions for studies of epigenetics and disease.
The HM450 array was built upon a platform initially
focused on regions aberrantly methylated in cancer,
motivating our focus on cancer. Methylation at three
clusters (SPATC1L, VTRNA2-1, and DUSP22) showed
significant associations with two types of cancer. Little is
known about the speriolin-like protein SPATC1L, but ele-
vated methylation at the small noncoding RNA VTRNA2-
1 has previously been reported to predict poor prognosis
in acute myeloid leukemia [51] and other types of cancer
[13], consistent with the positive association we found
between VTRNA2-1 methylation and lung cancer and ma-
ture B-cell neoplasm (Fig. 7d, e). Likewise, rearrangements
disrupting the dual specificity phosphatase gene DUSP22
are associated with T-cell and B-cell lymphoma [53], con-
sistent with our finding of a positive association between
methylation at DUSP22 and mature B-cell neoplasm
(Fig. 7e). Methylation at DUSP22 was also negatively asso-
ciated with risk of urothelial cell carcinoma (Fig. 7g), rem-
iniscent of situations in which the same genetic variant is
associated oppositely with risk of different types of cancer
[54]. ZFP57 encodes a master regulator of genomic im-
printing and is epigenetically labile to periconceptional
nutrition [13]. Our finding that elevated methylation at
ZFP57 is associated with a reduced risk of later colorectal
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cancer (Fig. 7b) is consistent with data suggesting ZFP57
is an oncogene [55]. Likewise, PF4 (platelet factor 4) in-
hibits tumor growth and metastasis by suppressing neo-
vascularization [56], consistent with the positive
association we found between PF4 methylation and later
urothelial cell carcinoma (Fig. 7g). Despite detecting sig-
nificant associations between methylation and later cancer,
the effect sizes in most cases were modest. It is likely that
effects of some epimutations are limited to specific cancer
subtypes. Likewise, these epigenetic variants likely interact
with genetic variation and environmental exposures to
affect cancer risk. It is possible that some of these associa-
tions might reflect mQTL/hap-ASM association with
cancer-associated SNPs identified in GWAS studies. Tar-
geted studies in larger cohorts are needed. Nonetheless,
our data indicate that individual epigenetic variation at
ESS loci has phenotypic consequences: methylation in
peripheral blood is associated with risk of specific cancer
diagnoses years later. Despite their rarity (less than 1% of
the probes on the HM450 array), broader-scale identifica-
tion of ESS loci throughout the genome may enable epi-
genetic risk models for cancer prediction, even during
early life.
Our findings may offer a partial explanation for miss-

ing heritability. Since heritability is defined as the pheno-
typic variance explained by genetics divided by the total
phenotypic variation in a population [16], rather than
something heritable per se, what is actually missing is
genetic variance [57]. Twin models of estimating herit-
ability rely on the assumption that the greater pheno-
typic similarity of MZ relative to DZ twin pairs is
attributable to their genetic identity. Hence, to the ex-
tent that epigenetic variation at ESS loci influences
phenotype, estimates of heritability based on twin
studies will be inflated. Indeed, twin studies often yield
higher heritability estimates than family studies [58, 59].
Further, although heritability does not definitively connote
transgenerational inheritance, transmission of sequence-
independent epigenetic events across generations could
contribute to missing heritability [57]. In this regard,
genomically imprinted loci that behave as epialleles
(such as VTRNA2-1) could potentiate transgenera-
tional inheritance of epigenetic traits.

Conclusions
Overall, our data show for the first time that, independ-
ent of their genetic identity, human MZ twin pairs share
an additional level of similarity at the epigenetic level.
ESS appears to result from establishment of mitotically
heritable epigenetic states prior to embryo cleavage dur-
ing MZ twinning. Because of ESS, human MZ twins
clearly cannot be viewed as the epigenetic equivalent of
isogenic inbred mice, which originate from separate zy-
gotes. To the extent that epigenetic variation at ESS
loci influences human phenotype, as our data indicate,
the existence of ESS establishes a link between early
embryonic epigenetic development and adult disease
and may call into question heritability estimates based
on twin studies.

Methods
Identification and characterization of ESS and SIV probes
Analysis of twin, SIV, and mQTL data sets
Grundberg et al. used the Illumina HM450 array to as-
sess methylation in adipose tissue from 662 female twins
of European-descent, including 97 MZ pairs and 162 DZ
pairs. Methylation scores were normalized by quantile
normalization. SNP-associated probes were excluded,
leaving 344,303 probes [9]. Our analyses focused on the
34,405 probes in the top 10% by variance. To calculate
the metrics used, we pooled the MZ and DZ twins into
a single population, and calculated probe-specific β-
value ranges (max −min) from this population. Indi-
viduals in this population were randomly paired to
simulate unrelated individuals (RZ). For each probe,
we calculated the MSE of MZ, DZ, and RZ pairs from
the line of identity (i.e., the mean square difference be-
tween twins). For n twin pairs, each comprised of twins
A and B:

MSE ¼ 1
n

Xn

i¼1

βiA−βiB
� �2

Criteria for ESS probes were DZ/MZ > 2 and overall
interindividual β-value range (max −min) > 0.4; addition-
ally, 14 probes with MZ/RZ MSE > 0.5 were excluded.
Probe-specific h2 estimates from [9] were kindly pro-
vided by Elin Grundberg. Lokk et al. [20] used the Illu-
mina HM450 array to assess methylation in 17 tissues
from four autopsied individuals. We analyzed the methy-
lation data for three tissues representing the three germ
layers: gall bladder (endodermal), abdominal aorta
(mesodermal), and sciatic nerve (ectodermal). Starting
with the 344,303 high-quality probes that were the basis
of the Grundberg et al. analysis, we excluded any probes
with missing values in any of the 12 samples (four indi-
viduals, three tissues), leaving 344,151 probes. Interindi-
vidual variation was calculated by taking the mean β
value across each individual’s three tissues, then calculat-
ing the range of these means across all four individuals.
Tissue-specific variation was calculated by taking the
mean beta value of each tissue over all individuals, then
calculating the range of these means across all three
tissues. Negative control probes (Additional file 2:
Table S4) were selected by maintaining the criterion of
interindividual range > 0.4 in the Grundberg et al. data
set, but requiring MZ/RZ MSE > 0.5 and (in the Lokk
data set) requiring tissue-specific variation to be at
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twice interindividual variation (Additional file 1: Figure S6).
Figures were made in R 3.3.1 using ggplot2 [60]. For our
analysis of the Shi et al. mQTL data [23], senior author
Maria Landi kindly shared with us their estimates of the
proportion of methylation variance explained by neighbor-
ing SNPs.

Validation studies
Quantitative analysis of selected candidate MEs was per-
formed by bisulfite pyrosequencing [61] across endoder-
mal (liver), mesodermal (kidney), and ectodermal (brain)
tissue in 17 Asian cadavers [13]. Prior to use, all pyro-
sequencing assays were validated for linearity and sen-
sitivity using human genomic methylation standards
[12, 13] (Additional file 2: Table S15). To assess SIV,
for each pyrosequencing assay methylation was aver-
aged across multiple CpG sites for each sample, and
inter-tissue correlation coefficients were calculated
across the 17 cadavers (kidney vs. liver, brain vs. liver,
and brain vs. kidney). Regions yielding an inter-tissue
correlation of R2 > 0.50 (R > 0.71) were considered
positive for SIV [12]. Pyrosequencing was also used to
perform SNP genotyping at specific loci [13, 14]. As-
sociations between SNP genotype and average methy-
lation were evaluated by linear regression (SAS), and
effects of genotype on variance were evaluated by Bar-
tlett’s test (implemented in R). Clonal bisulfite sequen-
cing was performed as previously described [62], using
primers listed in Additional file 2: Table S15.

Gene set enrichment analysis
For each of the probe sets analyzed (e.g., ESS, SIV, and
negative controls), associated gene sets were determined
based on the HM450 probe annotations. For 24 cancer
types profiled by The Cancer Genome Atlas [24], we
downloaded the RNA-Seq gene expression profiles using
the firebrowse.org portal [63], selected genes with max-
imum FPKM across all samples exceeding 1, then gener-
ated rank file for gene set enrichment analysis (GSEA)
[64] as previously described [65] by comparing the
tumor samples and the adjacent normal samples. Next,
GSEA was run for each cancer type rank file and each
CpG-associated gene set; significance was considered for
q-value < 0.25. For visualization purposes, we repre-
sented the normalized enrichment score (NES) for each
significant enrichment; by convention, NES for enrich-
ments with Q ≥ 0.25 were considered 0.

Epigenomic distribution of CpG probes
For each of the probe sets analyzed (e.g., ESS, SIV, and
negative controls), genomic coordinates on the human
genome build UCSC hg19 were determined based on
the HM450 probes definition. We considered fifteen-
state genome-wide epigenomic partitions for 127 distinct
epigenomes as defined by the NIH Epigenomic Roadmap
Consortium [25], based on a collection of uniformly col-
lected histone modification ChIP-Seq profiles and using
the ChromHMM algorithm [66]. Using the BEDTOOLS
software, we determined the relative distribution of each
CpG probe set over the 15 epigenomic states for each
distinct epigenome.

Evaluating the relationship between DNA methylation and
gene expression at ESS clusters
As described above, we used HM450 methylation data
for subcutaneous adipose tissue from MZ and DZ twins
[9]. Gene expression data in skin, adipose tissue, and
lymphoblastoid cell lines from the same set of twins
was downloaded from ArrayExpress (accession E-
TABM-1140) [34, 67]. DNA methylation (β values)
were first averaged across probes within each ESS clus-
ter. Correlation between cluster-level DNA methylation
and associated gene expression was evaluated using the
Spearman (rank) correlation coefficient, as imple-
mented in the Python scientific libraries.

Season of conception analyses
Sample selection and preparation
The data were collected as part of a study in The
Gambia (in sub-Saharan West Africa) identifying bio-
markers and understanding mechanisms for the rela-
tionship between aflatoxin exposure and child stunting;
251 blood samples (3 ml) were collected from children
aged 2 years as part of the Early Nutrition and Immune
Development (ENID) Trial [29].

Bisulfite conversion and DNA methylation assay
DNA was extracted from white blood cells following a
previously described protocol [12]. An additional six
samples were included as technical replicates. Genome-
scale methylation profiles were obtained using HM450
Infinium methylation bead arrays (Illumina, San Diego,
USA). DNA samples (500 ng) were bisulfite-modified
using the EZ DNA Methylation kit (Zymo Research,
D5001) following manufacturer’s instructions for the
HM450 array. Modified DNA was stored at −20 °C until
used. Amplification, labeling, hybridization and scanning
were performed as previously described [13]. These data
sets are publicly available [30].

Methylation data quality control and normalization
Methylation data pre-processing was performed using
the R/Bioconductor minfi package [68], along with
other functions and bespoke R scripts as appropriate
(R version 3.2.3; Bioconductor version 3.2). Briefly,
data for 485,512 HM450 probes measured in 257
samples were imported from raw IDAT files. Analysis
of internal HM450 bisulfite conversion control probes
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revealed one sample with poor bisulfite conversion effi-
ciency, which was excluded. Functional normalization [69]
was used to reduce unwanted technical variation using
control probes on the array. Seven samples with discord-
ant sex were removed following sex prediction based on
median values of measurement on X and Y chromosomes
using the minfi addSex() function. Using a probe detection
P value threshold of 0.01, five samples failing in > 1% of
probes were removed, along with 32,488 probes failing in
one or more samples. All technical replicates showed
beta-value Pearson correlations > 0.994 and visual inspec-
tion of replicate correlation scatterplots revealed no
anomalies. Following removal of technical replicates and
X and Y chromosome probes, methylation data for
442,869 probes measured in 239 individuals remained.
Correction for differences in HM450 beta-value distribu-
tions due to type-I and type-II probes on the array was
conducted using the Beta Mixture Quantile Dilation
(BMIQ) method [70]. Finally, 28,509 cross-reactive probes
[71] and 41,334 probes within 10 bp of common (minor
allele frequency > 1%) African SNPs identified using the R
Illumina450ProbeVariants.db were removed. After all
quality control and filtering, 373,026 probes remained.

Identification of CpGs associated with Gambian season of
conception
Statistical analysis was performed to identify HM450
probes associated with Gambian season of conception,
described hereafter as “season of conception differen-
tially methylated probes” (SoC-DMPs). This analysis
was restricted to 128 individuals conceived at the peak
of either the Gambian dry (February–April) or rainy
(July–September) seasons (based on date of birth).
These seasonal windows have been used in previous
studies investigating seasonal effects on DNA methyla-
tion [12, 13]. Robust linear regression using the R rlm
function was used to model the association between
SoC and DNA methylation (measured as HM450 beta-
values), in order to account for potential heteroscedasticity
and influential outliers [72, 73]. The regression model in-
cluded infant sex, and the first three principal components
identified in an unsupervised principal components ana-
lysis of genome-wide methylation (Additional file 2:
Table S16 and Additional file 1: Figure S11). The
model was additionally adjusted for the effects of cell
heterogeneity using an established method that uses
methylation data to estimate the relative proportions
of six white blood cell types [35]. Additional analyses
were performed i) without cell composition adjust-
ment to assess sensitivity to cell composition effects;
and ii) with the inclusion of one further principal
component (PC8) which was associated with SoC,
which would be expected to dilute the SoC effect
(hence providing a more conservative estimate of
SoC-associated ME enrichment). A correction for
multiple testing was applied by controlling the false
discovery rate (FDR).

Enrichment analysis
Probes with an FDR < 10% were identified as SoC-
DMPs. Different sets of HM450 probes were tested for
SoC-DMP enrichment (FDR < 10%) using Fisher’s exact
test, against a background of all 373,026 probes passing
quality control and filtering steps. Enrichment results
for the main analysis are presented in Fig. 6a. Results
for additional enrichment tests performed without ad-
justment for cell composition and with the inclusion of
one further principal component (see previous section)
are presented in Additional file 2: Tables S17 and S18.

Identification of ESS clusters associated with cancer risk
Sample collection, data generation, and quality control
Methylation data were available for participants in one
of seven case-control studies of breast, colorectal,
kidney, lung, mature B-cell malignancies, prostate or
urothelial cancer [74–76] nested within the Melbourne
Collaborative Cohort Study [31]. DNA was extracted
from samples of peripheral blood mononuclear cells
(PBMC), buffy coats, or dried blood spots (DBS) stored
on Guthrie card diagnostic cellulose filter paper.
Samples were collected at recruitment to the cohort
(baseline) or at follow-up approximately 10 years later.
Cases and controls were individually matched on age
(they had to be free of cancer at an age within one year
of the age at diagnosis of the corresponding case), sex,
ethnicity, and blood DNA source (DBS, PBMC, or buffy
coat). For all but the colorectal cancer study, controls
were matched to cases on year of birth. For the lung
cancer study, controls were matched on smoking status
at the time of blood collection. Case-control pairs were
placed at random positions on the same chip of the
assay to minimize batch effects.
DNA was extracted from mononuclear cells using

QIAamp mini spin columns (Qiagen, Hilden, Germany).
Dried blood spot DNA was extracted as previously de-
scribed [77]. Briefly, 20 blood spots of 3.2 mm diameter
were punched from the Guthrie card and lysed in
phosphate-buffered saline using TissueLyser (Qiagen).
The resulting supernatant was processed using Qiagen
mini spin columns according to the manufacturer’s proto-
col. The quality and quantity of DNA were assessed using
the Quant-iT™ Picogreen® dsDNA assay measured on the
Qubit® Fluorometer (Life Technologies, Grand Island,
NY), with a minimum of 0.3 μg DNA considered accept-
able for methylation analysis.
Bisulfite conversion was performed using the Zymo

Gold single tube kit (EZ DNA Methylation-Gold kit,
Zymo Research, Irvine, CA, USA) according to the
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manufacturer’s instructions. Post-conversion quality
control was performed using SYBR Green-based quanti-
tative PCR, an in-house assay designed to determine the
success of bisulfite conversion by comparing amplifica-
tion of the test sample with positive and negative con-
trols. All samples were processed in the same laboratory
on 96-well plates, each using eight HM450 BeadChips to
assay batches of 12 samples.
The methylation data were background corrected

and normalized based on internal control probes using
the manufacturer’s background correction, using the R
library minfi [68]. We also applied subset-quantile
within-array normalization (SWAN) [78] to correct for
technical discrepancies between type I and type II
probes on the assay. A β-value (interpreted as percent-
age methylation) was calculated for each CpG site
using minfi. Methylation measures with a detection P
value higher than 0.01 were considered missing. Sam-
ples with more than 5% missing values were excluded;
then, CpGs that were missing for more than 20% of
samples were excluded. β-values were transformed into
M-values for analysis: M = log2(β/(1 − β)).

Logistic regression and permutation analyses
For each CpG probe set, we first determined their clus-
tering structure by considering all CpGs within 500 bp
of each other; groups of at least two such CpGs were
considered clusters. ESS, SIV, and negative control
cluster annotations are provided in Additional file 2:
Tables S7, S8, and S9. For each of the seven case-control
cohorts described above, normalized DNA methylation
data at the CpG probe level were obtained. These data
sets are publicly available [32]. Since methylation was
measured in peripheral blood DNA, cell type compos-
ition estimates using established methods [35] were also
included for each sample (specifically, proportions of B
cells, granulocytes, monocytes, NK, CD4 T cells, and
CD8 T cells). Clinical data variables indicating body
mass index (BMI), alcohol consumption, and smoking
status were included for each subject. Many ESS probes
showed highly non-normal methylation distributions
within each cohort. To avoid incorrect assumptions
about the data distribution, the M-values for each probe
were rank-normalized in ascending order across all sam-
ples using the R statistical system. Using conditional lo-
gistic regression as implemented in the R survival
package, we determined for each probe the significance
of the association between methylation rank and cancer
status, in a model including both cell type proportion
and the clinical variables described above. For the pur-
poses of permutation testing (see below), associations
were considered statistically significant at P < 0.05.
These probe-specific P values were then utilized to

evaluate the statistical significance of associations at the
cluster level. We focused our analysis on the top ten
clusters by total number of CpGs. We assessed the sig-
nificance of two event types. For each cluster (C), cancer
type (T), and random assignment of the case-control sta-
tus for each matched pair (Srnd), we denoted the number
of significant probes at P < 0.05 with concordant coeffi-
cients as determined by conditional logistic regression as
N(C,T,Srnd). We denote the actual case-control status
from the MCCS cohort as N(C,T,Sobs). We likewise de-
note the minimum P value obtained across all the
probes in a cluster, for the randomly assigned and actual
case-control pairing as Pmin(C,T,Srnd) and Pmin(C,T,Sobs).
We defined the event:

i) N(C,T,Srnd) ≥N(C,T,Sobs) and Pmin(C,T,Srnd)
≤ Pmin(C,T,Sobs)

Next, for each random assignment Srnd we defined
the event Recurrence(C,Srnd) as the number of
cancer types for which a cluster C contains at least
two significant probes (P < 0.05) with concordant
coefficients. The corresponding value for the actual
case-control status is Recurrence(C,Sobs). We defined
the event:

ii) Recurrence(C,Srnd) ≥ Recurrence(C,Sobs)
Our null hypothesis is that both events i) and ii)
occur by chance. Similar to widely used methods
such as GSEA [64], we used permutation testing to
establish a null distribution for S. We generated
20,000 permutations for each individual cancer
site, by keeping the sample pairing (as indicated
by the patient id) but randomly assigning the
case/control status within each pair. For each
permutation S we applied conditional logistic
regression for each cancer type, and counted
events i) and ii) as described above. We assigned
each event a P value corresponding to the relative
number of permutations (out of 20,000) for which
events i) or ii) were observed. Statistical significance
was achieved at the FDR < 0.25 level, across the top
ten most CpG-rich clusters.
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