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Abstract

Background

Temporal characterisation of physical activity in children is required for effective strategies

to increase physical activity (PA). Evidence regarding determinants of physical activity in

childhood and their time-dependent patterns remain inconclusive. We used functional data

analysis (FDA) to model temporal profiles of daily activity, measured objectively using accel-

erometers, to identify diurnal and seasonal PA patterns in a nationally representative sam-

ple of primary school-aged UK children. We hypothesised that PA levels would be lower in

girls than boys at play times and after school, higher in children participating in social forms

of exercise (such as sport or play), and lower among those not walking to school.

Methods

Children participating in the UK-wide Millennium Cohort Study wore an Actigraph GT1M

accelerometer for seven consecutive days during waking hours. We modelled 6,497 daily

PA profiles from singleton children (3,176 boys; mean age: 7.5 years) by means of splines,

and used functional analysis of variance to examine the cross-sectional relation of time and

place of measurement, demographic and behavioural characteristics to smoothed PA

profiles.

Results

Diurnal and time-specific patterns of activity showed significant variation by sex, ethnicity,

UK country and season of measurement; girls were markedly less active than boys during

school break times than boys, and children of Indian ethnicity were significantly less active

during school hours (9:30–12:00). Social activities such as sport clubs, playing with friends

were associated with higher level of PA in afternoon (15:00–17:30) and early evenings
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(17:30–19:30). Lower PA levels between 8:30–9:30 and 17:30–19:30 were associated with

mode of travel to and from school, and number of cars in regular use in the household.

Conclusion

Diminished PA in primary school aged children is temporally patterned and related to modifi-

able behavioural factors. FDA can be used to inform and evaluate public health policies to

promote childhood PA.

Introduction

In the UK, it is recommended that young people participate in activity of moderate to vigorous

intensity for at least one hour every day, [1] however only half of seven year old children in the

UK achieve these recommended levels, with significant sex, ethnic and geographic variations.

[2]

Effective strategies are needed to increase PA levels in young children. However, evidence

of their effectiveness is limited. [3] The ecological health approach supports the assumption

that more attention should be paid to different correlates of behaviour (e.g., biological, psycho-

logical, environmental) during the development of interventions. [4] In consonance with this,

recent reviews [5–9] have considered ecological or multilevel perspectives to summarise corre-

lates of physical (in) activity and to inform interventions. The literature on correlates and

determinants of physical activity in youth has been judged inconsistent in terms of findings

and methodological quality. [8, 10] Notably, a recent review specific to behavioural determi-

nants [6] considers the evidence “limited and inconclusive” for the majority of the determi-

nants. Among the methodological advances advocated [10] there is the need to clarify the

“behavioural context”, that is, to highlight key temporal aspects of behavioural characteristics.

Accelerometer-based measures of physical activity (PA) are increasingly used to measure

childhood activity levels and their intensity, and to investigate their determinants, in large-

scale epidemiological studies. [2, 11, 12] They provide objective estimates of the intensity of

movement by measuring accelerations, in one or more directions, of the body segment to

which they are attached. In population studies, children are usually asked to wear an acceler-

ometer for several consecutive days during all waking hours, resulting in a large number of

measurements for each child. Subsequently, data are typically summarized using total counts,

average daily counts per minute and average daily time spent being sedentary or undertaking

light, moderate or vigorous activities. [13, 14] However, these summary statistics fail to incor-

porate important aspects of the structure of the data, [13–15] and do not fully exploit the

potential of accelerometry to understand patterns of children’s activity over the course of the

day, week and year and their determinants.

Functional data analysis (FDA) is a statistical framework which regards measurements,

either discrete or continuous, as generated from continuous, smooth functions. [16] FDA is

often used to analyse high-frequency measurements in the temporal domain. [17] The applica-

tion of FDA as a means to characterise profiles (i.e., patterns or trajectories) of PA and their

associations with covariates of interest is a novel approach that has improved our understand-

ing of important predictors of active behaviour. [18, 19]

In this study we applied FDA to model daily profiles of PA in a large sample of seven year

old children. Subsequently, we used functional analysis of variance (FANOVA) to examine

time and place of measurement, demographic and behavioural characteristics that may explain
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the variability of daily PA profiles. Our overall objective was to understand temporal patterns

of PA according to characteristics of the child, their family and wider environment in order to

inform public health interventions designed to increase activity levels in primary school aged

children. Specifically we hypothesised that PA levels would be lower in girls than boys at play

times and after school, higher in children participating in social forms of exercise (such as

sport or play), and lower among those not walking to school.

Materials and methods

The Millennium Cohort Study (MCS) is a prospective study of the social, economic and

health-related circumstances of children living in the UK between September 2000 and Janu-

ary 2002. [20] The original cohort comprised 18 818 children whose parents were first inter-

viewed at home when their children were aged nine months. Five successive contacts were

made when children were aged three, five, seven, 11 and 14 years. Children participating in the

MCS were invited to wear an accelerometer (Actigraph GT1M [Actigraph, Pensacola, Flor-

ida]) at the fourth contact which took place between May 2008 and August 2009 when they

were around seven years of age. [2] The MCS contact at age seven and the associated accelero-

metry study were approved by the Northern and Yorkshire Research Ethics Committee (07/

MRE03/32). The analyses reported here did not require additional ethics approval.

Consent to take part in the accelerometry study was given by parents of 12,625 of 14,043

children (90%). Children were asked to wear an accelerometer on their right hip for seven con-

secutive days during waking hours, except when swimming or bathing as these accelerometers

were not waterproof. Data were processed to remove extreme counts, errors due to device mal-

functioning or setting, and to perform other quality control checks [21–25]. In this analysis we

considered data only from singleton children who wore the accelerometer for at least ten

hours a day from 7:00 to 22:00. As a result, we obtained 36,279 daily physical activity profiles

from 6,497 singletons (median 6, minimum 1, maximum 18 days per child). To remove

within-child correlation and thus simplify analysis, we randomly sampled one daily profile

from each child. Finally, we standardised observations to a common time window (8:30–

19:30) and then summarised accelerometer measurements in one-minute epochs by aggregat-

ing counts originally stored in 15-second epochs.

Covariates

We considered a number of categorical covariates (Table 1) as potential predictors of the func-

tional PA daily profile. These were classified into three groups: time and place of measurement

(country of residence, season of the year, day of the week); socio-demographic (child sex and

ethnicity, and maternal socioeconomic and lone parenthood status); and behavioural (chil-

dren’s screen time, participation in sport/exercise at clubs or school, reading habits, time spent

with friends, mode of transport to/from school, and household number of cars/vans in regular

use).

With the exception of sex and ethnicity, which were reported at the first MCS survey, all

other variables were collected during home interviews at the fourth survey (see [26] for further

details).

Statistical methods

The term FDA comprises statistical methods aimed to model data sampled at high temporal

resolution (high-frequency data) in which the individual unit of analysis is the entire continu-

ous function whence the observations have originated. [16, 17, 27] The main characteristic of

FDA is that the vector of high resolution data is modelled as a unique functional object
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typically defined in terms of a spline basis. This functional object provides a mathematical

framework which enables exploratory data analysis and inference to be performed using statis-

tical techniques analogous to standard multivariable methods (e.g. ANOVA, regression mod-

els, principal component and cluster analysis). [16, 17, 27]

In the description that follows, we outline the notation and basic idea of FDA applied to

accelerometer data.

Let yil denote counts measured by the accelerometer, where i = 1,. . .,n is the child for epoch

(time) l = 1,. . .,ni. Since in our analysis the time unit was the minute and the time interval was

08:30 to 19:30, there were 660 observations of accelerometer counts available for each child,

that is, ni = 660. Let y(t) denote a continuous, latent function assumed to be smooth over time,

indexed by t. FDA assumes that the observed accelerometer counts yit at a particular time t rep-

resent a sample from y(t), possibly measured with error. We used these observations to esti-

mate, by means of splines the latent functions yi(t), for each child i = 1,. . .,6497.

The first step is to model observed accelerometer data by means of latent smooth functions

yi(t) assumed to be smooth over time t. The linear predictor

yiðtÞ ¼ �
0
ðtÞ ci; ð1Þ

where, ci is a k × 1 vector of coefficients, and ϕ(t) is a k–dimensional basis function system (16)

as our starting point. Usually k is relatively large thus reflecting the infinite dimensionality of

the space of smooth functions where inference takes place in FDA. Within this framework,

there are several basis functions ϕk(t) among which one can choose, e.g. Fourier, exponential,

Table 1. Variables considered in the analysis of determinants of functional day profile.

Variable† Levels for analysis

Time and place of measurement factors

Country of residence England; Wales; Scotland; Northern Ireland

Season of measurement* Winter; Spring; Summer; Autumn

Weekend day of measurement No; Yes

Socio-demographic factors

Child’s sex Male or female

Child’s ethnic group White; Mixed; Indian/Pakistani/Bangladeshi; Black; Other

Maternal socioeconomic status Higher managerial, administrative and professional occupations;

Intermediate occupations; Routine and manual occupations; Never

worked and long-term unemployed

Maternal lone parenthood status Non-lone parent or lone parent

Behavioural factors

Time spent viewing television (hours

daily)

� 1 hour; > 1 & < 3 hours;� 3 hours

Time spent in sports/activities (club

or classes)

Not at all or less than twice a week; 2 days a week;� 3 days a week

Time spent reading for enjoyment Every day or almost every day; Several times a week or less

Time spent with friends after school Less than several times a week; Several times a week or more

Mode of transport to/from school Only car"; "Mixed"; "Only walk/cycling"

Number of cars/vans in regular use

per household

0, 1, 2, 3 or more

† Collected at the fourth survey of MCS (age 7 years) with exception of sex and ethnicity, which was

captured at the firsy survey.

* Seasons of the year were defined astronomically: Spring (21st March –20th June), Summer (21st June–

20th September), Autumn (21st September– 20th December), and Winter (21st December– 20th March).

https://doi.org/10.1371/journal.pone.0187677.t001
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truncated power functions, orthogonal polynomials and splines. Here we considered spline

functions given their computational efficiency. Among these we used a fourth order cubic B–

spline basis function system. Numerically, B–splines are attractive because they require an

amount of computation that increases linearly with the number of observations. [17] Another

desirable property of cubic splines is that they are the smoothest possible interpolant through

any set of data. [28] This property implies that estimated cubic splines yield the interpolant

function that minimize the curvature (i.e. the integral for the second derivative) of the objec-

tive function.

Let ϕk(tm) be the value of the basis function ϕk at time tm. The coefficients ci can be esti-

mated within the generalised linear models (GLM) framework, so that we define:

hðmimÞ ¼
PK

k¼1
ci;k �kðtmÞ; ð2Þ

where μim is the conditional mean of yim, and h is a link function. The distribution of the

response variable, and the link function are chosen within the generalized linear models

(GLM) family. [29]

To account for over-dispersion, which is often found in accelerometry measures, we con-

sidered quasi-likelihood models with identity link functions [29]; and linear variance functions

of the mean. Lastly, the degree of smoothing, which is given by the dimension k of the basis

function system, was determined. This was selected using the generalised cross validation

(GCV) score which is typically used in nonparametric regression settings:

GCV ¼
n

n � k

� �P
imVarð m̂ imÞ

� 1
ðyim � m̂imÞ

2

n � k
:

The number of functions that defined the basis system, k = 199, was determined by empirically

minimising this score.

We then considered the latent functions yi(t) as the outcome in the functional ANOVA

model

yi;gðtÞ ¼ a0ðtÞ þ agðtÞ þ εi;gðtÞ; ð3Þ

where the index g = 1,. . .,G−1 denotes the level of a categorical covariate different from the

baseline category g = 0. as described in Ramsay. [16] These parameters have a similar interpre-

tation as in standard ANOVA, however, in functional ANOVA, they are functions of time.

The function α0(t) is the accelerometer profile function in the reference category, while the

second term, αg(t), represents a time-specific contrast of category g to the reference category.

The error εi,g(t) collects unexplained variation, assumed to be independent of the covariates.

This FANOVA model [3] was extended to multiple predictors, as described in Ramsay. [16]

Finally, it is interesting to note that a functional parameter can be averaged over a period of

time to obtain a scalar �ag ¼
R

agðtÞ dt. Averaged parameters over specific time windows,

namely 8:30–9:30; 9:30–12:00; 12:00–13:30; or 17:30–19:30 appear in S1 Table.

We initially performed a univariable FANOVA for each of the considered predictors, using

a permutation functional F test [17] to assess their association with daily PA profiles. We sub-

sequently included all predictors in the multivariable FANOVA model, which results are pre-

sented in this paper. We calculated 95% Confidence Intervals using a bootstrap procedure.

Inverse probability weights were used to take into account MCS sampling probability and

non-response propensity to the PA study. [30]
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Software

We carried out the analyses in the R programming environment for statistical computing ver-

sion 3.3.2 (19) [31] in a UNIX platform, using functions from the R package fda. [32]

Results

The smoothed mean physical activity function for all children is shown in Fig 1; there are clear

periods of increased PA coinciding with journey times to and from school, and lunch and

break times.

Functional parameters averaged over the observational period 8:30–19:30 are presented in

Table 2; the average of the same parameters over specific time windows, namely 8:30–9:30;

9:30–12:00; 12:00–13:30; or 17:30–19:30, can be found in S1 Table.

The mutually adjusted daily PA profiles of all the explanatory variables considered varied

significantly across categories: examples of these are shown in Figs 2–4.

Children living in Northern Ireland were significantly less active than those living in

England. Activity levels in girls were consistently lower than those of boys throughout the day,

with the greatest differences apparent between 12:00 and 13:30 (Fig 2) where the averaged

functional parameter is -128.5 95%CI (-145.5; -107.3) (S1 Table). A difference was also

observed by ethnic group, with children from an South Asian (Fig 2) or mixed ethnic groups

(Table 2), being significantly less active during school hours but more active before bedtime

relative to children from a white ethnic group. Children were more active across the day in

spring and summer (Fig 2) than winter, with the greatest differences observed in the after-

noon/evening hours (S1 Table). Differences in total physical activity levels were observed

between the weekend and weekdays, with high levels of activity observed in weekend days

between 9:30 and 12:00 and during the early afternoon (between 13:30 and 15:00) (S1 Table).

Interestingly, these higher levels of activity were compensated for by lower levels of activity

during the early morning and lunch time period.

Children who participated in organised sports and activities (club or classes) three or more

times a week showed generally higher activity levels across the day, especially during periods

that might coincide with school play times (Fig 3); in contrast, children who read for enjoy-

ment every day or almost every day tended to have lower activity levels confined to the late

afternoon / early evening compared to those who read less frequently or not at all (Fig 3). Chil-

dren whose parents reported that they played with friends several times a week or more after

school were more active during the early evening compared to those who did not or did so less

Fig 1. Smoothed mean physical activity function for 6,497 children.

https://doi.org/10.1371/journal.pone.0187677.g001
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Table 2. Estimates of total activity by measurement, demographic and behavioural characteristics

using time-averaged estimates from multivariable functional analysis of variance (FANOVA).

Multivariable

FANOVA

n Coefficient

(95% CI)

Country of residence

England 4175 Ref

Wales 923 -4.8 (-19.0; 11.1)

Scotland 766 3.3 (-13.2; 20.9)

Northern Ireland 633 -23.0 (-48.6; -2.2)

Season of measurement

Winter 875 Ref

Spring 656 114.3 (93.1; 144.5)

Summer 2777 73.1 (54.7; 90.9)

Autumn 2189 36.7 (17.4; 55.9)

Weekend day of measurement

No 5065 Ref

Yes 1432 5.7 (-7.9; 19.5)

Child’s sex

Male 3176 Ref

Female 3321 -69.9 (-79.7; -58.2)

Child’s ethnic group

White 5711 Ref

Mixed 168 -36.6 (-67.8; -2.8)

Black 142 14.6 (-20.8; 62.9)

Indian/Pakistani/Bangladeshi 386 -38.9 (-63.9; -19.3)

Other 90 -64.2 (-115.3; 5.6)

Maternal socioeconomic status

Never worked and long-term unemployed 268 Ref

Routine and manual occupations 2582 3.5 (-14.0; 17.8)

Intermediate occupations 1201 3.1 (-20.8; 23.1)

Higher managerial, administrative and professional occupations 2446 6.0 (-16.8; 34.1)

Maternal lone parenthood status

Non-lone parent 5485 Ref

Lone parent 989 8.5 (-17.0; 37)

Time spent viewing television (hours/day)

� 1 1337 Ref

> 1 & < 3 4205 8.4 (-5.0; 20.6)

� 3 948 12.4 (-4.3; 33.4)

Time spent in sports/activities (club or classes)

Not at all or less than twice a week 3370 Ref

2 days a week 1576 6.0 (-6.5; 20.6)

3 or more days a week 1544 30.5 (18.4; 44.4)

Time spent reading for enjoyment

Several times a week or less 3806 Ref

Every day or almost every day 2682 -15.0 (-27.1; -6.6)

Time spent with friends after school

Less than several times a week 3441 Ref

Several times a week or more 2674 26.0 (13.5; 36.8)

(Continued )
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frequently (Fig 3), with an average functional parameter equal to 73.0 95%CI (46.2; 96.5) (S1

Table).

Mode of transport to and from school (Fig 4), and number of vehicles in regular use in the

household, were also significantly associated with daily PA profiles (Fig 4). Children who

never walked or cycled to and from school were significantly less active than those who did

some or all of the time at the start and end of the school day, as were those living in households

with one or more cars or vans in regular use. Notably, children that used cars or other vehicles

to go to school have an average functional parameter equal to -75.9 95%CI (-93.2; -60.1) in the

time window 8:30–9:30 (S1 Table). Similarly, children living in households with three cars

shows a functional parameter equal to -98.8 95%CI (-142.8; -54.0) in the same time window

(S1 Table).

Discussion

Summary of findings

This study is, to our knowledge, the largest study to use FDA and FANOVA for the analyses of

accelerometer-based measures of physical activity. Our findings provide additional insights

into variations in children’s activity levels across their waking day. They confirm and extend

previous observations that girls are less active and identify periods in the school day where

these differences are most apparent. Children whose measurements were obtained in the

spring and summer months were significantly more active than those measured in winter,

after adjusting for other factors. The importance of social activities for physical activity is

underscored by the time-specific differences in activity levels observed in those involved in

sport or after school clubs or who played with friends on a regular basis. While children who

read for enjoyment were less active than those who did not, from a developmental perspective

reading is clearly a beneficial activity and these findings do not suggest a detrimental influence

of reading per se. Our findings also extend the existing strong evidence that cycling or walking

to school on some or all days of the week is an effective strategy to get children more active

and therefore supports schemes encouraging this, such as the UK ‘Walk to School’ campaign.

We have demonstrated the value of using FDA to condense the extensive information available

from accelerometer-derived measures of total physical activity in a population-based cohort by

proposing a novel method to determine the spline basis functions, and using quasi-likelihood

procedures to estimate the models’ functional parameters.

Table 2. (Continued)

Multivariable

FANOVA

n Coefficient

(95% CI)

Mode of transport to/from school

Only walking/cycling 3030 Ref

Mixed 376 5.0 (-13.6; 28.0)

Only car 3074 -15.4 (-27.4; -1.3)

Number of cars/vans in regular use per household

0 579 Ref

1 2304 -22.2 (-46.0; -2.0)

2 3230 -39.5 (-64.6; -18.0)

3+ 374 -54.6 (-85.6; -21.9)

https://doi.org/10.1371/journal.pone.0187677.t002
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Comparisons with other findings

Among the methodological advances advocated [10, 33] there is the need to increase the con-

text specificity on which the correlates are defined. Clarification of the behavioural context

could enhance the specificity of behavioural models, with key characteristics of context being

person, place, time and activity. Related to this research agenda, there has also been increased

interest in the temporal dimension of correlates of physical activity. These studies have been

reviewed [34, 35]; Stanley and colleagues [35] considered studies conducted on children (8–14

years) between 1990 and 2011. They focused on studies that evaluated determinants at school

Fig 2. Estimated coefficient functions, with 95% bootstrap confidence intervals, for sex, ethnicity and

season.

https://doi.org/10.1371/journal.pone.0187677.g002
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break time and after school. The authors found some correlates with consistent associations

with physical activity; in particular, sex (with boys more active) was associated with physical

activity in both periods. Brooke and colleagues [34] reviewed differences in physical activity in

school aged children across different time periods (weekdays vs weekends, in school vs out of

school, weekends vs out of school and lesson time vs break time). They found that children

were more active on weekdays than during the weekend, while the unit of physical activity

measurement was found to influence comparisons across other time-periods. We have found a

small number of other papers also exhuming the temporal characteristics of physical activity

Fig 3. Estimated coefficient functions, with 95% bootstrap confidence intervals, for sport, reading

and friends.

https://doi.org/10.1371/journal.pone.0187677.g003
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correlates and published after this review [36–40]. Hesketh and colleagues [36] have previously

examined patterns of activity across the day in a sample of 593 preschool-aged children living

in Southampton, UK. Their time-specific observations demonstrated the importance of con-

sidering temporality for physical activity interventions targeting, for example, sex differences

in the morning when girls were less active than boys. Similarly, a study by Li and colleagues

[38] in 1075 8-11-year-old children has shown daily variation in activity levels, with periods of

higher activity during the commute to school times, morning break and lunch-times. Stanley

and colleagues [39] analysed accelerometer data from 423 south Australian children aged

Fig 4. Estimated coefficient functions, with 95% bootstrap confidence intervals, for mode of transport

to and from school and number of cars/vans of regular use in the household.

https://doi.org/10.1371/journal.pone.0187677.g004
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between 10 and 14 years. The authors used the correlation component regression models to

predict total physical activity during lunch-time and after-school periods for boys and girls

separately; they were able to explain 25% and 17% of the variance for boys and girls respec-

tively during lunch time, while the after-school model predicted 20% and 7% of the variability

in boys and girls, respectively. Hubbard and colleagues [37] evaluated the difference in differ-

ent physical activity dimensions between boys and girls, and normal and overweight/obese

children in 517 US school children with a mean age of 9 years. They found lower levels of phys-

ical activity in girls, and overweight/obese children, in all of the periods investigated (school,

weekday out-of-school, weekend). Finally, De Baere and colleagues [40] examined temporal

patterns of both physical activity and sedentary behaviour in 211 children aged 10–14 and

reported on particularly active periods of the day, like those reported in our study, but also

more sedentary periods and periods where these types of activity compete.

Regarding, statistical methods, in another study based on a small sample of school children

in the United States, Fan and colleagues [18] used FDA to assess PA differences between ado-

lescent girls in different school years and with high versus low body mass index (BMI) catego-

ries. The sample comprised fewer than one hundred pupils in each of the three year groups

examined. The authors reported lower activity levels in grade 10 (15 to 16 years) than grade 11

(16 to 17 years) and 12 (17 to 18 years) girls during evening hours; differences in activity levels

were also observed for grade 10 girls with low- versus high-BMIs during the morning period,

with the low BMI group being more active. Our study did not re-examine the impact of BMI

status, but we do concur with Fan and colleagues [18] on the importance of FDA in enhancing

this field of research. Another analytic approach has been outlined by Morris and colleagues

[41] who used a wavelet-based functional model incorporating covariates and random effects

to analyse 550 accelerometer profiles from 112 early adolescents and demonstrated irregular

profiles characterised by many peaks representing short bursts of intense activity. The main

focus of the study by Morris and colleagues was to sample stochastically missing regions of

incomplete profiles, which were not present in our dataset.

In summary we have found the evidence inconclusive, apart from consistently higher levels

of physical activity observed in boys across all time periods examined. While patterns of physi-

cal activity within and between days have been studied, few studies have analysed correlates

associated with different levels of activity within a single day.

Strengths and limitations

There is increasing interest in using the internal clock of the accelerometer to depict daily PA

patterns. [42–44] The representation of accelerometer data as a functional data object over

time gives a clearer picture of the daily PA patterns. This enables researchers to identify con-

textual information for periods when children are most or least active. These daily patterns

can be identified at a population level using functional descriptive statistics, such as the func-

tional mean.

Linkage of the activity data to a wide range of individual and behavioural information from

MCS enabled examination of the effects of these covariates and activity levels and temporal

patterns. A strength of our study is the novel application of FANOVA to explain the variability

of fitted functional daily PA patterns, in this study using a sample of approximately 6500 daily

physical activity profiles. This has allowed us to extend, in a large population-based study of

primary school-aged children, our earlier observations of reduced physical activity among

girls, those who do not engage in sporting or other social activities, and those who do not ever

walk or cycle to school by demonstrating the time of day where these differences are most

marked. We believe this provides additional evidence as well as a methodological approach
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with which to inform and evaluate population level strategies to increase children’s physical

activity.

A potential limitation of using accelerometers to define activity is that it underestimates

activities that do not include vertical movement of the trunk, such as cycling, and, for the

device used in this study, aquatic activities such as swimming. We also did not use all informa-

tion available on each child; this choice was made to ensure independence of daily profiles,

since the methods developed by Ramsay and Silverman [17] as implemented in the R package

fda require independence of functional profiles. Further work is needed to develop and evalu-

ate efficient FDA methods that consider dependence structures on the functional profiles in

large scale population studies.

FDA requires a common observation time without missing data. The observation period

between 8:30 and 19:30 was chosen to maximise the sample size without missing data in the

observation period. By using this time window, we may have missed some active transporta-

tion to school; however, the average of the functional coefficient between the period 8:30 and

9:30 shows a lower level of physical activity and it seems that some of the effect of active travel-

ling during the before school time period was captured by the functional coefficient (See Fig

4).

Our analysis did not consider interactions between biological and behavioural determi-

nants, this is a limitation of our work as it is important to understand and evaluate how differ-

ent levels (and types) of determinants interact to promote healthy behaviours; doing this

within FDA requires complex computational considerations but this should be considered in

future work.

Implications for research and practice

The description and the analysis over time of factors that affect PA patterns can provide infor-

mation useful for planning tailored public health interventions aimed at increasing PA among

children. For example, several studies have highlighted the lower levels of activity in primary

school-aged girls, [5] however quantifying these differences more precisely over the waking

day, particularly during school time, can be used to inform and evaluate school-based inter-

ventions designed to increase participation in more intense PA. For example, our findings sug-

gest that initiatives aimed at increasing activity during the lunchtime period may be

particularly beneficial for girls.

Our observation of higher levels of PA in summer and spring, has been previously reported.

[45, 46] This supports the implementation of physical activity promotion interventions in chil-

dren during winter, possibly during the afternoon when the greatest differences are observed

relative to activity levels in summer. The approach used in this study enables research to iden-

tify and evaluate mediators of seasonal variation in activity, such as social, organisational, and

environmental factors, to inform the design of interventions to reduce this variation. [45]

Our findings about the temporal effects on PA of mode of transport to school underscore

the importance of policy initiatives to support active walking to school schemes. [47]

Participation in sporting and other social activities outside of school is associated with

higher activity levels throughout the day. While the causal direction of these associations can-

not be established in an observational study, public health measures are urgently needed to

overcome barriers to involvement and to encourage participation in sports and other activities

(such as for example dancing) in and out of school, as proposed in the government’s recently

published obesity strategy. [48] Finally, we have shown that children who play with friends

more often are more active–social aspects of activity and the influence of peer networks should

be considered when tailoring interventions to increase activity in children.
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Conclusions

We have presented methods based on FDA applied to a large population-based study of chil-

dren with individual PA profiles based on accelerometer data. These methods are useful to

model the temporal and population heterogeneity of physical activities. In particular, our

methodological approach and findings related to modifiable behavioural factors may be used

to inform and evaluate population-based strategies aimed at increasing activity levels.
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