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Summary. In Randomised Controlled Trials (RCT) with treatment non-compliance, instru-
mental variable approaches are used to estimate complier average causal effects. We
extend these approaches to cost-effectiveness analyses, where methods need to recog-
nise the correlation between cost and health outcomes. We propose a Bayesian full like-
lihood (BFL) approach, which jointly models the effects of random assignment on treat-
ment received and the outcomes, and a three-stage least squares (3sls) method, which
acknowledges the correlation between the endpoints, and the endogeneity of the treatment
received. This investigation is motivated by the REFLUX study, which exemplifies the set-
ting where compliance differs between the RCT and routine practice. A simulation is used
to compare the methods performance. We find that failure to model the correlation between
the outcomes and treatment received correctly can result in poor CI coverage and biased
estimates. By contrast, BFL and 3sls methods provide unbiased estimates with good cov-
erage.
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1. Introduction

Non-compliance is a common problem in Randomised Controlled Trials (RCTs), as some

participants depart from their randomised treatment, by for example switching from

the experimental to the control regimen. An unbiased estimate of the effectiveness of

treatment assignment can be obtained by reporting the intention-to-treat (ITT) estimand.

In the presence of non-compliance, a complimentary estimand of interest is the causal

effect of treatment received. Instrumental variable (IV) methods can be used to obtain

the complier average causal effect (CACE), as long as random assignment meets the IV

criteria for identification (Angrist et al., 1996). An established approach to IV estimation

is two-stage least squares (2sls), which provides consistent estimates of the CACE when

the outcome measure is continuous, and non-compliance is binary (Baiocchi et al., 2014).
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Cost-effectiveness analyses (CEA) are an important source of evidence for informing

clinical decision-making and health policy. CEA commonly report an ITT estimand,

i.e. the relative cost-effectiveness of the intention to receive the intervention (NICE,

2013). However, policy-makers may require additional estimands, such as the relative

cost-effectiveness for compliers. For example, CEAs of new therapies for end-stage can-

cer, are required to estimate the cost-effectiveness of treatment receipt, recognising that

patients may switch from their randomised allocation following disease progression. Al-

ternative estimates such as the CACE may also be useful when levels of compliance in the

RCT differ to those in the target population, or where intervention receipt, rather than the

intention to receive the intervention, is the principal cost driver. Methods for obtaining

the CACE for univariate survival outcomes have been exemplified before (Latimer et al.,

2014), but approaches for obtaining estimates that adequately adjust for non-adherence

in CEA more generally, have received little attention. This has been recently identified

as a key area where methodological development is needed (Hughes et al., 2016).

The context of trial-based CEA highlights an important complexity that arises with

multivariate outcomes more widely, in that, to provide accurate measures of the un-

certainty surrounding a composite measure of interest, for example the incremental net

monetary benefit (INB), it is necessary to recognise the correlation between the endpoints,

in this case, cost and health outcomes (Willan et al., 2003; Willan, 2006). Indeed, when

faced with non-compliance, and the requirement to estimate a causal effect of treatment

on cost-effectiveness endpoints, some CEA resort to per protocol (PP) analyses (Brilleman

et al., 2015), which exclude participants who deviate from treatment. As non-compliance

is likely to be associated with prognostic variables, only some of which are observed,

PP analyses are liable to provide biased estimates of the causal effect of the treatment

received.

This paper develops novel methods for estimating CACE in CEA that use data from

RCTs with non-compliance. First, we propose using the three stage least squares (3sls)

method (Zellner and Theil, 1962), which allows the estimation of a system of simultane-

ous equations with endogenous regressors. Next, we consider a bivariate version of the

‘unadjusted Bayesian’ models previously proposed for Mendelian randomisation (Burgess

and Thompson, 2012), which simultaneously estimate the expected treatment received as

a function of random allocation, and the mean outcomes as a linear function of the ex-

pected treatment received. Finally, we develop a Bayesian full likelihood approach (BFL),

whereby the outcome variables and the treatment received are jointly modelled as depen-

dent on the random assignment. This is an extension to the multivariate case of what

is known in the econometrics literature as the IV unrestricted reduced form (Kleibergen

and Zivot, 2003).

The aim of this paper is to present and compare these alternative approaches. The

problem is illustrated in Section 2 with the REFLUX study, a multicentre RCT and

CEA that contrasts laparoscopic surgery with medical management for patients with

Gastro-Oesophageal Reflux Disease (GORD). Section 3 introduces the assumptions and
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methods for estimating CACEs. Section 4 presents a simulation study used to assess the

performance of the alternative approaches, which are then applied to the case study in

Section 5. We conclude with a Discussion (Section 6), where we consider the findings

from this study in the context of related research.

2. Motivating example: Cost-effectiveness analysis of the REFLUX study

The REFLUX study was a UK multicentre RCT with a parallel design, in which pa-

tients with moderately severe GORD, were randomly assigned to medical management

or laparoscopic surgery (Grant et al., 2008, 2013).

The RCT randomised 357 participants (178 surgical, 179 medical) from 21 UK centres.

An observational preference based study was conducted alongside it, which involved 453

preference participants (261 surgical, 192 medical).

For the cost-effectiveness analysis within the trial, individual resource use (costs in

£ sterling) and health-related quality of life (HRQoL), measured using EQ5D (3 levels),

were recorded annually for up to 5 years. The HRQoL data were used to adjust life years

and present quality-adjusted life years (QALYs) over the follow-up period (Grant et al.,

2013).‡ As is typical, the costs were right-skewed. Table 1 reports the main characteristics

of the data set.

The original CEA estimated the linear additive treatment effect on mean costs and

health outcomes (QALYs). The primary analysis used a system of seemingly unrelated

regression equations (SURs) (Zellner, 1962; Willan et al., 2004), adjusting for baseline

HRQoL EQ5D summary score (denoted by EQ5D0). The SURs can be written for cost

Y1i and QALYs Y2i, as follows

Y1i = β0,1 + β1,1treati + β1,2EQ5D0i + ε1i
Y2i = β0,2 + β1,2treati + β2,2EQ5D0i + ε2i

(1)

where β1,1 and β1,2 represent the incremental costs and QALYs respectively. The er-

ror terms are required to satisfy E[ε1i] = E[ε2i] = 0, E[εkiεk′i] = σkk′ , E[εkiεk′j ] =

0, for k, k′ ∈ {1, 2}, and for i 6= j. Rather than assuming that the errors are drawn

from a bivariate normal distribution, estimation is usually done by the feasible general-

ized least squares (FGLS) method§. This is a two-step method where, in the first step, we

run ordinary least squares estimation for equation (1). In the second step, residuals from

the first step are used as estimates of the elements σkk′ of the covariance matrix, and this

estimated covariance structure is then used to re-estimate the coefficients in equation (1)

(Zellner, 1962; Zellner and Huang, 1962).

In addition to reporting incremental costs and QALYs, CEA often report the in-

cremental cost-effectiveness ratio (ICER), which is defined as the ratio of the incre-

mental costs per incremental QALY, and the incremental net benefit (INB), defined as

‡There was no administrative censoring.
§If we are prepared to assume the errors are bivariate normal, estimation can proceed by maxi-

mum likelihood.
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INB(λ) = λβ1,2 − β1,1, where λ represents the decision-makers’ willingness to pay for a

one unit gain in health outcome. Thus the new treatment is cost-effective if INB > 0.

For a given λ, the standard error of INB can be estimated from the estimated incre-

ments β̂1,1 and β̂1,2, together with their standard errors and their correlation following

the usual rules for the variance of a linear combination of two random variables. The

willingness to pay λ generally lies in a range, so it is common to compute the estimated

value of INB for various values of λ. In REFLUX, the reported INB was calculated using

λ = £30000, which is within the range of cost-effectiveness thresholds used by the UK

National Institute for Health and Care Excellence (NICE, 2013).

The original ITT analysis concluded that, compared to medical management, the arm

assigned to surgery had a large gain in average QALYs, at a small additional cost and was

relatively cost-effective with a positive mean INB, albeit with 95% confidence intervals

(CI) that included zero. However, these ITT results cannot be interpreted as a causal

effect of the treatment, since within one year of randomisation, 47 of those randomised

to surgery switched and received medical management, while in the medical treatment

arm, 10 received surgery. The reported reasons for not having the allocated surgery were

that in the opinion of the surgeon or the patient, the symptoms were not “sufficiently

severe” or the patient was judged unfit for surgery (e.g. overweight). The preference-

based observational study conducted alongside the RCT reported that in routine clinical

practice, the corresponding proportion who switched from an intention to have surgery

and received medical management, was relatively low (4%), with a further 2% switching

from control to intervention (Grant et al., 2013). Since the percentage of patients who

switched in the RCT was higher than in the target population and the costs of the

receipt of surgery are relatively large, there was interest in reporting a causal estimate

of the intervention. Thus, the original study also reported a PP analysis on complete-

cases, adjusted for baseline EQ5D0, which resulted in an ICER of £7263 per additional

QALY (Grant et al., 2013). This is not an unbiased estimate of the causal treatment

effect, so in Section 5, we re-analyse the REFLUX dataset to obtain a CACE of the cost-

effectiveness outcomes, recognising the joint distribution of costs and QALYs, using the

methods described in the next section.

3. Complier Average Causal effects with bivariate outcomes

We begin by defining more formally our estimands and assumptions. Let Y1i and Y2i be

the continuous bivariate outcomes, and Zi and Di the binary random treatment allocation

and treatment received respectively, corresponding to the i-th individual. The bivariate

endpoints Y1i and Y2i belong to the same individual i, and thus are correlated. We assume

that there is an unobserved confounder U , which is associated with the treatment received

and either or both of the outcomes. From now on, we will assume that the (i) Stable

Unit Treatment Value Assumption (SUTVA) holds: the potential outcomes of the

i-th individual are unrelated to the treatment status of all other individuals (known as no
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interference), and that for those who actually received treatment level z, their observed

outcome is the potential outcome corresponding to that level of treatment.

Under SUTVA, we can write the potential treatment received by the i-th subject

under the random assignment at level zi ∈ {0, 1} as Di (zi). Similarly, Y`i (zi, di) with

` ∈ {1, 2} denotes the corresponding potential outcome for endpoint `, if the i-th subject

were allocated to level zi of the treatment and received level di. There are four potential

outcomes. Since each subject is randomised to one level of treatment, only one of the

potential outcomes per endpoint `, is observed, i.e. Y`i = Y`i(zi, Di(zi)) = Yi(zi).

The CACE for outcome ` can now be defined as

θ` = E
[
{Y`i(1)− Y`i(0)}

∣∣{Di(1)−Di(0) = 1}
]
. (2)

In addition to (i) SUTVA, the following assumptions are sufficient for identification of

the CACE, (Angrist et al., 1996):

(ii) Ignorability of the treatment assignment: Zi is independent of unmeasured

confounders (conditional on measured covariates) and the potential outcomes Zi ⊥⊥
Ui, Di(0), Di(1), Yi(0), Yi(1).

(iii) The random assignment predicts treatment received: Pr{Di(1) = 1} 6=
Pr{Di(0) = 1}.
(iv) Exclusion restriction: The effect of Z on Y` must be via an effect of Z on D; Z

cannot affect Y` directly.

(v) Monotonicity: Di(1) ≥ Di(0).

The CACE can now be identified from equation (2) without any further assumptions

about the unobserved confounder; in fact, U can be an effect modifier of the relationship

of D and Y (Didilez et al., 2010).

In the REFLUX study, the assumptions concerning the random assignment, (ii) and

(iii), are justified by design. The exclusion restriction assumption seems plausible for the

costs, since the costs of surgery are only incurred if the patient actually has the procedure.

We argue that it is also plausible that it holds for QALYs, as the participants did not seem

to have a preference for either treatment, thus making the psychological effects of knowing

to which treatment one has been allocated minimal. The monotonicity assumption rules

out the presence of defiers. It seems fair to assume that there are no participants who

would refuse the REFLUX surgery when randomised to it, but who would receive surgery

when randomised to receive medical management. Equation (2) implicitly assumes that

receiving the intervention has the same average effect in the linear scale, regardless of the

level of Z and U . This average is however across different ‘versions’ of the intervention,

as the trial protocol did not prescribe a single surgical procedure, but allowed for the

surgeon to choose their preferred laparoscopy method, as would be the case in routine

clinical practice.

Since random allocation, Z, satisfies assumptions (ii)-(iv), we say it is an instrument (or

instrumental variable) for D. For binary instrument, the simplest method of estimation
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of equation (2) in the IV framework is the Wald estimator (Angrist et al., 1996):

θ̂`,IV =
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)

Typically, estimation of these conditional expectations proceeds via an approach known as

two-stage least squares (2sls). The first stage fits a linear regression to treatment received

on treatment assigned. Then, in a second stage, a regression model for the outcome on

the predicted treatment received is fitted:

Di = α0 + α1Zi + ω1i

Y`i = β0 + βIV D̂i + ω2i (3)

where β̂IV is an estimator for θ`. Covariates can be used, by including them in both

stages of the model. To obtain the correct standard errors for the 2sls estimator, it

is necessary to take into account the uncertainty about the first stage estimates. The

asymptotic standard error for the 2sls CACE is given in Imbens and Angrist (1994), and

implemented in commonly used software packages.

OLS estimation produces first-stage residuals ω1i that are uncorrelated with the in-

strument, and this is sufficient to guarantee that the 2sls estimator is consistent for the

CACE (Angrist et al., 2008). Therefore, we restrict our attention here to models where

the first-stage equation is linear, even though the treatment received is binary. ¶
A key issue for settings such as CEA where there is interest in estimating the CACE

for bivariate outcomes, is that 2sls as implemented in most software packages can only

be readily applied to univariate outcomes. Ignoring the correlation between the two end-

points is a concern for obtaining standard errors of composite measures of the outcomes,

e.g. INB, as this requires accurate estimates of the covariance between the outcomes of

interest (e.g. costs and QALYs).

A simple way to address this problem would be to apply 2sls directly to the composite

measure, i.e. a net-benefit two-stage regression approach (Hoch et al., 2006). However,

it is known that net benefit regression is very sensitive to outliers, and to distributional

assumptions (Willan et al., 2004), and has been recently shown to perform poorly when

these assumptions are thought to be violated (Mantopoulos et al., 2016). Moreover, such

net benefit regression is restrictive, in that it does not allow separate covariate adjustment

for each of the component outcomes, (e.g. baseline HRQoL, for the QALYs as opposed to

the costs). In addition, this simple approach would not be valid for estimating the ICER,

which is a non-linear function of the incremental costs and QALYs. For these reasons, we

do not consider this approach further. Rather, we present here three flexible strategies

for estimating a CACE of the QALYs and the costs, jointly. The first approach combines

SURs (equation 1) and 2sls (equation 3) to obtain CACEs for both outcomes accounting

for their correlation. This simple approach is known in the econometrics literature as

three-stage least squares (3sls).

¶Non-linear versions of the 2sls exist. See for example Clarke and Windmeijer (2012) for an

excellent review of methods for binary outcomes.
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3.1. Three-stage least squares
Three-stage least squares (3sls) was developed for SUR systems with endogenous regres-

sors, i.e. any explanatory variables which are correlated with the error term in equations

(1) (Zellner and Theil, 1962). All the parameters appearing in the system are estimated

jointly, in three stages. The first two stages are as for 2sls, but with the second stage

applied to each of the outcomes.

(1st stage): Di = α0 + α1Zi + e0i

(2nd stage): Y1i = β01 + βIV,1D̂i + e1i (4)

Y2i = β02 + βIV,2D̂i + e2i (5)

As with 2sls, the models can be extended to include baseline covariates. The third stage is

the same step used on a SUR with exogenous regressors (equation (1)) for estimating the

covariance matrix of the error terms from the two equations (4) and (5). Thus, because

we are assuming that Z satisfies the identification assumptions (i)-(v), Z is independent

of the residuals at first and second stage, i.e. Z ⊥⊥ e0i, Z ⊥⊥ e1i, and Z ⊥⊥ e2i. Then,

the 3sls procedure allows us to obtain the covariance matrix between the residuals e1i
and e2i. As with SURs, the 3sls approach does not require to make any distributional

assumptions, as estimation can be done by FGLS, and it is robust to heteroscedasticity

of the errors in the linear models for the outcomes (Greene, 2002). We note that the

3sls estimator based on FGLS is consistent only if the error terms in each equation of

the system and the instrument are independent, which is likely to hold here, as we are

dealing with a randomised instrument. In settings where this condition is not satisfied,

other estimation approaches such as generalised methods of moments (GMM) warrant

consideration (Schmidt, 1990). In the just-identified case, i.e. when there are as many

endogenous regressors as there are instruments, classical theory about 3sls estimators

shows that the GMM and the FGLS estimators coincide (Greene, 2002). As the 3sls

method uses an estimated variance-covariance matrix, it is only asymptotically efficient

(Greene, 2002).

3.2. Naive Bayesian estimators
Bayesian models have a natural appeal for cost-effectiveness analyses, as they afford us

the flexibility to estimate bivariate models on the expectations of the two outcomes using

different distributions, as proposed by (Nixon and Thompson, 2005). These models are

often specified by writing a marginal model for one of the outcomes, e.g. the costs Y1,

and then, a model for Y2, conditional on Y1.

For simplicity of exposition, we begin by assuming normality for both outcomes and

no adjustment for covariates. We have a marginal model for Y1 and a model for Y2
conditional on Y1 (Nixon and Thompson, 2005)

Y1i ∼ N(µ1i, σ
2
1) µ1i = β0,1 + β1,1treati (6)

Y2i | Y1i ∼ N(µ2i, σ
2
2(1− ρ2)) µ2i = β0,2 + β1,2treati + β2,2(y1i − µ1i), (7)
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where ρ is the correlation between the outcomes. The linear relationship between the two

outcomes is represented by β2,2 = ρσ2

σ1
.

Because of the non-compliance, in order to obtain a causal estimate of treatment, we

need to add a linear model for the treatment received, dependent on randomisation Zi,

similar to the first equation of a 2sls. Formally, this model (denoted uBN, for unadjusted

Bayesian Normal) can be written with three equations as follows:

Di ∼ N(µ0i, σ
2
0)

Y1i ∼ N(µ1i, σ
2
1)

Y2i
∣∣Y1i ∼ N(µ2i, σ

2
2(1− ρ2))

µ0i = β0,0 + β1,0Zi
µ1i = β0,1 + β1,1µ0i
µ2i = β0,2 + β1,2µ0i + β2,2(y1i − µ1i)

(8)

This model is a bivariate version of the ‘unadjusted Bayesian’ method previously proposed

for Mendelian randomisation (Burgess and Thompson, 2012). It is called unadjusted,

because the variance structure of the outcomes is assumed to be independent of the

treatment received. The causal treatment effect for outcome Y`, with ` ∈ {1, 2}, is

represented by β1,` in equations (8). We use the Fisher’s z-transform of ρ, i.e. z =
1
2 log

(
1+ρ
1−ρ

)
, for which we assume a vague normal prior, i.e. z ∼ N(0, 102). We also use

vague multivariate normal priors for the regression coefficient (with a precision of 0.01).

For standard deviations, we use σj ∼ Unif(0, 10), for j ∈ {0, 1, 2}. This is similar to

the priors used in (Lancaster, 2004), and are independent of the regression coefficient of

treatment received on treatment allocation β1,0.

Cost data are notoriously right-skewed, and Gamma-distributions are often used to

model them. Thus, we can relax the normality assumption of equation (8), and model Y1
(i.e. cost) with a Gamma distribution, and treatment received (binary), with a logistic

regression. The health outcomes, Y2, are still modelled with a normal distribution, as is

customary. Because we are using a non-linear model for the treatment received, we use

the predicted raw residuals from this model as extra regressors in the outcome models,

similar to the 2-stage residual inclusion estimator (Terza et al., 2008). We model Y1 by

its marginal distribution (Gamma) and Y2 by a conditional Normal distribution, given Y1
(Nixon and Thompson, 2005). We call this model ‘unadjusted Bayesian Gamma-Normal’

(uBGN) and write it as follows

Di ∼ Bern(πi)

Y1i ∼ Gamma(ν1i, κ1)

Y2i | Y1i ∼ N(µ2i, σ
2
2(1− ρ2))

logit(πi) = α0 + α1Zi
ri = Di − πi
µ1i = β0,1 + β1,1Di + β1,rri
µ2i = β0,2 + β1,2Di + β2,rri + β2,2(y1i − µ1i)

(9)

where µ1 = ν1
κ1

, is the mean of the Gamma distributed costs, with shape ν1 and rate

κ1. Again, we express β2,2 = ρσ2

σ1
, and assume a vague Normal prior on the Fisher’s

z-transform of ρ, z ∼ N(0, 102).The prior distribution for ν1 is Gamma(0.01, 0.01).

We also assume a Gamma prior for the intercept term of the cost equation, β0,1 ∼
Gamma(0.01, 0.01). All the other regression parameters have the same priors as those

used in the uBN model.
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The models introduced in this section, uBN and uBGN, are estimated in one stage,

allowing feedback between the regression equations and the propagation of uncertainty.

However, these ’unadjusted’ methods ignore the correlation between the outcomes and

the treatment received. This misspecification of the covariance structure may result in

biases in the causal effect, which are likely to be more important at higher levels of

non-compliance.

3.3. Bayesian simultaneous equations (BFL)
We now introduce an approach that models the covariance between treatment received

and outcomes appropriately, using a system of simultaneous equations. This can be

done via full or limited information maximum likelihood, or by using MCMC to estimate

the parameters in the model simultaneously allowing for proper Bayesian feedback and

propagation of uncertainty. Here, we propose a Bayesian approach which is an extension

of the methods presented in Burgess and Thompson (2012); Kleibergen and Zivot (2003);

Lancaster (2004).

This method treats the endogenous variable D and the cost-effectiveness outcomes as

covariant and estimates the effect of treatment allocation, as follows. Let (Di, Y1i, Y2i)
>

be the transpose of vector of outcomes, which now includes treatment received, as well as

the bivariate endpoints of interest. We treat all three variables as multivariate normally

distributed, so thatDi

Y1i
Y2i

 ∼ N

 µ0i

µ1i
µ2i

 ,Σ =

σ20 s01 s02
s01 σ21 s12
s02 s12 σ22


 ;

µ0i = β0,0 + β1,0Zi
µ1i = β0,1 + β1,1β1,0Zi
µ2i = β0,2 + β1,2β1,0Zi

(10)

where sij = cov(Yi, Yj), and the causal treatment effect estimates are β1,1 and β1,2 respec-

tively. For the implementation, we use vague normal priors for the regression coefficients,

i.e. βm,j ∼ N(0, 102), for j ∈ {0, 1, 2},m ∈ {0, 1}, and a Wishart prior for the inverse of

Σ (Gelman and Hill, 2006).

4. Simulation study

We now use a factorial simulation study to assess the finite sample performance of the

alternative methods. The first factor is the proportion of participants who do not comply

with the experimental regime, when assigned to it, expressed as a percentage of the

total (one-sided non-compliance). Bias is expected to increase with increasing levels of

non-compliance. A systematic review (Dodd et al., 2012) found that the percentage of

non-compliance was less than 30% in two-thirds of published RCTs, but greater than

50% in one-tenth of studies. Here, two levels of non-compliance are chosen, 30% and

70%. As costs are typically skewed, three different distributions (Normal, Gamma or

Inverse Gaussian – IG) are used to simulate cost data. As the 2sls approach fails to

accommodate the correlation between the endpoints, we examined the impact of different
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levels of correlation on the methods’ performance; ρ takes one of four values ±0.4, ±0.8.

The final factor is the sample size of the RCT, taking two settings n = 100, and 1000. In

total, there are 2× 3× 4× 2 = 48 simulated scenarios.

To generate the data, we begin by simulating U ∼ N(0.50, 0.252), independently from

treatment allocation. U represents a pre-randomisation variable that is a common cause

of both the outcomes and the probability of non-compliance, i.e. it is a confounding

variable, which we assume is unobserved.

Now, let Si ∼ Bern(πs) be the random variable denoting whether the ith individual

switches from allocated active treatment to control. The probability πs of one-way non-

compliance with allocated treatment depends on U , in the following way,

πs =

{
p+ 0.1, if u > 0.5,

p− 0.1, otherwise
(11)

where p denotes the corresponding average non-compliance percentage expressed as a

probability, i.e here p ∈ {0.3, 0.7}. We now generate Di, the random variable of treatment

received as

Di =

{
Zi, if either si = 0 or Zi = 0,

1− Zi, if si = 1 and Zi = 1
(12)

where Zi denotes the random allocation for subject i.

Then, the means for both outcomes are assumed to depend linearly on treatment

received and the unobserved confounder U as follows:

µ1 = E[Y1] = 1.2 + 0.4Di + 0.16(ui − 0.5) (13)

µ2 = E[Y2] = 0.5 + 0.2Di + 0.04(ui − 0.5) (14)

Finally, the bivariate outcomes are generated using Gaussian copulas, initially with

normal marginals. In subsequent scenarios, we consider Gamma or Inverse Gaussian

marginals for Y1 and normal for Y2. The conditional correlation between the outcomes,

ρ, is set according to the corresponding scenario.

For the scenarios where the endpoints are assumed to follow a bivariate normal distri-

bution, the variances of the outcomes are set to σ21 = 0.22, σ22 = 0.12 respectively, while

for scenarios with Gamma and IG distributed Y1, the shape parameter is η = 4. For the

Gamma case, this gives a variance for Y1 equal to σ21 = 0.36 in control and σ21 = 0.64 in

the intervention group. When Y1 ∼ IG(µ1, η), the expected variance in the control group

is σ21 = 0.432, and σ21 = 1.024 in those receiving the intervention.

The simulated endpoints represent cost-effectiveness variables that have been rescaled

for computational purposes, with costs divided by 1000, and QALYs by 0.1, such that

the true values are £400 (incremental costs), and 0.02 (incremental QALYs) and so with

a threshold value of λ = £30000 per QALY, the true causal INB is £200.

For each simulated scenario, we obtained M = 2500 sets. For the Bayesian analyses, we

use the median of the posterior distribution as the ‘estimate’ of the parameter of interest,
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and the standard deviation of the posterior distribution as the standard error. Equal

tailed 95% posterior credible intervals are also obtained. We use the term confidence

interval for the Bayesian credible intervals henceforth, to have a unified terminology for

both Bayesian and frequentist intervals.

Once the corresponding causal estimate has been obtained in each of the 2500 repli-

cated sets under each scenario in turn, we compute the median bias of the estimates,

coverage of 95% confidence intervals (CI), median CI width and root mean square error

(RMSE). We report median bias as opposed to mean bias, because the BFL leads to

a posterior distribution of the causal parameters which is Cauchy-like (Kleibergen and

Zivot, 2003). A method is ‘adequate’, if it results in low levels of bias (median bias ≤ 5%)

with coverage rates within 2.5% of the nominal value.

Implementation:

The 3sls was fitted using systemfit package in R using FGLS, and the Bayesian methods

were run using JAGS from R (r2jags). Two chains, each one with 5000 initial iterations

and 1000 burn-in were used. The multiple chains allowed for a check of convergence

by the degree of their mixing and the initial iterations enabled to estimate iteration

autocorrelation. A variable number of further 1000-iteration runs were performed until

convergence was reached as estimated by the absolute value of the Geweke statistics for

the first 10% and last 50% of iterations in a run being below 2.5. A final additional

run of 5000 iterations was performed for each chain to achieve a total sample of 10000

iterations, and a MC error of about 1% of the parameter SE on which to base the posterior

estimates. For the uBGN, an offset of 0.01 is added to the shape parameter ν1 for the

Gamma distribution of the cost, to prevent the sampled shape parameter to become too

close to zero, which may result in infinite densities. See the Supplementary File for the

JAGS model code for BFL.

4.1. Simulation Study Results
Bias

Figure 1 shows the median bias corresponding to scenarios with 30% non-compliance,

by cost distributions (left to right) and levels of correlation between the two outcomes,

for sample sizes of n = 100 (upper panel) and n = 1000 (lower panel). With the larger

sample size, for all methods, bias is negligible with normally distributed costs, and remain

less than 5% when costs are Gamma-distributed. However, when costs follow an Inverse

Gaussian distribution, and the absolute levels of correlation between the endpoints are

high (±0.8), the uBGN approach results in biased estimates, around 10% bias for the

estimated incremental cost, and between 20 and 40% for the estimated INB. With the

small sample size and when costs follow a Gamma or Inverse Gaussian distribution, both

unadjusted Bayesian methods provide estimates with moderate levels of bias. With 70%

non-compliance (Figure A3 in the Supplementary file), the unadjusted methods result in

important biases which persist even with large sample sizes, especially for scenarios with

non-normal outcomes. For small sample settings, uBN reports positive bias (10 to 20%)
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in the estimation of incremental QALYs, and the resulting INB, irrespective of the cost

distribution. The uBGN method reports relatively unbiased estimates of the QALYs, but

large positive bias (up to 60%) in the estimation of costs, and hence, there is substantial

bias in the estimated INB (up to 200%). The unadjusted Bayesian methods ignore the

positive correlation between the confoudning variable and both the treatment received

and the outcome. These methods therefore provide estimates of the casual effects that

exceed the true values, i.e. have a positive bias. By contrast, the BFL and the 3sls provide

estimates with low levels of bias across most settings.

CI coverage and width

Table 2 presents the results for CI coverage and width, for scenarios with a sample size

of n = 100, absolute levels of correlation between the endpoints of 0.4, and 30% non-

compliance. All other results are shown in the Supplementary file. The 2sls INB ignores

the correlation between costs and QALYs, and thus, depending on the direction of this

correlation, 2sls reports CI coverage that is above (positive correlation) or below (negative

correlation) nominal levels. This divergence from nominal levels increases with higher

absolute levels of correlation (see Supplementary file, Table A6).

The uBN approach results in over-coverage across many settings, with wide CIs. For

example, for both levels of non-compliance and either sample size, when the costs are

Normal, the CI coverage rates for both incremental costs and QALYs exceed 0.98. The

interpretation offered by Burgess and Thompson (2012) is also relevant here: the uBN

assumes that the treatment received and the outcomes variance structures are uncorre-

lated, and so when the true correlation is positive, the model overstates the variance and

leads to wide CIs. By contrast, the uBGN method results in low CI coverage rates for the

estimation of incremental costs, when costs follow an inverse Gaussian distribution. This

is because the model incorrectly assumes a Gamma distribution, thereby underestimating

the variance. The extent of the under-coverage appears to increase with higher absolute

values of the correlation between the endpoints, with coverage as low as 0.68 (incremental

costs) and 0.72 (INB) in scenarios where the absolute value of correlation between costs

and QALYs is 0.8. (see Supplementary file, Table A7).

The BFL approach reports estimates with CI coverage close to the nominal when the

sample size is large, but with excess coverage (greater than 0.975), and relatively wide

CI, when the sample size is n = 100 (see Table 2 for 30% noncompliance, and Table A4 in

the Supplementary file for the result corresponding to 70% non-compliance). By contrast,

the 3sls reports CI coverage within 2.5% of nominal levels for each sample size, level of

non-compliance, cost distribution and level of correlation between costs and QALYs.

RMSE

Table 3 reports RMSE corresponding to 30% non-compliance, and n = 100. The least

squares approaches result in lower RMSE than the other methods for the summary statis-

tic of interest, the INB. This pattern is repeated across other settings, see the Supple-

mentary file, Tables A10–A16. ‖

‖The RMSE for the 2sls and 3sls estimates is the same for each of the outcomes considered,
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5. Results for the motivating example

We now compare the methods in practice by applying them to the REFLUX dataset. Only

48% of the individuals have completely observed cost-effectiveness outcomes: there were

185 individuals with missing QALYs, 166 with missing costs, and a further 13 with missing

EQ5D0 at baseline, with about a third of those with missing outcomes having switched

from their allocated treatment. These missing data not only bring more uncertainty to

our analysis, but more importantly, unless the missing data are handled appropriately can

lead to biased causal estimates (Daniel et al., 2012). A complete case analysis would be

unbiased, albeit inefficient, if the missingness is conditionally independent of the outcomes

given the covariates in the model (White et al., 2010), even when the covariates have

missing data, as is the case here.∗∗ Alternatively, a more plausible assumption is to

assume the missing data are missing at random (MAR), i.e. the probability of missingness

depends only on the observed data, and use multiple imputation (MI) or a full Bayesian

analysis to obtain valid inferences.

Therefore, we perform MI prior to carrying out 2sls and 3sls analyses. We begin by

investigating all the possible associations between the covariates available in the data set

and the missingness, univariately for costs, QALYs and baseline EQ5D0. Covariates which

are predictive of both, the missing values and the probability of missing, are to be included

in the imputation model as auxiliary variables, as conditioning on more variables helps

make the MAR assumption more plausible. None of the available covariates satisfies these

criteria and therefore, we do not include any auxiliary variables in our imputation models.

Thus, we impute total cost, total QALYs and baseline EQ5D0, 50 times by chained

equations, using predictive mean matching (PMM), taking the 5 nearest neighbours as

donors (White et al., 2011), including treatment received in the imputation model and

stratifying by treatment allocation. We perform 2sls on costs and QALYs independently

and calculate (within MI) SE for the INB assuming independence between costs and

QALYs. For the 3sls approach, the model is fitted to both outcomes simultaneously, and

the post-estimation facilities are used to extract the variance-covariance estimate, and

compute the estimated INB and its corresponding SE. We also use the CACE estimates

of incremental cost and QALYs to obtain the ICER. After applying each method to the

50 MI sets, we combine the results using Rubin’s rules (Rubin, 1987).††
For the Bayesian approaches, the missing values become extra parameters to model.

because the two methods obtain the same point estimate, and hence, by definition, they have the

same empirical standard-error, even though they have different model-based standard errors for

INB. This is in contrast to the differences observed in the performance of measures based on the

CI. Coverage rate and CI width corresponding to these two methods are different for the INB,

because the confidence intervals are constructed using the model-based SE. See the Supplementary

File for further details.
∗∗This mechanism is a special case of missing not at random.
††Applying IV 2sls and 3sls with multiply imputed datasets, and combining the results using

Rubin’s rules can be done automatically in Stata using mi estimate, cmdok: ivregress 2sls

and mi estimate, cmdok: reg3. In R, ivregress can be used with with.mids command
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Since baseline EQ5D0 has missing observations, a model for its distribution is added

EQ5D0 ∼ N(µq0, σ
2
q0), with a vaguely informative prior for µq0 ∼ Unif(−0.5, 1), and

an uninformative prior for |σq0| ∼ N(0, 0.01). We add two extra lines of code to the

models to obtain posterior distributions for INB and ICERs. We center the outcomes

around the empirical mean (except for costs, when modelled as Gamma) and re-scale

the costs (dividing by 1000) to improve mixing and convergence. We use two chains,

initially running 15,000 iterations with 5,000 as burn-in. After checking visually for auto-

correlation, an extra 10,000 iterations are needed to ensure that the density plots of the

parameters corresponding to the two chains are very similar, denoting convergence to

the stationary distribution. Enough iterations for each chain are kept to make the total

effective sample (after accounting for auto-correlation) equal to 10,000. ‡‡
Table 1 shows the results for incremental costs, QALYs and INB for the motivating

example adjusted for baseline EQ5D0. Bayesian posterior distribution are summarised by

their median value and 95% credible intervals. The CACEs are similar across the methods,

except for uBGN, where the incremental QALYs CACE is nearly halved, resulting in a

smaller INB with a CI that includes 0. In line with the simulation results, this would

suggest that, where the uBGN is misspecified according to the assumed cost distribution,

it can provide a biased estimate of the incremental QALYs.

Comparing the CACEs to the ITT, we see that the incremental cost estimates in-

creases between an ITT and a CACE, as actual receipt of surgery carries with it higher

costs that the mere offering of surgery does not. Similarly, the incremental QALYs are

larger, meaning that amongst compliers, those receiving surgery have a greater gain in

quality of life, over the follow-up period. The CACE for costs are relatively close to

the per-protocol incremental costs reported in the original study, £2324 (1780, 2848). In

contrast, the incremental QALYs according to PP on complete-cases originally reported

was 0.3200 (0.0837, 0.5562), considerably smaller than our CACE estimates (Grant et al.,

2013). The ITT ICER obtained after MI was £4135, while using causal incremental

costs and QALYs, the corresponding estimates of the CACE for ICER were £4140 (3sls),

£5189 (uBN), £5960 (uBGN), and £3948 (BFL). The originally reported per-protocol

ICER is £7932 per extra QALY was obtained on complete cases only (Grant et al., 2013).

These results may be sensitive to the modelling of the missing data. As a sensitivity

analysis to the MAR assumption, we present the complete case analysis in Table A1 in

the Supplementary File. The conclusions from complete-case analysis are similar to those

obtained under MAR.

We also explore the sensitivity to choices of priors, by re-running the BFL analyses

using different priors, first for the multivariate precision matrix, keeping the priors for

within mice, but systemfit cannot presently be combined with this command so, Rubin’s rules

have to be coded manually. Sample code is available in the Supplementary File.
‡‡Multivariate normal nodes cannot be partially observed in JAGS, thus, we run BFL models

on all available data within WinBUGs. An observation with zero costs was set to missing when

running the Bayesian Gamma model, which requires strictly positive costs.
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the coefficients normal, and then a second analysis, with uniform priors for the regression

coefficient, and an inverse Wishart prior with 6 degrees of freedom and a identity scale

matrix, for the precision. The results are not materially changed (see Supplementary File,

Table A2).

The results of the within-trial CEA suggest that amongst compliers, laparoscopy is

more cost-effective than medical management for patients suffering from GORD. The

results are robust to the choice of priors, and to the assumptions about the missing data

mechanism. The results for the uBGN differ somewhat from the other models, and as

our simulations show, the concern is that such unadjusted Bayesian models are prone to

bias from model misspecification.

6. Discussion

This paper extends existing methods for CEA (Willan et al., 2003; Nixon and Thompson,

2005), by providing IV approaches for obtaining causal cost-effectiveness estimates for

RCTs with non-compliance. The methods developed here however are applicable to other

settings with multivariate continuous outcomes more generally, for example RCTs in

education, with different measures of attainment being combined into an overall score.

To help dissemination, we provide code in the Supplementary File.

We proposed exploiting existing 3sls methods and also considered IV Bayesian mod-

els, which are extensions of previously proposed approaches for univariate continuous

outcomes. Burgess and Thompson (2012) found the BFL was median unbiased and gave

CI coverage close to nominal levels, albeit with wider CIs than least-squares methods.

Their ‘unadjusted Bayesian’ method, similar to our uBN approach, assumes that the er-

ror term for the model of treatment received on treatment allocated is uncorrelated with

the error from the outcome models. This results in bias and affects the CI coverage. Our

simulation study shows that, in a setting with multivariate outcomes, the bias can be

substantial. A potential solution to this could be using priors for the error terms that

reflect the dependency of the error terms explicitly. For example, Rossi et al. (2012)

propose using a prior for the errors that explicitly depends on the coefficient β1,0, the ef-

fect of treatment allocation on treatment received, in equation (8). Kleibergen and Zivot

(2003) propose priors that also reflect this dependency explicitly, and replicate better the

properties of the 2sls. This is known as the “Bayesian two-stage approach”.

The results of our simulations show that applying 2sls separately to the univariate

outcomes leads to inaccurate 95% CI around the INB, even with moderate levels of cor-

relation between costs and outcomes (±0.4). Across all the settings considered, the 3sls

approach resulted in low levels of bias for the INB and unlike 2sls, provided CI coverage

close to nominal levels. BFL performed well with large sample sizes, but produced stan-

dard deviations which were too large when the sample size was small, as can be seen from

the over-coverage, with wide CIs.

The REFLUX study illustrated a common concern in CEA, in that the levels of non-
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compliance in the RCT were different, in this case higher, to those in routine practice.

The CACEs presented provide the policy-maker with an estimate of what the relative

cost-effectiveness would be if all the RCT participants had complied with their assigned

treatment, which is complementary to the ITT estimate. Since we judged the IV as-

sumptions for identification likely to hold in this case-study, we conclude that either 3sls

or BFL provide valid inferences for the CACE of INB. The re-analysis of the REFLUX

case study also provided the opportunity to investigate the sensitivity to the choice of

priors in practice. Here we found that our choice of weakly informative priors, which

were relatively flat in the region where the values of the parameters were anticipated to

be, together with samples of at least size 100, had minimal influence on the posterior

estimates. We repeated the analysis using different vague priors for the parameters of

interests and the corresponding results were not materially changed.

The REFLUX study also illustrated a further complication that may arise in practice,

namely that covariate or outcome data are missing. Here we illustrated how the methods

for estimating the CACE can also accommodate missing data, under the assumption

that the data are missing at random (MAR), without including any auxiliary variables in

the imputation or Bayesian models. However, more generally, where there are auxiliary

variables available, these should be done included in the imputation or Bayesian models.

If the auxiliary variables have missing values themselves, this can be accommodated

easily via chained-equations MI, but for the Bayesian approach, an extra model for the

distribution of the auxiliary variable, given the other variables in the substantive model

and the outcome needs to be added.

We considered here relatively simple frequentist IV methods, namely 2sls and 3sls.

One alternative approach to the estimation of CACEs for multivariate responses, is to

use linear structural equation modelling, estimated by maximum-likelihood expectation-

maximization (ML-EM) algorithm (Jo and Muthén, 2001). Further, we only considered

those settings where a linear additive treatment effect is of interest, and the assumptions

for identification are met. Where interest lies in systems of simultaneous non-linear

equations with endogeneous regressors, GMM or generalised structural equation models

can be used to estimate CACEs (Davidson and MacKinnon, 2004).

There are several options to study the sensitivity to departures from the identification

assumptions. For example, if the exclusion restriction does not hold, a Bayesian paramet-

ric model can use priors on the non-zero direct effect of randomisation on the outcome

for identification (Conley et al., 2012; Hirano et al., 2000). Since the models are only

weakly identified, the results would depend strongly on the parametric choices for the

likelihood and the prior distributions. In the frequentist IV framework, such modelling

is also possible, see Baiocchi et al. (2014) for an excellent tutorial on how to conduct

sensitivity analysis to violations of the ER and monotonicity assumptions. Alternatively,

violations of the ER can also be handled by using baseline covariates to model the proba-

bility of compliance directly, within structural equation modelling via ML-EM framework

(Jo, 2002a,b).
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Settings where the instrument is only weakly correlated with the endogenous variable

have not been considered here, because for binary non-compliance with binary allocation,

the percentage of one-way non-compliance would need to be in excess of 85%, for the F-

statistic of the randomisation instrument to be less than 10, the traditional cutoff beneath

which an instrument is regarded as ‘weak’. Such levels of non-compliance are not realistic

in practice, with the reported median non-compliance equal to 12% (Zhang et al., 2014).

Nevertheless, Bayesian IV methods have been shown to perform better than 2sls methods

when the instrument is weak (Burgess and Thompson, 2012).

Also, for simplicity, we restricted our analysis of the case study to MAR and complete

cases assumptions. Sensitivity to departures from these assumptions is beyond the scope

of this paper, but researchers should be aware of the need to think carefully about the

possible causes of missingness, and conduct sensitivity analysis under MNAR, assuming

plausible differences in the distributions of the observed and the missing data. When

addressing the missing data through Bayesian methods, the posterior distribution can be

sensitive to the choice of prior distribution, especially with a large amount of missing data

(Hirano et al., 2000).

Future research directions could include exploiting the additional flexibility of the

Bayesian framework to incorporate informative priors, perhaps as part of a comprehensive

decision modelling approach. The methods developed here could also be extended to

handle time-varying non-compliance.
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Fig. 1. Median Bias for scenarios with 30% non-compliance and sample sizes of (a) n = 100

(top) and (b) n = 1000. Results are stratified by cost distribution, and correlation between cost
and QALYs. The dotted line represents zero bias. Results for 2sls (not plotted) are identical to
those for 3sls; uBGN was not applied to Normal cost data.
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Table 1. The REFLUX study: descriptive statistics and cost-effectiveness according to
ITT and alternative methods for estimating the CACE. Follow-up period is five years, and
treatment switches are defined within the first year post randomisation. Costs and INB
numbers rounded to the nearest integer.a

Medical management Laparoscopic surgery

N Assigned 179 178

N (%) Switched 10 (8.3) 67 (28.4)

N (%) missing costs 83 (46) 83 (47)

Mean (SD) observed cost in £ 1258 (1687) 2971 (1828)

N (%) missing QALYs 91 (51) 94 (53)

Mean (SD) observed QALYs 3.52 (0.99) 3.74 (0.90)

Baseline variables

N (%) missing EQ5D0 6 (3) 7 (4)

Mean (SD) observed EQ5D0 0.72 (0.25) 0.71 (0.26)

Correlation between costs and QALYs −0.42 −0.07

Correlation of costs and QALYs −0.36 −0.18

by treatment received

Incremental costs, QALYs and INB of surgery vs medicine

Outcome Method estimate ( 95% CI )

Incremental cost

ITT 1103 (593, 1613)

2sls 1899 (1073, 2724)

3sls 1899 (1073, 2724)

uBN 2960 (2026, 3998)

uBGN 2176 (1356, 3031)

BFL 2030 (1170, 2878)

Incremental QALYs

ITT 0.295 (0.002, 0.589)

2sls 0.516 (0.103, 0.929)

3sls 0.516 (0.103, 0.929)

uBN 0.568 (0.181, 0.971)

uBGN 0.268 (−0.229, 0.759)

BFL 0.511 (0.121, 0.947)

INB

ITT 7763 (−1059, 16585)

2sls 13587 (1101, 26073)

3sls 13587 (1002, 26173)

uBN 14091 (2485, 26086)

uBGN 5869 (−9204, 20740)

BFL 13340 (1406, 26315)
a

uBN: unadjusted Bayesian Normal-Normal model; uBGN: unadjusted Bayesian Gamma-Normal models;

BFL: Bayesian Full likelihood models.
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Table 2. CI Coverage rates (CR) and median width for incremental cost, QALYs, and INB, across
scenarios with 30% non-compliance, sample size n = 100 and moderate correlation ρ between
outcomes and even rows to negative). uBGN was not applied in settings with normal cost data.a

2sls 3sls uBN uBGN BFL

Y1 ∼ N ρ CR CIW CR CIW CR CIW CR CIW CR CIW

Cost 0.4 .952 .228 .952 .228 .992 .312 .988 .299

−0.4 .952 .229 .952 .229 .993 .325 .986 .297

QALYs 0.4 .946 .112 .946 .112 .988 .155 .950 .121

−0.4 .950 .113 .950 .113 .992 .163 .950 .121

INB 0.4 .988 405 .953 319 .982 398 .966 376

−0.4 .900 409 .948 475 .951 509 .962 525

Y1 ∼ G
Cost 0.4 .952 .756 .952 .756 .955 .815 .941 .818 .954 .823

−0.4 .942 .759 .942 .759 .949 .828 .936 .822 .945 .811

QALYs 0.4 .959 .113 .959 .113 .993 .160 .960 .122 .960 .122

−0.4 .959 .113 .949 .113 .995 .163 .954 .122 .954 .122

INB 0.4 .982 829 .948 696 .958 764 .942 748 .956 760

−0.4 .914 833 .948 943 .930 921 .941 1019 .951 1014

Y1 ∼ IG
Cost 0.4 .951 .880 .951 .880 .958 .949 .904 .866 .956 .945

−0.4 .950 .878 .950 .878 .958 .951 .905 .864 .954 .932

QALYs 0.4 .945 .112 .945 .112 .991 .161 .944 .120 .999 .206

−0.4 .954 .112 .954 .112 .993 .161 .952 .120 .999 .204

INB 0.4 .980 944 .954 818 .959 889 .917 814 .984 1001

−0.4 .917 942 .947 1049 .934 1034 .911 1041 .971 1203
a

uBN: unadjusted Bayesian Normal-Normal model, uBGN: unadjusted Bayesian Gamma-Normal models;

BFL: Bayesian Full likelihood models.
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Table 3. RMSE for incremental Cost, QALYs and INB across scenarios with 30% non-
compliance, moderate correlation between outcomes and sample size n = 100. uBGN
was not applied in settings with normal cost data. Numbers for INB have been rounded
to the nearest integer.a

Cost distribution ρ 3slsb uBN uBGN BFL

Normal Cost

0.4 0.058 0.060 0.059

-0.4 0.060 0.062 0.061

QALYs

0.4 0.029 0.030 0.030

-0.4 0.029 0.030 0.030

INB

0.4 83 84 87

-0.4 125 127 125

Gamma Cost

0.4 0.198 0.202 0.212 0.202

-0.4 0.200 0.204 0.212 0.203

QALYs

0.4 0.030 0.030 0.030 0.029

-0.4 0.029 0.030 0.030 0.030

INB

0.4 181 184 193 184

-0.4 246 251 261 252

Inverse Cost

Gaussian 0.4 0.230 0.232 0.252 0.232

-0.4 0.230 0.232 0.250 0.232

QALYs

0.4 0.029 0.030 0.030 0.030

-0.4 0.029 0.030 0.030 0.030

INB

0.4 211 214 231 214

-0.4 273 278 296 278
a

uBN: unadjusted Bayesian Normal-Normal model;uBGN: unadjusted Bayesian Gamma-Normal models;

BFL: Bayesian Full Likelihood

b
The RMSE corresponding to 2sls is identical to that for 3sls, by definition.
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