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Use of Bayesian geostatistical prediction to estimate local 
variations in Schistosoma haematobium infection in western 
Africa
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Objective To predict the subnational spatial variation in the number of people infected with Schistosoma haematobium in Burkina 
Faso, Mali and the Niger prior to national control programmes.
Methods We used field survey data sets covering a contiguous area 2750 × 850 km and including 26 790 school-age children 
(5–14 years old) in 418 schools. The prevalence of high- and low-intensity infection and associated 95% credible intervals (CrIs) 
were predicted using Bayesian geostatistical models. The number infected was determined from the predicted prevalence and the 
number of school-age children in each km².
Findings The predicted number of school-age children with a low-intensity infection was 433 268 in Burkina Faso, 872 328 in 
Mali and 580 286 in the Niger. The number with a high-intensity infection was 416 009, 511 845 and 254 150 in each country, 
respectively. The 95% CrIs were wide: e.g. the mean number of boys aged 10–14 years infected in Mali was 140 200 (95% CrI: 
6200–512 100).
Conclusion National aggregate estimates of infection mask important local variations: e.g. most S. haematobium infections in the 
Niger occur in the Niger River valley. High-intensity infection was strongly clustered in western and central Mali, north-eastern 
and north-western Burkina Faso and the Niger River valley in the Niger. Populations in these foci will carry the bulk of the urinary 
schistosomiasis burden and should be prioritized for schistosomiasis control. Uncertainties in the predicted prevalence and the 
numbers infected should be acknowledged by control programme planners.
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Introduction
An accurate estimate of the proportion of a population af-
fected by a disease is important for prioritizing the control 
of that disease relative to another and for allocating resources 
to control or prevention programmes. Since high-quality 
surveillance data for developing countries is frequently lack-
ing, calculations of the burden of a disease are often based 
on prevalence estimates from cross-sectional surveys, which 
are rarely randomized or representative of the whole popula-
tion. For schistosomiasis, caused by trematodes of the genus 
Schistosoma, a 2003 review reported that 207 million people 
were infected globally and 779 million people were at risk, 
the majority in sub-Saharan Africa.1 For most countries in the 
region, the numbers were derived from prevalence estimates 
contained in a 1989 report2 that provided national aggregate 
data even though the prevalence of schistosomiasis is known 
to be geographically heterogeneous. In addition, previous re-
ports have ignored uncertainties in prevalence estimates and 
in the size and spatial distribution of the population at risk.

Recently, empirical maps of tropical infectious diseases 
have been used to improve estimates of the populations 
infected and at risk at the continental or global level3–5 and, 
increasingly, to plan and target control programmes. Advances 
in the production of these maps include geostatistical predic-
tion of the prevalence of infection with Schistosoma haema-
tobium (the aetiological agent of urinary schistosomiasis),6 
of other parasitic infections7–10 and of coinfections11 using 
Bayesian methods.12 The Bayesian approach is advantageous 
because the effect of covariates and spatial heterogeneity, or 
clustering, can be modelled simultaneously and the uncer-
tainty of predictions can be assessed.

While the prevalence of schistosome infection has been 
used for planning large-scale control programmes and for 
estimating the disease burden, the intensity of the infection 
is more informative for estimating morbidity, such as uri-
nary tract lesions and anaemia,13–15 and plays a greater role 
in driving transmission than prevalence. Therefore, maps 
showing the average infection intensity, or the distributions 
of low- and high-intensity infection, might provide more 
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effective tools than prevalence maps 
for estimating the disease burden and 
developing intervention strategies. An 
important statistical issue in analysing 
the intensity of parasitic infections is 
overdispersion, or aggregation, which 
occurs when most individuals have 
few parasites but a few individuals have 
many.16 Bayesian models have previ-
ously been used in the spatial analy-
sis17–19 and prediction20 of the intensity 
of parasitic infections, due for example 
to Wuchereria bancrofti and Schistosoma 
mansoni, with overdispersion in indi-
viduals’ parasite or egg counts being 
modelled using the negative binomial 
distribution.

Burkina Faso, Mali and the Niger, 
three contiguous countries in the Sa-
helian zone of western Africa, recently 
conducted, coordinated, national cross-
sectional, school-based, parasitological 
surveys.21 These surveys were un-
precedented in their size and covered 
approximately 2750 km × 850 km, 
26 790 school-age children and 418 
schools. We aimed to use survey data 
to predict subnational spatial distri-
butions of the prevalence of low- and 
high-intensity S. haematobium infec-
tion and to use the prediction maps 
to calculate the numbers of school-age 
children infected or at risk. We also 
aimed to estimate uncertainties in the 
predicted prevalence and the numbers 
infected.

Methods
Selection of schools and children
The most prevalent parasitic infection 
in all three study countries is S. hae-
matobium. Programmes supported by 
the Schistosomiasis Control Initiative 
were primarily designed to control uri-
nary schistosomiasis21 and our analysis 
includes only survey data on S. hae-
matobium. Ethical approval for data 
collection was obtained from St Mary’s 
Hospital Research Ethics Committee in 
the United Kingdom, the National Pub-
lic Health Research Institute’s (INRSP) 
scientific committee in Mali, the Min-
istry of Health’s ethics and scientific 
committees in Burkina Faso and the 
Ministry of Health’s ethical committee 
in the Niger.

Sample sizes were calculated us-
ing historical data from Mali 22. It 
was decided to survey 87 schools in 
Burkina Faso, 226 in Mali and 215 in 
the Niger, and to include 60 children 

at each school. Ultimately, only 418 of 
the 528 schools were surveyed because 
remote, sparsely-populated areas had 
to be excluded for logistical reasons. 
Geographical coverage was maximized 
using different spatial stratification 
methods in the three countries. In 
Mali and the Niger, sample frames 
that contained the location of all com-
munities were used. Spatial stratifica-
tion was performed by overlaying a 
1-decimal degree square grid on these 
countries in the ArcView version 9 
(ESRI, Redlands, CA, United States of 
America) geographical information sys-
tem. Communities were selected from 
the cells using simple random selection 
and, if they had more than one school, 
the study school was selected using 
simple random selection when the 
survey team arrived. In Burkina Faso, 
lists of schools were available for each 
province but were not georeferenced. 
The number of schools selected in each 
province was weighted according to the 
area of the province. School sampling 
was then done in each province using 
simple random selection.

The surveys were conducted from 
2004–2006. The survey team deter-
mined the school’s coordinates using a 
global positioning system. If there were 
fewer than 50 boys or girls in a school, 
all individuals of that sex were selected 
because compliance was more difficult 
if a minority were excluded. If there 
were more than 50 boys or girls, 30 
individuals of that sex were selected us-
ing systematic random sampling. Urine 
and stool samples were collected from 
each child and processed using standard 
parasitological methods. The 10-ml 
urine samples were passed through 
a filter and examined by microscope 
in the field. The S. haematobium egg 
count was recorded and entered into a 
Microsoft Access database (Microsoft, 
Redmond, WA, USA).

Predicting the prevalence of 
infection
Spatial prediction was based on Bayes-
ian geostatistics.23 Rather than mod-
elling egg counts using the negative 
binomial distribution, we used a mul-
tinomial model in which the egg count 
was categorized as representing: (i) no 
infection, (ii) low-intensity infection 
(i.e. 1–50 eggs per 10 ml urine), or 
(iii) high-intensity infection (i.e. > 50 
eggs per 10 ml urine). There were two 

reasons: (i) expediency, given that in 
Burkina Faso extremely high egg counts 
were recorded as > 1000 eggs per 10 ml 
urine, meaning that the upper tail of 
the distribution was truncated, and 
(ii) to facilitate future estimation of 
the burden of schistosomiasis because 
existing evidence for related morbidity 
is based on stratified egg counts, often 
using WHO definitions of low and 
high intensity.24

It has been shown that age and sex 
are associated with the prevalence of 
urinary schistosomiasis, probably due 
to physiological differences in suscep-
tibility.25,26 Distance from a perennial 
inland water body is a plausible risk 
factor for exposure to schistosomes 
and subsequent infection because 
transmission requires contact with the 
aquatic habitat of intermediate host 
snails of the Bulinus genus. Distances 
were derived from an electronic peren-
nial inland water body map obtained 
from the Food and Agriculture Orga-
nization of the United Nations (UN). 
The effect of temperature and rainfall 
on the distribution of Bulinus snails is 
reviewed in Rollinson et al.27 Satellite-
derived mean values for the land surface 
temperature and normalized difference 
vegetation index (a proxy for rainfall) 
for 1982–1998 were obtained from the 
National Oceanographic and Atmo-
spheric Administration’s Advanced Very 
High Radiometer. The initial candidate 
set of variables included the individual 
participant variables of sex and age (cat-
egorized as 5–9 years and 10–14 years) 
and the school-level ecological variables 
of distance from a perennial inland wa-
ter body, land surface temperature and 
normalized difference vegetation index. 
We tested nominal and ordinal multi-
nomial regression models and found 
that a nominal model provided a better 
fit. Variables were selected using fixed-
effects multinomial regression models 
in the Stata/SE 10.0 statistical package 
(StataCorp, College Station, TX, USA). 
The normalized difference vegetation 
index was excluded because Wald’s P 
was > 0.2. All remaining variables were 
selected for inclusion in the spatial 
model. This model and details of how 
predictions were made are presented in 
Box 1. The outputs of Bayesian mod-
els, including parameter estimates and 
spatial predictions, are termed posterior 
distributions. These distributions fully 
represent uncertainties associated with 
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estimated values. We summarized the 
posterior distributions in terms of the 
posterior mean and 95% credible inter-
val (CrI), within which the true value 
occurs with a probability of 95%.

Calculating the number infected
An electronic population surface for 
the study area was obtained from the 
Global Rural–Urban Mapping Project 
(GRUMP) alpha version28 and imported 
into ArcView. In practice, GRUMP is 
a 30-arc second (1-km²) population 
raster data set that combines year 2000 
census data at a subnational level with 
an urban-extent mask. In GRUMP, 
the population is redistributed using 
an algorithm that assumes a greater 
proportion is located in urban areas.29

Country-specific populat ion 
growth rates and the proportions of 
the population in given sex and age 
groups (i.e. 5–9 years and 10–14 years) 
were obtained from the UN Population 
Division publication World population 
prospects 30 and were used to generate 
population surfaces for 2005. Surfaces 
representing the mean and lower and 
upper 95% CrI limits of the predicted 
prevalence in each age–sex group were 
multiplied by the projected 2005 popu-
lation surfaces using the Spatial Analyst 
Extension of ArcView, thereby giving 
the predicted number infected per km² 
pixel. These numbers were summed for 
each country.

Calculating the number at risk
By design, the multinomial model gave 
a predicted prevalence that was non-
zero at all locations, even at those where 
field data indicated the absence of infec-
tion. A receiver operating characteristic 
analysis was conducted to determine 
the optimal threshold (i.e. where sen-
sitivity = specificity) of the combined 
predicted prevalence (i.e. low- plus 
high-intensity infection prevalence) 
that best discriminated between schools 
with a zero and non-zero observed prev-
alence. With this approach, a predicted 
prevalence threshold of 5.3% gave the 
best discriminatory performance. A 
mask, created in the geographical infor-
mation system to exclude areas with a 
combined predicted prevalence £ 5.3%, 
was overlaid on the different population 
surfaces for each country to calculate 
the numbers and proportions at risk 
of infection in both the school-age and 
total population.

Box 1. The Bayesian multinomial regression model with geostatistical random effects

The spatial model was fitted in WinBUGS version 1.4 statistical software (Medical Research 
Council Biostatistics Unit, Cambridge, and Imperial College, London, United Kingdom). Individual 
raw survey data were aggregated into groups according to age, sex and location. Using three 
infection outcome groups (i.e. 1 = no infection, 2 = low-intensity infection, and 3 = high-intensity 
infection), we assumed

Yi jk ~Multinomial (pi jk, ni jk ), and

 ,

where Yi jk is the observed number of children at location i in age–sex group j and outcome group 
k, ni jk is the number tested and pi jk is the probability of infection. Here, f i j k can be thought of 
as the overall odds of being in a specific outcome group relative to not being infected. To give a 
reference value, f i j 1 (i.e. for the no-infection group) was constrained to equal 1. For the other 
two outcome groups, we fitted the nominal regression models

 , and

 ,

where a k is the outcome group-specific intercept, b is a matrix of T coefficients and x is a 
matrix of T covariates. The qi k are coefficients representing location-level geostatistical random 
effects for the prevalence of low- and high-intensity infection. They have a multivariate normal 
distribution, qi k  ~MVN(0,Si k ), and the variance–covariance matrices Si k are defined by isotropic 
powered exponential spatial correlation functions

where dab are the distances between pairs of points a and b, and f is the rate of decay of spatial 
correlation per unit distance. Noninformative priors were used for the intercepts (i.e. uniform priors 
with bounds −¥ and ¥) and coefficients ( i.e. normal priors with a mean = 0 and a precision = 
1 × 10 –4). The prior distribution of f was also uniform, with upper and lower bounds set at 0.06 
and 50. The values of the precision of the qik were given noninformative gamma distributions.

A burn-in of 4000 Markov chain Monte Carlo iterations was used, followed by 1000 iterations 
during which values for the intercept and coefficients were stored. Diagnostic tests for 
convergence of the stored variables were carried out, including visual examination of history 
and density plots. Convergence was successfully achieved after 5000 iterations and the model 
was run for a further 10 000 iterations, during which the predicted prevalence at individual 
locations was stored for each age and sex group.

Predictions of the prevalence of low- and high-intensity infection were made at the nodes of 
a 0.15 × 0.15 decimal degree grid (approximately 18 km²) in WinBUGS using a spatial model 
and the spatial.unipred command, which used kriging to interpolate spatial random effects for 
low- and high-intensity infection. This assumes independence between prediction locations, 
as opposed to conditional predictions, and might lead to overestimation of uncertainties in the 
national-level estimates of numbers infected. However, conditional predictions are extremely 
intensive computationally and were considered as not being feasible in this study. Predicted 
prevalence was calculated by adding the interpolated random effect to the sum of the products 
of the coefficients for the fixed effects and the values of the fixed effects at each prediction 
location. For the individual-level fixed effects of sex and age, separate calculations were 
performed, in which the coefficient for the relevant age and sex group was added to the sum. 
The overall sum was then back-transformed from the logit scale to the prevalence scale, giving 
prediction surfaces that show the prevalence of low- and high-intensity infection in each age 
and sex group for all prediction locations.
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Results
Predicted prevalence of infection
The total number of children aged 
5–14 years included in the 2004–2006 
surveys was 4808 in Burkina Faso, 
14 586 in Mali and 7396 in the Niger. 
The raw prevalence of low-intensity 
infection was 10.0% (95% confidence 
interval, CI: 9.2–10.9) in Burkina Faso, 
25.2% (95% CI: 24.5–25.9) in Mali 
and 10.1% (95% CI: 9.4–10.8) in the 
Niger. For high-intensity infection, the 
raw prevalence was 8.5% (95% CI: 
7.7–9.3) in Burkina Faso, 11.4% (95% 
CI: 10.9–11.9) in Mali and 3.4% (95% 
CI: 3.0–3.8) in the Niger. A map of 
the raw prevalence of S. haematobium 
infection is presented in Fig. 1.

The spatial model is presented in 
Table 1. It can be seen from the 95% 
CrI of the quadratic term for the land 
surface temperature that the asso-
ciation between this variable and the 
prevalence of low- or high-intensity 
infection was not significant. However, 
the distance from a perennial inland 
water body was significantly and 
negatively associated with the preva-
lence of both low- and high-intensity 
infection. In addition, the prevalence 
of low- and high-intensity infection 
was significantly higher in boys and in 
children aged 10–14 years than in girls 
or children aged 5–9 years. The rate of 
decay of spatial correlation was higher 
for low-intensity infection than high-
intensity infection and the variance 
of the spatial random effect (i.e. the 
sill in geostatistical terms) was higher 
for high-intensity infection than low-
intensity infection, which indicates a 
stronger propensity for spatial cluster-
ing for high-intensity infection.

Separate prediction maps were 
produced for boys and girls and for ages 
5–9 years and 10–14 years. The mean 
predicted prevalences of low- and high-
intensity infection in boys aged 10–14 
years (the highest prevalence group) are 
presented in Fig. 2 and Fig. 3, respec-
tively, as illustrative examples. The maps 
for other age–sex groups (available from 
the corresponding author) showed the 
same spatial distribution but a lower 
predicted prevalence, reflecting the 
lower odds ratios (ORs) for infection 
in these groups. There were differences 
between the spatial distributions for 
low- and high-intensity infections: low-
intensity infection was more widespread 

Table 1. Covariates and other parameters for the Bayesian multinomial regression 
model used to predicta the prevalence of low- (i.e. 1–50 eggs/10 ml urine) and 
high-intensity (i.e. > 50 eggs/10 ml urine) Schistosoma haematobium infection 
in school-age children in Burkina Faso, Mali and the Niger, 2004–2006

Variable Low-intensity infection 
Mean (95% CrI)

High-intensity infection 
Mean (95% CrI)

ORb for covariates
Land surface temperaturec 0.87 (0.65–1.24) 0.34 (0.12–0.57)

Land surface temperature 
squaredc

1.11 (0.94–1.34) 1.00 (0.78–1.30)

Distance from a PIWBc 0.36 (0.24–0.50) 0.24 (0.11–0.52)

Age, 10–14 years vs 
5–9 years

1.44 (1.31–1.58) 1.45 (1.25–1.65)

Sex, female vs male 0.80 (0.74–0.86) 0.49 (0.44–0.54)

Other model parametersb

Intercept,d log odds scale −3.04 (−3.62 to −2.51) −4.60 (−5.13 to −3.39)

Rate of decay of the spatial 
correlation, f e

2.03 (1.37–2.82) 1.49 (0.75–2.29)

Variance of the spatial 
random effect, s²

5.80 (4.53–7.94) 12.75 (8.92–22.27)

CrI, Bayesian credible interval; OR, odds ratio; PIWB, perennial inland water body.
a  Spatial predictions were based on a combination of the environmental covariates of land surface 

temperature and distance from a PIWB and the geostatistical random effect, which was described by 
the parameters f and s² (the latter represents the sill of a traditional variogram). The individual-level 
covariates age and sex were used to adjust the predictions for the different age–sex profiles of the survey 
schools.

b  The values of the ORs and parameters were derived from survey data by multiple regression.
c  The scales of the ORs were standardized for land surface temperature and distance from a PIWB by 

orthogonalizing the data to have a mean of 0 and standard deviation of 1.
d  The intercept represents the prevalence of infection for a male individual aged 5–9 years in a location 

with an average temperature and an average distance from a PIWB. Its value can be derived from the 
logit back-transformation and is approximately 4.5% for low-intensity infection and 1% for high-intensity 
infection.

e  A f of 2.03 for low-intensity infection indicates a range of spatial correlation, equivalent to the radius of 
clusters, of 1.48 decimal degrees (i.e. 3/f , approximately 170 km at the equator) after accounting for the 
effects of the covariates.

Fig. 1. Raw prevalence of Schistosoma haematobium infection in school-age children 
in Burkina Faso, Mali and the Niger, 2004–2006. 

Image produced using ArcView version 9 (ESRI, Redlands, CA, United States of America) geographical information system. 
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but the variation in prevalence was less 
extreme, with a predicted prevalence be-
tween 10% and 50% in most mapped 
areas of Burkina Faso (excluding the 
south-west), Mali (excluding the far 
south) and the Niger (excluding central 
regions). High-intensity infection had 
a more restricted spatial distribution, 
with defined clusters of high preva-
lence (> 50%) located in a mid-latitude 
band from western to central Mali, in 
northern and central Burkina Faso and 
in the Niger River valley in the Niger. 
There were large areas of low preva-
lence (< 5%) in southern, northern and 
eastern Mali, south-western Burkina 
Faso and most of the Niger, exclud-
ing the Niger River valley. The 95% 
CrI maps showed wide uncertainty in 
the predicted prevalence, though the 
prediction model was clearly able to 
exclude parts of each country as being 
at-risk areas for significant transmission 
of S. haematobium, as indicated by an 
upper 95% CrI limit for the predicted 
prevalence of < 5%). Fig. 4 and Fig. 5 
(available at: http://www.who.int/bul-
letin/volumes/87/12/08-058933/en/
index.html) illustrate the situation in 
boys 10–14 years of age; maps for other 
sex and age groups can be obtained 
from the corresponding author.

Number infected and at risk
The mean numbers of school-age 
children with low- and high-intensity 

a  The values presented are the posterior means obtained from the Bayesian geostatistical multinomial regression 
model and represent the most likely prevalence values.

b  No predictions were made for the white areas on the map.
Image produced using ArcView version 9 (ESRI, Redlands, CA, United States of America) geographical information system. 

Fig. 2. Prevalencea of low-intensity (1–50 eggs/10 ml urine) Schistosoma 
haematobium infection in boys aged 10–14 years in Burkina Faso, Mali and the 
Nigerb in 2004–2006, as predicted using a Bayesian geostatistical multinomial 
regression model

Fig. 3. Prevalencea of high-intensity (> 50 eggs/10 ml urine) Schistosoma 
haematobium infection in boys aged 10–14 years in Burkina Faso, Mali and the 
Nigerb in 2004–2006, as predicted using a Bayesian geostatistical multinomial 
regression model

a  The values presented are the posterior means obtained from the Bayesian geostatistical multinomial regression 
model and represent the most likely prevalence values.

b  No predictions were made for the white areas on the map.
Image produced using ArcView version 9 (ESRI, Redlands, CA, United States of America) geographical information system. 

infection in the three countries and 
their associated 95% CrIs are presented 
in Table 2. The estimated number of 
school-age children with low-intensity 
infection was 433 268 in Burkina 
Faso, 872 328 in Mali and 580 286 
in the Niger and the number with 
high-intensity infection was 416 009 
in Burkina Faso, 511 845 in Mali and 
254 150 in the Niger. The 95% CrIs for 
the number infected in each age–sex 
group were very wide: e.g. the mean 

number of boys aged 10–14 years in-
fected in Mali was 140 200 (95% CrI: 
6200–512 100). Maps of the estimated 
number of boys aged 10–14 years 
with low- and high-intensity infection 
(Fig. 6 and Fig. 7, respectively) showed 
considerable within-country variation 
in the burden of schistosomiasis. This 
was also apparent for boys and girls 
of both age groups. As was observed 
with the predicted prevalence, the 
spatial patterns were identical for each 
age–sex group, though the proportion 
infected was uniformly lower for girls 
and younger boys (maps available from 
the corresponding author).

We estimated that 3.5 million, 
3.4 million and 2.8 million school-age 
children and a total of 12.5 million 
(94.5% of the total population), 11.8 
million (87.6% of the total) and 9.9 
million (70.3% of the total) individu-
als of all ages were at risk of urinary 
schistosomiasis in Burkina Faso, Mali 
and the Niger, respectively. The maps 
(available from the corresponding au-
thor) show that there were parts of each 
country where people were not at risk 
and that could be excluded from active 
surveillance or nationally coordinated 
schistosomiasis control.

Discussion
We used robust, contemporary statis-
tical methods in a novel application 
to predict the spatial distribution of 

http://www.who.int/bulletin/volumes/87/10/08-05933/en/index.html
http://www.who.int/bulletin/volumes/87/10/08-05933/en/index.html
http://www.who.int/bulletin/volumes/87/10/08-05933/en/index.html
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S. haematobium infection. This resulted 
in estimates of local heterogeneity in 
high- and low-intensity parasitic infec-
tion that could be used in control pro-
gramme planning. In 2003, Steinmann 
et al.1 estimated the number of people 
infected with Schistosoma spp. was 7.8 
million in Burkina Faso, 7.8 million in 
Mali and 3.2 million in the Niger by 
using prevalence estimates of 60.0%, 
60.0% and 26.7% and assuming that 
the at-risk population was 100% of the 
estimated population, namely 13.0 mil-
lion, 13.0 million and 12.0 million in 
the three countries, respectively. If we 
assume, as Steinmann et al. did, that the 
prevalence is the same for all age groups 
(which overestimates the prevalence 
since it is usually highest in school-age 
children),31 our estimates would be 3.0 
million (23.0% of the total) in Burkina 
Faso, 4.8 million (35.4% of the total) 
in Mali and 3.0 million (21.1% of the 
total) in the Niger. Clearly, the previ-
ously reported number infected was 
considerably overestimated for Burkina 
Faso and Mali. In addition, the num-
ber at risk was overestimated for all 
three countries. We have confidence 
in our conclusions because our data 
were recent, extensive, randomized and 
representative. Although our calcula-
tions excluded S. mansoni infection, 
which Steinmann et al. included, its 
prevalence in our surveys was very 
low in Burkina Faso and the Niger, 

Table 2. Number of school-age children with low- or high-intensity Schistosoma haematobium infection in Burkina Faso, Mali and 
the Niger in 2005, as estimated using a Bayesian geostatistical model based on survey data from 2004–2006

Age–sex group Burkina Faso Mali the Niger

Estimated 
population, 

in thousands

No. infected, 
in thousands 

Meana (95% CrI)

Estimated 
population, 

in thousands

No. infected, 
in thousands 

Meana (95% CrI)

Estimated 
population, 

in thousands

No. infected, 
in thousands 

Meana (95% CrI)

High-intensity 
infection
Boys 5–9 years 1011.0 123.9 (1.4–603.5) 1063 150.6 (6.6–567.7) 1119.9 79.3 (1.6–342.6)
Boys 10–14 years 867.2 124.0 (1.5–563.0) 896.5 140.2 (6.2–512.2) 905.9 70.8 (1.4–303.1)
Girls 5–9 years 976.8 83.5 (0.8–463.0) 1057.2 114.3 (4.1–462.2) 1065.9 55.0 (1.0–257.7)
Girls 10–14 years 840.9 84.6 (0.9–441.9) 895.3 106.8 (3.9–421.2) 860.3 49.1 (0.9–226.1)

Low-intensity 
infection
Boys 5–9 years 1011.0 112.0 (2.3–528.2) 1063 226.9 (18.4–687.8) 1119.9 157.4 (6.0–543.9)
Boys 10–14 years 867.2 115.9 (2.5–508.3) 896.5 218.2 (19.0–619.8) 905.9 146.2 (5.6–486.3)
Girls 5–9 years 976.8 100.3 (2.3–481.3) 1057.2 216.6 (18.5–659.9) 1065.9 143.4 (7.2–485.7)
Girls 10–14 years 840.9 105.1 (2.5–468.1) 895.3 210.7 (19.6–599.5) 860.3 133.2 (6.8–434.2)

CrI, Bayesian credible interval.
a  The mean of the posterior distribution of Bayesian estimates.

at 0.5% and 0.3%, respectively, and 
moderately low in Mali, at 6.7%. More 
importantly, Steinmann et al.’s figures 
overlooked important heterogeneities 
in the spatial distribution of people 
infected or at risk of schistosomiasis, 
which our maps capture.

The uncertainties in the numbers 
infected with S. haematobium captured 
by our model were wide despite the 
large sample size and the geographi-
cal coverage of the data. It might be 
suggested that the large uncertain-
ties shown in our prediction maps 
limit their utility for decision-making. 
However, since tools for representing 
uncertainty in spatial predictions now 
exist and there is still a need for disease 
maps in planning control programmes, 
it is beneficial to acknowledge such un-
certainties when interpreting maps for 
disease control. Moreover, we did not 
include uncertainties in the projected 
population or those due to population 
migration between areas, which are 
considerable in these three countries. 
In addition, GRUMP can produce 
national population totals that do not 
match UN totals. In 2000, GRUMP 
population estimates for both Mali and 
the Niger differed from UN estimates 
by more than 5%,28 contributing to 
additional uncertainty in our updated 
2005 population estimates. We also 
assumed that population growth was 
even across different regions and age 

groups. The limitations of the ancillary 
data used in GRUMP calculations have 
been noted elsewhere,29 but currently it 
is impossible to quantify the resulting 
inaccuracies.

Our surveys were spatially strati-
fied, which ensured equal geographical 
coverage of areas of both high and low 
population density and made the preci-
sion of predicted prevalence estimates 
more even across the study area. How-
ever, less densely populated areas were 
more strongly represented than they 
would have been with a nonstratified 
approach. Because prevalence is likely 
to differ between low- and high-density 
areas, sample weighting is necessary 
to ensure accurate national prevalence 
estimates; our map calculations are es-
sentially a sample-weighting approach. 
This is evident from the difference 
between raw prevalence estimates for 
low- and high-intensity infections 
combined, which were 18.5% for 
Burkina Faso, 36.6% for Mali and 
13.5% for the Niger, and map-derived 
estimates, which were 23.0%, 35.4% 
and 21.1% in the three countries, re-
spectively. The most striking difference 
was for the Niger. This arose because 
the prevalence was highest in the Ni-
ger River valley, which has the highest 
population density, and in the survey 
this area was underrepresented, from 
a population perspective, relative to 
low-density areas.
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The different spatial distributions 
for low- and high-intensity infection 
are in agreement with Guyatt et al.,16 
who demonstrated that the relation-
ship between overall prevalence and 
the prevalence of high-intensity in-
fection varied geographically across 
Africa. While low-intensity infection 
was more widespread, it exhibited less 
spatial variability than high-intensity 
infection, which aggregated more into 
clusters.16 Future control programmes 
will have the greatest impact if they 
focus on high-intensity infection 
clusters.

The maps presented in this report 
are currently being used by national 
programme managers as objective 
decision-support tools for geographi-
cally targeting existing resources more 
efficiently to high-risk communities. 
They have several other uses. First, 
national programme managers can 
use them to argue for resources from 
governments or international donors, 
particularly after funding from the 
Schistosomiasis Control Initiative 
ends. Second, the maps can be used to 
formulate and compare different dis-
ease control strategies by determining 
the likely impact on transmission and 
morbidity. And lastly, they can be used 
for advocacy and empowerment at the 
subnational level: local resource needs 
and priorities for schistosomiasis con-
trol, which are often subsumed in ag-
gregate national data, can be presented 
to national programme managers and 
government officials. We encourage 
national programme managers in other 
countries, and those focussing on other 
diseases, to conduct spatially stratified 
disease surveys and undertake mapping 
of subnational disease distributions to 
provide evidence for more efficient 
targeting of resources.  ■
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Résumé

Utilisation de prédictions par géostatistique bayésienne pour estimer les variations locales de la prévalence 
des infestations par Schistosoma haematobium en Afrique occidentale
Objectif Prédire les variations spatiales au niveau infranational du 
nombre de personnes infestées par Schistosoma haematobium 
au Burkina Faso, au Mali et au Niger, avant la mise en place des 
programmes nationaux de lutte contre la schistosomiase.
Méthodes Nous avons utilisé un jeu de données d’enquête sur le 
terrain couvrant une zone contiguë de 2750 x 850 km et 26 790 
enfants d’âge scolaire (5-14 ans), répartis dans 418 écoles. La 
prévalence des schistosomiases de forte et de faible intensité, 
ainsi que les intervalles de crédibilité à 95 % associés, ont été 
prédits à l’aide de modèles géostatistiques bayésiens. Le nombre 
de personnes infestées a été déterminé à partir de la prévalence 
prédite et du nombre d’enfants d’age scolaire par km².
Résultats D’après les prédictions de l’étude, le nombre d’enfants 
d’âge scolaire atteints d’une schistosomiase de faible intensité 
serait de 433 268 au Burkina Faso, de 872 328 au Mali et de 
580 286 au Niger. S’agissant des enfants fortement infestés, les 
prédictions donnaient respectivement 416 009 cas pour le Burkina 

Faso, 511 845 pour le Mali et 254 150 pour le Niger. Les intervalles 
de crédibilité à 95 % étaient larges : par exemple, le nombre moyen 
de garçons de 10 à 14 ans infestés au Mali était de 140 200 (ICr 
à 95 % : 6200-512 100).
Conclusion Les estimations nationales agrégées masquent 
d’importantes variations locales : par exemple, la plupart des 
infestations par S. haematobium relevées au Niger étaient 
apparues dans la Vallée du Niger. Les cas d’infestation lourde 
étaient très fortement regroupés à l’Ouest et au centre du Mali, 
au Nord-est et au Nord-ouest du Burkina Faso et dans la Vallée 
du Niger, au Niger. Les populations de ces foyers supportent 
la plus grande part de la charge de schistosomiase urinaire et 
doivent être considérées comme prioritaires dans la lutte contre 
la schistosomiase. Les planificateurs de programmes de lutte 
contre cette maladie doivent être conscients des incertitudes 
qui pèsent sur les prédictions de la prévalence et du nombre de 
personnes infestées.

Resumen

Uso de modelos geoestadísticos bayesianos para predecir las variaciones locales de la infección por 
Schistosoma haematobium en África occidental
Objetivo Predecir la variación territorial subnacional del número 
de personas infectadas por Schistosoma haematobium en Burkina 
Faso, Malí y el Níger antes del inicio de los programas de control 
nacionales.
Métodos Usamos conjuntos de datos de encuestas sobre el 
terreno que abarcaron en total a 26 790 niños en edad escolar 
(5 a 14 años) de 418 escuelas repartidos en una zona de 
2750 x 850 km. Mediante modelos geoestadísticos bayesianos 
se predijeron la prevalencia de infección de alta y baja intensidad 
y los correspondientes intervalos de credibilidad (ICr) del 95%. 
El número de personas infectadas se determinó a partir de la 
prevalencia predicha y del número de niños en edad escolar por 
km².
Resultados Las predicciones sobre el número de niños en edad 
escolar con infección de baja intensidad fueron de 433 268 en 
Burkina Faso, 872 328 en Malí y 580 286 en el Níger. El número 

de casos de infección de alta intensidad fue de 416 009, 511 845 
y 254 150, respectivamente. Los ICr95% fueron amplios: p.ej., la 
media de muchachos de 10 a 14 años infectados en Malí fue de 
140 200 (ICr95%: 6200–512 100).
Conclusión Las estimaciones totales nacionales de infección 
ocultan variaciones locales importantes: p.ej., en el Níger la 
mayoría de las infecciones por S. haematobium se dan en el 
valle del Río Níger. La infección de alta intensidad se concentra 
marcadamente en el centro y oeste de Malí, las zonas nororiental 
y noroccidental de Burkina Faso y el valle del Río Níger en el 
Níger. Las poblaciones de esos focos soportarán la mayor carga 
de esquistosomiasis urinaria y deberían ser un objetivo prioritario 
de la lucha contra la esquistosomiasis. Los planificadores de los 
programas de control deben tener en cuenta la incertidumbre 
asociada a la prevalencia predicha y las cifras de personas 
infectadas.

ملخص
استخدام التوقع الجغرافي الإحصائي لبيزان لتقدير التفاوتات المحلية في العدوى بالبلهارسيات الدموية في غرب أفريقيا

الهدف: للتنبؤ بالتفاوتات الفراغية على الصعيد دون الوطني لأعداد المصابين 
بعدوى البلهارسيات الدموية في بوركينا فاسو ومالي والنيجر قبل تنفيذ البرامج 

الوطنية للمكافحة.
الطريقة: استخدم الباحثون مجموعة معطيات خاصة بالمسوحات التي تغطي 
كيلومتراً   850  ×  2750 ومساحتها  السراية  من  تعاني  التي  المناطق  إحدى 
عاماً   )14  –  5 )بعمر  المدرسة  سن  في  الأطفال  من   26  790 فيها  ويعيش 
يدرسون في 418 مدرسة. وقد كان معدل انتشار العدوى المنخفضة الكثافة 
والشديدة الكثافة والمترافق مع 95% من فواصل الثقة، قد حسب باستخدام 
نماذج جغرافية إحصائية لبيزان. وقد حدد الباحثون عدد المصابين بالعدوى 

انطلاقاً من معدل الانتشار المتوقع ومن عدد الأطفال في سن المدرسة في كل 
كيلومتر مربع.

بعدوى  المصابين  المدرسة،  سن  في  للأطفال  المتوقع  العدد  بلغ  الموجودات: 
منخفضة الكثافة، 268 433 في بوركينا فاسو و328 872 في مالي، و286 580 
في النيجر. أما عدد المصابين بعدوى عالية الكثافة فقد كان في بوركينا فاسو 
009 416 وفي مالي 845 511 وفي النيجر 150 254، وكان مجال الثقة واسعاً 
حيث بلغ عدد الأولاد الذين تـتراوح أعمارهم بين 10 – 14 عاماً والمصابين 
 6200 بين  تراوحت  إذ   ،%95 ثقة  )بفاصلة   140  200 مالي  في  بالعدوى 

و100 512(.
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الاستنتاج: إن التقديرات الوطنية المتجمعة للعدوى تخفي التفاوتات المحلية 
الهامة، فمعظم عداوى البلهارسيات الدموية في النيجر تحدث في وادي نهر 
النيجر. وقد كان هناك تجمع عالي الكثافة في غرب ووسط مالي، وشمال شرق 
وشمال غرب بوركينا فاسو ووادي نهر النيجر في النيجر. ويتحمل السكان في 

هذه المناطق مجمل عبء داء البلهارسيات البولي وينبغي أن يعطوا الأولوية 
في مكافحة داء البلهارسيات. وإن عدم التيقن في التنبؤ بمعدل الانتشار وفي 
تقدير عدد المصابين بالعدوى ينبغي أن يؤخذ في الاعتبار من قِبَل القائمين على 

تخطيط برامج المكافحة.
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Spatial estimation of the burden of schistosome infection, western AfricaArchie CA Clements et al.

Fig. 5. Map showing upper value for the Bayesian 95% CrI for the predicted prevalence 
of high-intensity (> 50 eggs/10 ml urine) Schistosoma haematobium infection 
in boys aged 10–14 years in Burkina Faso, Mali and the Nigera in 2004–2006, as 
derived using a Bayesian geostatistical multinomial regression model

CrI, Bayesian credible interval.
a  No predictions were made for the white areas on the map.
Image produced using ArcView version 9 (ESRI, Redlands, CA, United States of America) geographical information system. 

Fig. 4. Map showing lower value for the Bayesian 95% CrI for the predicted prevalence 
of high-intensity (> 50 eggs/10 ml urine) Schistosoma haematobium infection 
in boys aged 10–14 years in Burkina Faso, Mali and the Nigera in 2004–2006, as 
derived using a Bayesian geostatistical multinomial regression model

CrI, Bayesian credible interval.
a  No predictions were made for the white areas on the map.
Image produced using ArcView version 9 (ESRI, Redlands, CA, United States of America) geographical information system. 


