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The question whether obesity leads to an increased risk of mortality 

among individuals with chronic disease is of interest to many clinicians 

and epidemiologists1. Understanding the answer to that question may 

help to assess the importance and potential impact of interventions that 

target weight loss in this disease group. Because such interventions 

must take place after disease onset, epidemiological studies that aim to 

address this question should assess the association between changes in 

body mass since disease onset and mortality in such individuals. 

Collider bias - and the related obesity paradox - is only one of several 

adverse consequences of not adhering to this important principle. 

Asking the wrong question 

Whether collider bias can distort the association between obesity and 

mortality in, say, diabetic patients to a degree that matters, necessarily 

depends on the interpretation one assigns to that association. Viallon 

and Dufournet2 and Sperrin et al.3, along with a number of other 

authors (see e.g. 4) consider interpretation in terms of a controlled 

direct effect of obesity on mortality in diabetic patients. However, this 

does not capture how one is likely to interpret that association and, 

moreover, does not reflect the effect of clinical interest. The reason is 

that a controlled direct effect expresses the effect obesity would have 
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on mortality if one were to induce diabetes, an intervention that 

clinicians obviously do not envisage.  

Of the effect measures considered in Sperrin et al.5 and Viallon and 

Dufournet2, the one which arguably comes closest to clinicians’ 

interest, is that originally considered by Sperrin et al.5. In particular, let 

A denote 1 for obese individuals (and 0 otherwise) and M denote 1 for 

diabetic individuals (and 0 otherwise). In typical studies reporting on 

the obesity paradox, including 2,5 , the measurement A reflects a cause 

(rather than an effect) of chronic disease M. This is generally quite 

plausible when, as is the case in many studies, A and M are measured 

concurrently or when A is measured prior to the diagnosis of diabetes. 

Focussing on this setting, Sperrin et al.5 consider a contrast between 

E(Y1|M=1) and E(Y0|M=1), with Y1 (Y0) the counterfactual mortality 

status if (not) obese. Further letting M1 (M0) be the counterfactual 

diabetes status if (not) obese, and p=P(A=1|M=1), we have that  
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where we use that Y1 equals 
11MY , the counterfactual mortality status if 

obese with diabetes status M1. Likewise,  
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It follows from the above that the causal effect of obesity in diabetic 

patients,  1 0

CE 1
1

M
E Y Y M


    , equals the controlled direct effect 

of obesity in diabetic patients,  11 01

CDE 1
1

M
E Y Y M


    , when for 

all individuals, obesity does not affect the risk of diabetes (i.e. M1=M
0), 

but not generally otherwise; this is precisely the setting where collider 

bias is not a concern. I conclude that the results of Viallon and 

Dufournet2 and Sperrin et al.3 do not provide immediate insight into 

the extent to which collider bias can make the association between 

obesity and mortality in diabetic patients differ from the effect of 

obesity on mortality in those patients. 

Giving the wrong answer 
The simulation results in 5 (as well as those in 2 for 

CDE 1M
 ) moreover 

ignore important subtleties by relying on strong cross-world 

assumptions: assumptions about the dependence between 

counterfactuals existing in ‘different worlds’ (‘with’ versus ‘without’ 

obesity). In particular, the displays in the previous section shows that 

the calculation of 
CE 1M 

  requires assumptions about the dependence 

between 
1aMY  and M0, and thus in particular about the dependence 

between M1 and M0; 5 implicitly assume that M1 and M0 are perfectly 
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correlated. Such knowledge about the joint distribution of the 

counterfactuals M1 and M0 is unavailable in practice and not obtainable 

from - even experimental - data6. In view of this, Viallon and 

Dufournet2 and Sperrin et al.3 redirect attention to the controlled direct 

effect 
CDE 1M

 . However, to calculate it, they assume that Y0m is 

independent of M1, given A=1 and U (with U representing a variable 

that - along with A - is sufficient to adjust for confounding of the effect 

of M on Y). Also this cross-world assumption is often biologically 

implausible7. Although similar assumptions are routinely employed in 

mediation analysis, they are arguably more innocent in that context, 

where the key direct and indirect effect measures remain interpretable 

even when those assumptions fail8-10; such rescue interpretation is less 

obvious for 
CDE 1M

 .  

Realistic projections of the extent of collider bias should consider the 

above subtleties and, moreover, recognise that the extent of collider 

bias is model dependent (e.g., it does not arise in certain classes of 

multiplicative models11 and logistic models12. To the best of my 

knowledge, most studies that quantify the role of collider bias in the 

obesity paradox, have focussed on a single dichotomous confounder U 

(which is not affected by obesity) (see e.g. 4,13,14 ). This is a 
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serious oversimplification of reality, which is likely to minimise the 

role of collider bias. In the next section, I aim to provide more general 

insight. 

A broader perspective on collider bias 

In essence, the problem of collider bias is not less important than that 

of confounding bias. Consider for instance the causal diagram of Figure 

1 (left). When all variables are dichotomous, taking values 0 and 1, 

then it readily follows from Bayes’ rule that the conditional U-A odds 

ratio, given M=1, can be rewritten as  

   
   

1 1, 1 1 0, 0
;

1 0, 1 1 1, 0

P M A U P M A U

P M A U P M A U

     

     
 (1) 

the extent to which it differs from 1 expresses the degree of collider 

bias. When the data are instead generated as in Figure 1 (right), then it 

further follows from Bayes’ rule that for a,u=0,1,  
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At such data-generating mechanisms, Equation 1 reduces to  

   
   

1 1 0 1
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Interestingly, this is the reciprocal of the marginal U-A odds ratio, 

which expresses the degree of confounding bias in Figure 1 (right). It 
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follows that confounding and collider-stratification both bias the A-U 

association to the same extent in this case. 

Similar findings are obtained when all variables are multivariate 

normal. Then it can be shown along similar lines as in15 that under the 

causal diagram of Figure 1 (left), the standardised path coefficient on A 

in a linear regression of U on A and M is given by  

2
,

1

mu ma

ma

 





 

where 
mu  is the correlation between M and U and 

ma  is the correlation 

between M and A. This dependence of U on A is again the result of 

collider bias. Its magnitude is determined by the extent to which M is 

associated with both A and U, and can be especially sizeable when A 

strongly affects M. Incidentally, the term 
mu ma   in the numerator is 

also equal to the standardised path coefficient on A in a linear 

regression of U on A under the causal diagram of Figure 1 (right), 

which reflects the extent of confounding bias in that diagram.  

 Figure 1: Left: Causal diagram expressing collider bias; Right: Causal 

diagram expressing confounding bias. 

We conclude from the above that the problem of collider bias is, in 

essence, not less important than that of confounding bias. This is in line 

with Greenland16, who concludes that ‘bias from stratifying on 
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variables affected by exposure and disease may often be comparable in 

size with bias from classical confounding’; it moreover confirms the 

extreme selection biases found in 17. However, when considering 

collider bias of the association between A and Y (instead of U), then the 

extent of bias is obviously weakened due to the imperfect dependence 

between U and Y, just like the degree of confounding bias of the 

association between A and Y in Figure 1 (right) diminishes. Depending 

on the setting, collider bias (and likewise confounding bias) thus need 

not propagate to deliver sizeable bias in the exposure-outcome 

association16.  

Getting the wrong answer to the wrong question 

Regardless of whether or not collider bias forms the principal 

explanation for the obesity paradox, perhaps the biggest problems in all 

studies reporting on the obesity paradox are the following two. First, 

they attempt to evaluate the effect of an ill-defined intervention on 

obesity18. Second, even if a well-defined intervention were considered, 

they attempt to evaluate the effect of an intervention on obesity prior to 

disease onset in chronically ill patients. While interventions on obesity 

might be particularly useful for that subgroup, a good understanding of 

their effect would be of limited use for making public health decisions 

ACCEPTED

Copyright © Wolters Kluwer Health, Inc. All rights reserved. Unauthorized reproduction of this article is prohibited.



9 

as it would be unknown, at the time of decision making, who belongs 

to that group. An assessment of their effect would moreover be of 

limited use to gauge the potential impact of interventions on obesity 

that take place after disease onset. The nature of body mass prior to 

disease onset (which may be related to genetics, socioeconomic status, 

familial eating patterns, ...) and post disease onset (which may 

additionally be disease related, or related to the prescription of specific 

diets or physical exercise following disease onset) may be very 

different, making it unrealistic to believe that interventions on body 

mass have the same effect pre versus post disease onset.  

To evaluate the possible impact of obesity-related interventions on 

mortality in individuals with chronic disease based on observational 

studies, one must assess how changes in body mass after disease onset 

(ideally brought about by well-defined interventions) relate to 

mortality. When the data are deficient (in the sense that they provide no 

information on the change in body mass after disease onset), one is 

likely to find the wrong answer to the wrong question. The wrong 

answer, because deficient data demand dominant assumptions (cfr. the 

aforementioned need for cross-world assumptions). The wrong 

question, because the effect of obesity prior to disease onset is not 

directly informative about the effect which interventions on body mass 
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after disease onset might have.  

Epidemiologic studies that aim to guide decision-making should focus 

on the comparison of exposure groups that correspond to the 

intervention one wishes to evaluate. Only by adhering to this principle, 

one can avoid the above problem of collider bias and related issues of 

left truncation19. Such bias need not be less severe than bias as a result 

of ignoring confounders. I am grateful to Viallon and Dufournet for 

identifying subtleties in the calculation of 
CE 1M 

 , and clarifying that 

sensible degrees of bias may be plausible and may form an explanation 

for the obesity paradox, to Sperrin and collaborators for recognising  

these subtleties, and to the Editor for the opportunity to contribute to 

this discussion. 
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