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Abstract

With the functional demonstration of a role in erythrocyte invasion by Plasmodium falciparum parasites, implications in the
aetiology of common conditions that prevail in individuals of African origin, and a wealth of pharmacological knowledge,
the stimulatory G protein (Gs) signal transduction pathway presents an exciting target for anti-malarial drug intervention.
Having previously demonstrated a role for the G-alpha-s gene, GNAS, in severe malaria disease, we sought to identify other
important components of the Gs pathway. Using meta-analysis across case-control and family trio (affected child and
parental controls) studies of severe malaria from The Gambia and Malawi, we sought evidence of association in six Gs
pathway candidate genes: adenosine receptor 2A (ADORA2A) and 2B (ADORA2B), beta-adrenergic receptor kinase 1
(ADRBK1), adenylyl cyclase 9 (ADCY9), G protein beta subunit 3 (GNB3), and regulator of G protein signalling 2 (RGS2). Our
study amassed a total of 2278 cases and 2364 controls. Allele-based models of association were investigated in all genes,
and genotype and haplotype-based models were investigated where significant allelic associations were identified.
Although no significant associations were observed in the other genes, several were identified in ADORA2A. The most
significant association was observed at the rs9624472 locus, where the G allele (,20% frequency) appeared to confer
enhanced risk to severe malaria [OR = 1.22 (1.09–1.37); P = 0.001]. Further investigation of the ADORA2A gene region is
required to validate the associations identified here, and to identify and functionally characterize the responsible causal
variant(s). Our results provide further evidence supporting a role of the Gs signal transduction pathway in the regulation of
severe malaria, and request further exploration of this pathway in future studies.
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Introduction

As an obligatory route to blood parasitaemia, erythrocyte

invasion is an essential gateway to malaria disease and a key target

for disease intervention. However, we still have only a limited

understanding of the molecular mechanisms underlying erythro-

cyte invasion by Plasmodium falciparum, the most virulent species of

human malaria parasite, and their impact at the disease level

(review in [1]).

A wide spectrum of clinical outcomes is observed in response to

malaria infection in endemic regions. While some infected

individuals remain asymptomatic, others may suffer mild symp-

toms of disease, and a small proportion of infections progress to

severe, life-threatening complications [2]. As well as environmen-

tal and parasite determinants, a number of host factors influence

individual response to malarial infection including age/immune

status and genetic makeup. These factors may influence the

outcome at various stages in the transition from initial infection to

blood parasitaemia, fever, severe disease, and death. Thus, factors

which promote progression at any of these stages should be

enriched in individuals suffering severe disease and death. Case-

control association studies using severe disease cases, therefore,

present an effective tool to identify host genetic factors regulating

any of the earlier transitions in disease progression, including

determinants of erythrocyte invasion which regulate blood

parasitaemia levels.

Harrison and colleagues demonstrated a role for the host

erythrocyte stimulatory G protein (Gs) pathway in erythrocyte

invasion [3]. Using peptides designed to disrupt the interaction

between the G-alpha-s subunit of the Gs protein and the beta-2-

PLoS ONE | www.plosone.org 1 April 2010 | Volume 5 | Issue 4 | e10017



adrenergic receptor, a Gs protein-coupled receptor, reduced

erythrocyte invasion by P. falciparum parasites and subsequently

lower parasitaemia was observed in vitro [3]. Seeking evidence of

an impact of these Gs signal transduction-related events on disease

progression, we previously demonstrated association between

polymorphism in the gene encoding G-alpha-s (GNAS) and severe

malaria disease using a case-control association approach [4]. The

demonstration of a disease-regulatory role at the GNAS locus

warranted further investigation of the Gs pathway to enhance our

understanding of the disease mechanism(s) involved and to identify

other components which might present suitable targets for anti-

malarial drug intervention. Indeed, owing to implications in

common disorders such as hypertension and diabetes, the

pharmacology of the Gs pathway is well defined [5], meriting it

high feasibility for anti-malarial drug intervention. With the

availability of the Sequenom iPLEX platform (www.sequenom.

com) and the opportunity for lower cost and higher throughput

genotyping (,10-fold increase in SNP number) relative to the

previous Sequenom (hME) platform, we were able to undertake

economic genotyping in a larger selection of genes, allowing

further interrogation of the Gs pathway to identify other disease-

regulatory candidates that might present suitable targets for anti-

malarial drug intervention.

G protein pathways provide a means for intracellular compo-

nents to respond appropriately to extracellular stimuli [6].

Different stimuli may require different signal transduction events

and subsequent effector responses, and the specificity in the signal

transduction systems resides in the G protein coupled receptor

(GPCR). Gs proteins transduce signals from several GPCRs to

adenylyl cyclases which produce cAMP. Gs GPCRs include

adenosine receptor alpha 2A and 2B (ADORA2A and

ADORA2B), and beta-1- and beta-2- adrenergic receptors

(ADRB1 and ADRB2). Beta-adrenergic receptors are activated

by various catecholamines, while adenosine is the preferred

agonist for ADORA2A and ADORA2B. Activation of the

pathway is initialized by an agonist binding to the appropriate

GPCR which has greater affinity for the Gs protein. In the basal

state, Gs proteins are heterotrimeric, comprising 3 subunits, alpha,

beta and gamma, with GDP bound to the alpha subunit.

Stimulation of the Gs protein by interaction with the GPCR

results in exchange of GTP for GDP. The GTP-bound G-alpha-s

subunit (GNAS) dissociates from the beta-gamma dimer and

activates adenylyl cyclase (e.g. ADCY9), which then converts ATP

to cAMP. The second messenger, cAMP, activates effector

molecules such as protein kinase A, which elicit an appropriate

response to the initial agonist stimulation.

Negative feedback processes regulate the Gs pathway in order to

prevent excessive cell signalling. Following dissociation from the

G-alpha-s subunit, the beta-gamma dimer binds and translocates a

G protein coupled receptor kinase such as the beta-adrenergic

receptor kinase 1 (ADRBK1) to the membrane [7]. At the

membrane, the kinase phosphorylates the agonist-activated GPCR

which then complexes with arrestin protein preventing further

coupling to the G protein. The free G-alpha-s subunit is

deactivated by a regulator of G protein signalling molecule

(RGS) such as RGS2, which binds to the G-alpha-s subunit and

acts as a GTPase-activating protein to attenuate signalling of the

GTP-bound G-alpha-s subunit [8]. RGS2 also appears to interact

with ADCY to reduce cAMP production [9].

The inhibitory G (Gi) protein pathway also opposes the effects

of the Gs pathway, having an inhibitory effect on adenylyl cyclase

and cAMP production. A well studied component of this pathway

is the Gi beta subunit 3 (GNB3), which has been implicated in

complex disorders such as hypertension [10,11].

Using meta-analysis pooled across four association studies

(Malawi case-control (unrelated cases and controls), Malawi family

trio (affected child and parental controls), Gambian case-control

and Gambian trio), we tested SNP associations with severe malaria

in six genes related to the Gs pathway; adenosine receptor alpha 2A

and 2B (ADORA2A, ADORA2B), beta-adrenergic receptor kinase 1

(ADRBK1), regulator of G protein signalling 2 (RGS2), adenylyl

cyclase 9 (ADCY9), and G-protein-beta 3 (GNB3). A meta-analysis

approach was chosen to enhance sample size whilst allowing for

heterogeneity between studies. Owing to the challenges of collecting

severe malaria cases in African study sites, large sample sizes are

difficult to obtain [12]. Despite efforts to standardize clinical

phenotyping across studies, owing to inter-population differences in

transmission patterns and demography, some heterogeneity still

remains in features such as the proportion of different severe

malaria subphenotypes (e.g. severe malarial anaemia).

Results

Assay performance
Allele frequencies for the assays (pre-filtered by quality

assessment on the HapMap Yoruba dataset) in the Gambian

and Malawian studies are presented in Table 1. All assays

demonstrated significant concordance with HWE (P,0.001) and

failure rates below 10% (results not presented).

Single-locus associations
Two of the four ADORA2A SNPs, rs9624472 and rs5751876,

demonstrated significant association with severe malaria, as illustrated

in Figures 1 and 2, respectively. The other two ADORA2A loci,

rs2267076 and rs3761422, demonstrated a trend of association

(0.05#P#0.1). A summary of the single-locus associations identified

in ADORA2A are presented in Table 2. The most significant

association was demonstrated at the rs9624472 locus (P = 0.001),

with increased susceptibility to severe malaria conferred by the G

allele [OR = 1.22 (1.09–1.37)] in an additive manner [AG OR = 1.17

(1.02–1.36), P = 0.029; GG OR = 1.6 (1.13–2.26), P = 0.008]. Upon

moving up- or down-stream of the rs9624472 locus, the strength of

associations weakened. Approximately 2.5 kb downstream of

rs9624472, the rs5751876 C allele conferred significant susceptibility

to severe malaria [OR = 1.12 (1.02–1.23), P = 0.024] with an

apparent recessive genotype effect [CT OR = 1.03 (0.89–1.2),

P = 0.652; CC OR = 1.26 (1.01–1.57), P = 0.042]. Four kilobases

upstream of rs9624472, the rs2267076 T allele demonstrated a trend

of susceptibility to severe malaria [OR = 1.11 (1–1.23), P = 0.051]

and, further upstream (8 kb), the rs3761422 T demonstrated a

weaker trend of susceptibility to severe malaria [OR = 1.09 (0.99–

1.21), P = 0.096]. No significant associations were demonstrated in

the other candidate genes (data in Table S1).

Multi-locus associations
Table 3 presents a summary of the meta-analysis associations

demonstrated with the common (.5%) ADORA2A haplotypes.

The two most significant haplotype associations concurred with

the single locus associations. The A2A-3 haplotype, which

comprises the risk-conferring rs9624472 (G) and rs5751876 (C)

alleles, accordingly demonstrated significant risk to severe malaria

[OR = 1.21 (1.07–1.37), P = 0.002]. Furthermore, the A2A-1

haplotype which comprises the protective alleles at rs9624472

(A) and rs5751876 (T) demonstrated significant protective from

severe malaria [OR = 0.86 (0.77–0.95), P = 0.003]. With a less

significant P-value, the A2A-2 haplotype, which comprises the

rs9624472 A and rs5751876 T alleles demonstrated risk to severe

malaria [OR = 1.14 (1.02–1.28), P = 0.019].

Gs Severe Malaria Association
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Discussion

Owing to implications in the aetiology of erythrocyte invasion

by P. falciparum [3,13], evidence of ethnic-specific variants

[14,15,16,17] possibly reflecting signatures of selection due to

malaria, and a wealth of pharmacological knowledge (review in

[5]), the Gs pathway presents an exciting target for anti-malarial

drug intervention. Having previously demonstrated a role for the

G-alpha-s gene, GNAS, in severe malaria disease [4], we sought to

identify other important components of the Gs pathway. In this

Table 1. SNP allele frequencies in the Gambian and Malawian case-control and family trio studies.

Gene Assay 1 Alleles Gambia CC Gambia Trio Malawi CC Malawi Trio

ADCY9 rs2238432 C/T 0.28 0.28 0.30 0.28

rs2230739 A/G 0.16 0.16 0.09 0.08

rs3730119 C/T 0.26 0.27 0.25 0.25

rs10775349 C/G 0.20 0.21 0.20 0.21

rs8047038 C/T 0.31 0.30 0.30 0.30

ADORA2A rs3761422 C/T 0.28 0.28 0.31 0.30

rs2267076 C/T 0.27 0.27 0.30 0.29

rs9624472 A/G 0.23 0.23 0.16 0.16

rs5751876 T/C 0.39 0.40 0.30 0.30

ADORA2B rs2535611 T/C 0.03 0.03 0.13 0.11

rs11654 G/C 0.32 0.30 0.22 0.23

rs2286796 G/A 0.37 0.30 0.22 0.23

rs2302416 G/A 0.29 0.30 0.31 0.33

ADRBK1 rs12285582 T/C 0.40 0.40 0.29 0.28

rs948988 G/A 0.39 0.40 0.28 0.27

rs7934433 C/T 0.14 0.12 0.28 0.30

GNB3 rs3759348 G/A 0.26 0.26 0.29 0.32

rs5443 T/C 0.18 0.16 0.16 0.16

rs5446 C/T 0.46 0.49 0.50 0.48

RGS2 rs7531013 G/A 0.44 0.42 0.24 0.26

rs2179652 T/C 0.44 0.38 0.25 0.25

rs2746073 T/A 0.02 0.01 0.06 0.05

1Major allele/minor allele. CC: Case-control.
doi:10.1371/journal.pone.0010017.t001

Figure 1. Forest plot of the odds ratios of severe malaria allelic
associations at the rs9624472 locus. Odds ratios of severe malaria
associations with the rs9624472 G allele are represented for each study
as a grey box with a horizontal line. The mid-point of the line represents
the odds ratio and the extreme points of the line represent the 95% CI.
The contribution of each study to the meta-analysis is represented by
the area of the grey box. The solid vertical line presents an odds-ratio of
1 (no association). The diamond at the bottom presents the overall
odds ratio and CI: OR = 1.22 (95% CI: 1.09–1.37), P = 0.001. Cochran’s Q-
test for heterogeneity on 4 degrees of freedom: P = 0.501.
doi:10.1371/journal.pone.0010017.g001

Figure 2. Forest plot of the odds ratios of severe malaria allelic
associations at the rs5751876 locus. Odds ratios of severe malaria
associations with the rs5751876 C allele are represented for each study
as a grey box with a horizontal line. The mid-point of the line represents
the odds ratio and the extreme points of the line represent the 95% CI.
The contribution of each study to the meta-analysis is represented by
the area of the grey box. The solid vertical line presents an odds-ratio of
1 (no association). The diamond at the bottom presents the overall
odds ratio and CI: OR = 1.12 (95% CI: 1.02–1.23), P = 0.024. Cochran’s Q-
test for heterogeneity on 4 degrees of freedom: P = 0.651.
doi:10.1371/journal.pone.0010017.g002
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study, and, to the best of our knowledge, the first candidate-based

investigation of ADORA2A in severe malaria, we demonstrate

significant association with this gene using meta-analysis across

case-control and TDT studies from The Gambia and Malawi.

We identified a pattern of association in the ADORA2A gene

whereby single-locus associations strengthened in significance with

increasing proximity to rs9624472, at which the most significant

association was observed (P = 0.001). At this locus, the G allele

demonstrated enhanced susceptibility to severe malaria. With

respect to the rs9624472 locus, 2.5 kb downstream, the rs5751876

C allele demonstrated susceptibility to severe malaria (P = 0.024);

4 kb upstream, the rs2267076 T allele demonstrated a trend of

susceptibility to severe malaria (P = 0.051); and 8 kb upstream, the

rs3761422 T allele demonstrated a weak trend of susceptibility to

severe malaria (P = 0.096). Using haplotype-based analysis, the two

most significant ADORA2A haplotype associations concurred with

the single-locus associations at rs9624472 and rs5751876; A2A-3

(CCGC) risk to severe malaria (P = 0.002), and A2A-1 (CCAT)

protection from severe malaria (P = 0.003). Association at A2A-2

(TTAT) demonstrated discordance with the single-locus effects of

rs9624472 A and rs5751876 T but at lower significance

(P = 0.019). Further investigation of this region is required to

identify the true functional variant responsible for the observed

associations.

We used meta-analysis across the Gambian and Malawian TDT

and case-control studies in order to enhance our sample size.

Across the four studies, we amassed a total of 2278 cases and 2364

controls. A rough estimation of the power of this study to detect

the rs9624472 association was 97% at the 5% significance

Table 2. Summary of pooled single-locus associations
observed in the ADORA2A gene.

Assay Coordinate 1Test Variant OR (95% CI) Z-value (Pr)

rs3761422 23151226 T (C) 1.09 (0.99–1.21) 1.67 (0.096)

TT (CC) 1.19 (0.92–1.54) 1.32 (0.187)

CT (CC) 1.04 (0.90–1.19) 0.51 (0.611)

rs2267076 23155149 T (C) 1.11 (1.00–1.23) 1.95 (0.051)

TT (CC) 1.30 (0.99–1.71) 1.89 (0.058)

CT (CC) 1.04 (0.91–1.20) 0.56 (0.573)

rs9624472 23159285 G (A) 1.22 (1.09–1.37) 3.38 (0.001)

GG (AA) 1.60 (1.31–2.27) 2.65 (0.008)

AG (AA) 1.17 (1.02–1.36) 2.18 (0.029)

rs5751876 23161855 C (T) 1.12 (1.02–1.23) 2.26 (0.024)

CC (TT) 1.26 (1.01–1.57) 2.03 (0.042)

CT (TT) 1.03 (0.89–1.20) 0.45 (0.652)

Results refer to allele and genotype-based associations pooled across the four
studies: Gambia case-control, Gambia trios, Malawi case-control, and Malawi
trios.
1The test variant is followed by the alternative variant in brackets. Odds ratios
refer to the effect of the test variant. Significant z-values (P,0.05) are
presented in bold, trends of association (0.05#P#0.1) are presented in regular
font, and non-significant associations (P.0.1) are presented in dark grey.
Cochran’s Q-test for heterogeneity on 4 degrees of freedom P.0.05 in all tests.

doi:10.1371/journal.pone.0010017.t002

Table 3. Pooled haplotype-based odds ratios of association with severe malaria in the ADORA2A gene.

Haplotype Sequence1 Study Freq (%) 2 OR (95% CI) Z-value (Pr)

A2A-1 1111 (CCAT) Gambia CC 32.3 0.87 (0.74–1.03)

Gambia Trio 30.5 0.94 (0.76–1.17)

Malawi CC 40.1 0.84 (0.7–1.01)

Malawi Trio 34.2 0.67 (0.48–0.94)

Pooled 0.86 (0.77–0.95) 20.30 (0.003)

A2A-2 2211 (TTAT) Gambia CC 25.5 1.17 (0.98–1.4)

Gambia Trio 24.2 1.19 (0.92–1.53)

Malawi CC 28.7 1.08 (0.89–1.31)

Malawi Trio 28.5 1.2 (0.82–1.74)

Pooled 1.14 (1.02–1.28) 2.53 (0.019)

A2A-3 1122 (CCGC) Gambia CC 22.4 1.25 (1.03–1.5)

Gambia Trio 22.2 1.17 (0.91–1.51)

Malawi CC 15.4 1.17 (0.92–1.5)

Malawi Trio 18 1.25 (0.78–1.99)

Pooled 1.21 (1.07–1.37) 3.02 (0.002)

A2A-4 1112 (CCAC) Gambia CC 17.5 0.81 (0.66–1.01)

Gambia Trio 19.9 0.83 (0.63–1.09)

Malawi CC 14.9 0.99 (0.78–1.27)

Malawi Trio 18 1.19 (0.74–1.9)

Pooled 0.89 (0.78–1.02) 21.67 (0.094)

Significant z-values (P,0.05) are presented in bold.
11 = major allele, 2 = minor allele.
2Frequencies summed across cases and controls. The four haplotypes accounted for over 96% of the variation in each population. Cochran’s Q-test for heterogeneity on
4 degrees of freedom P.0.05 in all tests. CC: Case-control.

doi:10.1371/journal.pone.0010017.t003
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threshold [18]. Nonetheless, with MAF as low as 5%, even this

study was not sufficiently powered to detect allelic odds ratios of

,1.2 (probability of detection ,44%). With these levels of power,

no significant associations were demonstrated with ADCY9,

ADRBK1, ADORA2B, GNB3 or RGS2. Further investigation of

these genes in other populations and with greater sample size

should provide more conclusive evidence on their role in severe

malaria pathogenesis.

The results presented here have not been corrected for multiple

testing. The application of the Bonferroni correction in this study

is debatable as the candidate genes are members of the same

biological pathway and, thus, partially interdependent. Due to LD,

the SNPs within each gene also exert a measure of interdepen-

dence. If we correct the associations observed here by the number

of genes tested (6), the threshold for significance is P<0.008. At

this threshold, the rs9624472 allelic association (P = 0.002), and

the A2A-1 (P = 0.003) and A2A-3 (P = 0.002) haplotype associa-

tions remain significant.

As a component of a signal pathway, it should be considered

that the ADORA2A associations presented here may represent a

complex network of interactions with other human genetic

variants in the Gs pathway such as the GNAS locus and, perhaps,

other pathways. Indeed, it is feasible that inter-gene interactions

may have masked our ability to detect possible associations at the

other loci investigated here. However, with regard to multiple

hypothesis testing, our study was not sufficiently powered to

investigate the numerous possible epistatic interactions between

the genes investigated here. In addition to other host genetic

factors, it should also be considered that a number of parasite

genetic factors and environmental factors may interact with

variants in the Gs pathway and, thus, influence the outcome of the

disease trait. Indeed, in the context of erythrocyte invasion, which

presents an intimate interaction between host and parasite

proteins, it is most likely that the composite of numerous parasite

and host genetic variants involved in the process ultimately

determines the overall rate of invasion. Unfortunately, owing

again to limited sample size, this study was underpowered to

investigate such variables.

The mechanism by which the ADORA2A associations presented

here might elicit a pathogenic effect in malaria disease remain

unclear. ADORA2A and ADORA2B are both adenosine-

activated GPCRs, the latter exhibiting lower affinity for this

agonist [19]. The Levels of extracellular adenosine rise in response

to metabolic stress and cell damage in conditions such as hypoxia,

inflammation and trauma [20,21]. In addition to erythrocytes,

ADORA2A is expressed in a wide range of tissues. Indeed,

activation of this receptor in various immune cells appears to

promote an anti-inflammatory cytokine profile [22]. A careful

balance of pro- and anti-inflammatory cytokine levels appears to

be critical to malaria outcome [23]. Thus, in addition to a

potential role in regulating erythrocyte invasion, ADORA2A may

mediate susceptibility to severe malaria via regulation of

inflammatory cytokine levels.

Accumulating evidence, including the ADORA2A association

reported in this study, indicates that the Gs signal transduction

pathway is involved in the regulation of malaria, and more

specifically, in the severe, life threatening manifestations of this

disease [3,4,13]. Thus, this pathway requires further exploration in

malaria studies. Indeed, further investigation of the ADORA2A

gene region is necessary to validate the associations identified here,

and to identify and functionally characterize the causal variant(s)

responsible for the signals of association. This should enhance our

understanding of how ADORA2A is involved in the regulation of

severe malaria pathology.

Materials and Methods

Ethics Statement
The Gambia Government/Medical Research Council Ethical

Committee approved the Gambian samples in this study. The

Malawian samples in this study were approved by the College of

Medicine Research and Ethics Committee. All samples were

obtained with informed written consent from a parent or

guardian.

Samples
Individuals were recruited in a clinical setting. Children under

the age of 12 years presenting with severe malaria at the Royal

Victoria Hospital in Banjul, The Gambia, and the Queen

Elizabeth Central Hospital in Blantyre, Malawi, were enrolled as

cases. Severe malaria was defined as severe malarial anaemia (SA),

cerebral malaria (CM), other severe complications such as

respiratory acidosis, and fatalities due to malaria infection. The

threshold for SA was a haemoglobin concentration ,5 g/dl in the

presence of P. falciparum asexual parasitaemia. CM was defined by

a Blantyre coma score #2, indicating unrousable coma not

attributable to convulsions, hypoglycaemia or meningitis in a

patient with P. falciparum parasitaemia [24]. Due to limited sample

size and, thus, power to detect association, severe malaria sub-

phenotypes were not investigated here (see Table S2). Population

controls for the case-control studies were obtained from umbilical

cord blood samples. In the family trios, the patients’ mother and

father were recruited as controls. Analysis was restricted to true

biological trios ($80% probability of being true parent-offspring

trios) confirmed using the Nuclear software package [25]. At each

study site, local teams managed sample collection and DNA

extraction. Genomic DNA samples were subject to whole genome

amplification using Multiple Displacement Amplification [26].

DNA from the HapMap Yoruba parental samples (http://www.

hapmap.org) was used to test the accuracy of the genotyping assays

and was extracted from lymphoblastoid cell lines provided by the

Coriell repository (Corriell Institute for Medical Research).

Gene selection
Genes were selected on account of one or more of the following

properties; implication in common disorders which prevail in

individuals of African origin possibly as a result of malaria

selection [27], such as essential hypertension and type 2 diabetes

mellitus [28,29,30,31] prevalence of ethnic-specific polymorphisms

which are polymorphic in individuals of African but not Caucasian

origin [17]; evidence of functional polymorphism altering signal

transduction [32,33]. We also attempted to investigate the beta-1

and beta-2-adrenergic receptors (ADRB1 and ADRB2), which have

previously been implicated in the regulation of P. falciparum

erythrocyte invasion [3]. However, possibly due to non-unique

sequence, we were unable to design accurate genotyping assays on

the Sequenom iPLEX and hME platforms for these genes.

SNP selection
SNP selection was balanced between literature-based evidence

of functionality and apparent signatures of selection. This was

narrowed down to an economic subset of SNPs for which

genotyping assays could be designed on the mass spectrometry

iPLEX platform. Three measures were used to identify signatures

of positive selection; Wright’s Fst [34], haplosimilarity (Hs

measure) [35] and extended haplotype homozygosity (EHH

measure) [36]. In addition to the genic region, up to 10 kb

upstream and downstream of each transcript was investigated (see

Table S3). Signatures of selection were sought using the available
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genotype data from HapMap release no. 19 (http://www.

hapmap.org).

Genotyping methods
Genotyping was undertaken using Sequenom’s mass spectrom-

etry iPLEX gold platform (http://www.sequenom.com). Prior to

genotyping on the Malawian and Gambian samples, the SNP

assays were tested on the Yoruba HapMap parental DNA

samples. Only assays with high concordance (.95%) to the

official HapMap data (http://www.hapmap.org), genotype distri-

butions conforming to Hardy-Weinberg equilibrium at the 0.1%

significance threshold, and high call rates ($90%) were genotyped

on the malaria cases and controls.

Association analysis
Meta-analysis was undertaken across all the case-control and

family studies using the methods outlined in Kazeem and Farrall

[37]. Inter-study heterogeneity in association was assessed using

Cochran’s chi-square test (Q-test) under the null hypothesis of

homogeneity (significant heterogeneity P,0.05). Individual SNPs

were investigated using allele- and genotype-based models. Multi-

allele tests were undertaken using haplotypes. Genotype associa-

tions were tested using pseudo case-control analysis with

correction for HbS using the GenAssoc package (http://www-

gene.cimr.cam.ac.uk/clayton/software/). Associations were cor-

rected for the HbS locus, which exerts a strong influence on severe

malaria outcome [38,39]. In the Malawian and Gambian case-

control studies, associations were tested using logistic regression

analysis and conditional logistic regression with stratification by

ethnicity, respectively. Regression analysis was undertaken in

STATA (STATA, version 9.0; StataCorp, College Station, TX).

In the family trios, association tests were undertaken using the

transmission distortion test (TDT) [40].

Haplotype reconstruction
In the case-control studies, haplotypes were reconstructed using

SNPHAP (http://www-gene.cimr.cam.ac.uk/clayton/software/).

Only haplotypes with SNPHAP probabilities $80% were included

in association analysis. In the family trios, haplotypes were

reconstructed using an Expectation Maximisation algorithm in R.

Supporting Information

Table S1 Individual study and pooled odds ratios of allelic

associations in all genes investigated. Odds ratios corresponding to

severe malaria associations with the minor allele of the given locus

are presented for individual studies and pooled studies (meta-

analysis). Z scores and corresponding P-values are presented for

the pooled associations. Q scores and corresponding P-values are

presented for Cochran’s test of heterogeneity between the studies.

Odds ratios refer to the minor allele at each locus. Cochran’s Q-

test for heterogeneity on 4 degrees of freedom. CC: Case-control.

Found at: doi:10.1371/journal.pone.0010017.s001 (0.30 MB

RTF)

Table S2 Severe malaria subphenotype frequencies. CM:

Cerebral malaria. SA: Severe anaemia.

Found at: doi:10.1371/journal.pone.0010017.s002 (0.04 MB

RTF)

Table S3 Properties of Gs pathway candidates. 1Region

investigated using haplosimilarity (HS) and extended haplotype

homozygosity (EHH) tools for detecting signatures of selection.

Found at: doi:10.1371/journal.pone.0010017.s003 (0.03 MB

RTF)
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