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Abstract
In Singapore, the frequency and magnitude of dengue epidemics have increased signifi-

cantly over the past 40 years. It is important to understand the main drivers for the rapid

increase in dengue incidence. We studied the relative contributions of putative drivers for

the rise of dengue in Singapore: population growth, climate parameters and international air

passenger arrivals from dengue endemic countries, for the time period of 1974 until 2011.

We used multivariable Poisson regression models with the following predictors: Annual

Population Size; Aedes Premises Index; Mean Annual Temperature; Minimum and Maxi-

mum Temperature Recorded in each year; Annual Precipitation and Annual Number of Air

Passengers arriving from dengue-endemic South-East Asia to Singapore. The relative risk

(RR) of the increase in dengue incidence due to population growth over the study period

was 42.7, while the climate variables (mean and minimum temperature) together explained

an RR of 7.1 (RR defined as risk at the end of the time period relative to the beginning and

goodness of fit associated with the model leading to these estimates assessed by pseudo-

R2 equal to 0.83). Estimating the extent of the contribution of these individual factors on the

increasing dengue incidence, we found that population growth contributed to 86% while the

residual 14% was explained by increase in temperature. We found no correlation with

incoming air passenger arrivals into Singapore from dengue endemic countries. Our find-

ings have significant implications for predicting future trends of the dengue epidemics given

the rapid urbanization with population growth in many dengue endemic countries. It is time

for policy-makers and the scientific community alike to pay more attention to the negative

impact of urbanization and urban climate on diseases such as dengue.
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Introduction
Dengue is the most important arboviral disease with over half of the world's population living
in areas of risk, and about 390 million infections estimated annually[1]. The frequency and
magnitude of epidemic dengue have increased dramatically in the last century as both the
viruses and the mosquito vectors have expanded geographically in the tropical regions of the
world[2]. Reasons for the currently observed and predicted expansion are multi-factorial[3]
with climate change, virus evolution and societal factors such as rapid urbanization, popula-
tion growth as well as global travel and trade thought to be the main factors[4]. Much research
has been done to study climate variability [5,6] and its association with dengue epidemics [7–
9]. Vectorial capacity of Aedesmosquitoes is clearly dependent on temperature [10]. On the
other hand, many others have questioned the role of climatic variability as the main driver for
the observed expansion of dengue [11–13]. Gubler, for example, suggests that the three princi-
pal drivers are urbanization with population growth, globalization and presence of mosqui-
toes due to the lack of effective control [2]. Aedes aegypti is a highly domesticated urban
mosquito that prefers to live alongside humans, preferentially feeds on humans and lays eggs
in artificial containers made by humans, hence urbanization and population growth provide
ideal opportunities for breeding and spread. Globalization on the other hand provides the
ideal mechanism for transportation of viruses to regions where dengue is not yet endemic,
and can also introduce new serotypes or genotypes into areas that are already endemic, thus
triggering new outbreaks[4].

Singapore is an island-city-state in South East Asia that has been dengue endemic for half a
century with a well-documented increase in the magnitude of epidemics over the past two
decades despite strong political will and sufficient resources for stringent vector control mea-
sures [14–17]. The rapid urbanization in Singapore has resulted in doubling of the population
over the past two decades. Monthly mean temperature has increased by at least 0.5 Degrees
[18]. Singapore has also seen a major increase in international arrivals including arrivals from
dengue endemic countries. Serving about 100 international airlines flying to and from some
250 cities in 60 countries and territories worldwide, Changi Airport handles about 6,500 flights
every week and over 50 million passengers a year (http://www.changiairport.com/our-
business/about-changi-airport/facts-statistics).

Singapore has a good surveillance system with dengue being a legally notifiable disease, with
worldwide probably the most reliable data on dengue incidence over decades. Furthermore, the
dengue control program in Singapore combines all WHO-recommended control activities,
including public health education and community participation, active breeding site detection,
environmental management, reactive insecticide fogging, and geo-referenced entomologic and
clinical surveillance systems[19]. Hence, Singapore is an ideal place to untangle the following
potential individual drivers of dengue resurgence and increasing epidemic peaks: population
growth, climate variability and trends, and international air passenger arrivals from dengue
endemic countries. The objective of this work was to quantify the relative contribution of three
putative drivers to the increasing dengue trends seen in Singapore from 1974 to 2011: popula-
tion growth, climate variables and numbers of air passengers from dengue endemic countries
within the region arriving in Singapore.

Methods

Data collection
The incidence of dengue from 1974–2011 was obtained from the Annual Reports published by
the Quarantine and Epidemiology Department from 1974–2002 and Ministry of Health from

Population Growth, Climate and Mobility: Factors for Dengue Epidemics

PLOS ONE | DOI:10.1371/journal.pone.0136286 August 31, 2015 2 / 14

http://www.changiairport.com/our-business/about-changi-airport/facts-statistics
http://www.changiairport.com/our-business/about-changi-airport/facts-statistics


2003 onwards. More recent data can be viewed at http://www.moh.gov.sg/content/moh_web/
home/Publications.html.

Annual Singapore population data were obtained from the Department of Singapore Statis-
tics (http://www.singstat.gov.sg).

We obtained climate data (CRU ts 3.1) from the Climate Research Unit at the University of
East Anglia[20]. We extracted climatological data for Singapore longitude 103.75 and latitude
1.25 and aggregated the monthly time series to annual maximum, minimum and mean tem-
peratures and annual cumulative rainfall over the period of 1974 to 2011.

Annual air passenger arrivals to Singapore were obtained from the Singapore tourism
board. The predictor variables are available in S1 File and include: Annual Population Size;
Aedes Premises Index; Mean Annual Temperature; Minimum Temperature Recorded in each
year; Maximum Temperature Recorded in each year; Annual Precipitation and Annual Num-
ber of Air Passengers/Visitors from South-East Asia where dengue is endemic.

Multivariate analysis
Associations between dengue incidence and the predictor variables were assessed by multivari-
ate Poisson regression models[21]. The use of generalized linear models (GLM) for modeling
binary, categorical and count time series is well established in the statistical literature [22]and
inferences based on large sample theory for GLM time series models can be made using stan-
dard software for fitting regular GLMmodels. We fitted our models with function glm avail-
able in R language [23]with the extensions described by Harrell[24].

We defined the annual incidence rate (λ), our primary response variable, as the ratio of
“total reported dengue cases” by “total population” recorded each year.

lðtÞ ¼ total reported dengue cases at year t
total population at year t

ð1Þ

In order to account for the inter-epidemic behavior in λ(t), potentially driven by changes in
herd immunity and virology, we used an extended version of the Poisson regression model
including auto-regressive terms and harmonic functions to explain and capture cyclic inter-
epidemic patterns. Thus, in addition to the predictor variables our model included autoregres-
sive terms of order 3 and terms to account for inter-annual fluctuations with 5 years cycles.
The autoregressive structure and period of the model was suggested by previous publications
[25] and inspection of the sample autocorrelations of the series and scatterplot matrices relat-
ing the variable of interest and their lagged values.

Climate variables are known to be collinear. To address this problem, we compare models
in which climate variables are used as input keeping their original formulation or as orthogonal
linear combinations obtained by conducting a principal components analysis. In our principal
components regression[21], collinear variables Aedes Premises Index, Mean Annual Tempera-
ture, Minimum Temperature Recorded in each year, and Maximum Temperature Recorded in
each year are replaced by the derived linear combinations (scores) given by the first two princi-
pal components. We fitted different models including predictor variables (or their scores on
the first two principal components), autoregressive terms, and terms to account for inter-
annual fluctuations with the following general structure:

Yt j FY; l
t�1 � Poisson ðltÞ

logðltÞ ¼ b0 þ
Xn

i¼1

bixit þ
Xk

j¼1

yjlt�j þ φ1sinð2pot þ �Þ þ φ2cosð2pot þ �Þ ð2Þ
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where Yt denotes the time series process such that the observed number of dengue cases is a

realization of this random process, FX;l
t�1 contains the information about the past of the process

up to time t-1, β0 is the intercept, βi are the regression coefficients for each variable Xi (annual
population; mean, maximum and minimum temperature; annual rainfall; mean annual Aedes
premise index; annual air passenger arrivals from South East Asia) or the appropriate PCA
score, θj are the autoregressive components of the lag of incidence λt-j, and φs, s = 1,2 are the
coefficients that weight the role of inter-year cycles. Parameters ω and φ allow for cycles with a
5-year period. We derived the best fitting model according to the Akaike Information Criterion
(AIC), the Pseudo-R2[26], and assessed the goodness of fit of the predictions graphically. We
used log(population) as an offset in the regression models to adjust for the population at risk
by time t.

In the subsequent analysis, we studied the trends in the predictor variables over the study
period and attributed the associated change according to the significant trend estimates from
the start of the study period to the end of the study period. This step was taken in order to esti-
mate the different contributions of the predictor variables to the dengue trends and epidemics
in Singapore over the last 4 decades. In these analyses we established regression models using
the predictor variables identified in model (2) as response variables in a linear regression
model including time as predictor variable and a Gaussian distribution error:

X ¼ Normal ðm; sÞ
xi � gitimet þ errort

ð3Þ

where xi are the predictor variable from previous models, time is an annual time variable, and
γi are the coefficients for the annual trend in the predictor variable.

In a Poisson regression setting, the effect of a covariate of interest i is usually given as the
rate ratio per unit change (RRi) of the covariate and expressed as RRi = exp(βi). Measures of
effect expressed as rate ratios per unit change are non-intuitive to compare directly when the
covariates span different ranges of value (e.g. the variability of the variables could be magni-
tudes different). For example, a unit change in population size is one individual and a unit
change in temperature is one degree. Therefore, the impact on the disease rate caused by add-
ing one individual to the population cannot be compared to the impact of increasing one
degree in temperature. We have then re-expressed our measures of effect as follows in order to
take this behavior into account by stable estimates of the amount of change occurring in the
study period in the predictor variables of model (2) through establishing model (3).

We estimated the incremental changes according to the trend estimates over the study
period to the different statistically significantly predictor variables in model (2) using the beta
estimates (RRs) from model (2), in combination with the change in the predictor variable over
the study period estimated through Eq (3) as:

gi � ðtend � tstartÞ ð4Þ

This computation provide robust estimates of the change in the predictor variable from the
start of the period to the end of the period while removing random inter-annual variability.
The relative risk related to variable i from model (2) associated with the trend change in vari-
able i was estimated through combining information from models (2–4) to compute the rate
ratio of the predictor variable on the dengue incidence over the study period through:

RRi ¼ ðexpðbi � gi � ðtend � tstartÞÞÞ ð5Þ

The RRi thus estimates the relative risk according to the increasing trends in the predictor
variable over the study period, describing how many times larger the risk is from the beginning
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to the end of the study period given the change in trend in one predictor variable. A combined
measure of the drivers rate ratios can be derived by multiplication different drivers. Their
degree of contribution to the increasing dengue incidence in Singapore can be estimated using
a relative contribution framework according to:

Proportion explained by RRi ¼ RRi=SRRi ð6Þ

over all i´s.
The calculations were performed in R language [23].

Results
The annual dengue incidence increased dramatically over the study period (Fig 1). The inci-
dence λ(t) shows an inter-annual cyclic component. Table 1 compares the various models
derived from the general structure described by expression 2. The objective in comparing these
models is twofold. First we seek to perform regular model diagnosis routines (including the sta-
bility of regression parameter estimates and error structure) and second, we seek the most par-
simonious model that best fit the data.

Model M5 displays the best compromise among the properties compared and has as inputs
auto-regressive terms with lags 1–3, Aedes premise index, min and mean temperature, precipi-
tation, total population (in addition to offsetting population at risk), and international visitors.
The coefficients and confidence intervals with these estimates are shown in Table 2. Mean and
minimum temperature, as well as Aedes premise and total population had a significant and
positive effect on dengue incidence, while rainfall and annual visitor arrivals were not associ-
ated with increasing dengue incidence.

Fig 1. Time series of annual incidence of dengue in Singapore, 1974–2011.

doi:10.1371/journal.pone.0136286.g001
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The second best fitting model was a model including the same variables plus the maximum
temperature. The model fits of these models are presented in Table 1. It shows a comparison of
the goodness of fit: AIC, mean square error (MSE) and R-square (R2). The two models describe
the data well with an R2 greater than 0.8. This can be visually confirmed after inspection of Fig
2 where the observed and predicted annual cases are plotted. The simpler model (M5) was cho-
sen on the basis of a combined judgment of R2 and AIC. According to AIC the model fit was
better with maximum temperature (although this variable was not statistically significant).
However, the R2 did not show any difference and therefore the simpler model was chosen as
the final model.

Contribution of risk fractions related to time trends over the study period
By inspecting Tables 3 and 4 with the Poisson model’s coefficients (incidence rate ratios) one
can conclude that variables mean and minimum temperatures and population are important
in determining the incidence of dengue in the period analyzed. We note here that population is
also being offset in the models so its associated effect should be viewed as an indicator of popu-
lation density.

The increasing trends in the predictor variables of importance were estimated to an: 79,727
persons population increase per year (Fig 3), a 0.057°C increase in minimum temperature per

Table 1. Model comparison.

Model AIC MSE R2 βpop S.E. Wald Z p-values

M1 16993.4 1706615 0.83 1.48e-06 4.68e-08 31.62 <0.0001

M2 21834.9 3266926 0.68 1.34e-06 3.75e-08 35.61 <0.0001

M3 17568.4 1879272 0.82 1.73e-06 3.54e-08 48.80 <0.0001

M4 20721.4 2414094 0.76 9.01e-07 3.06e-08 29.46 <0.0001

M5 17018.9 1740497 0.83 1.45e-06 5.50e-08 26.37 <0.0001

Note: M1- model complete with all variables expressed with their original values; M2 –variables maxT, minT, meanT and premise replaced by the scores

in PCA1 and PCA2; M3 –same as M1 but dropping the autoregressive component; M4 –same as M1 but dropping the cyclic component; M5 –same as

M1 but removing the variables that did not achieve significance (maxT); βpop, S.E., Wald Z and p-values refer to the estimates of β for variable “Total

Population” under the various models.

doi:10.1371/journal.pone.0136286.t001

Table 2. Estimates of Regression coeficients of the best fitting model (M5).

Variable Coefficient βi Standard Error Wald Z p-values

Intercept -30.88 1.2048 -25.63 <0.0001

Premises index 0.08 0.0157 5.20 <0.0001

Mean Temperature 0.34 0.0283 11.84 <0.0001

Minimum Temperature 0.63 0.02342 6.88 <0.0001

Precipitation -2.97 x 10-5 0.0000014667 -12.21 <0.0001

Visitors from SE Asia -6.92 x 10-7 0.0000000280 -20.26 <0.0001

Population Size 1.24 x 10−6 0.0000000561 22.08 <0.0001

log (Incidence—Lag1) 0.17 0.0167 10.49 <0.0001

log (Incidence—Lag2) -0.03 0.0083 -3.10 0.0019

log (Incidence—Lag3) 0.16 0.027 12.29 <0.0001

sin(Year) 0.02 0.0077 2.62 0.0087

cos (Year) 0.32 0.027 6.60 <0.0001

doi:10.1371/journal.pone.0136286.t002
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Fig 2. Predicted annual disease cases from the final model (M5) together with the observed/reported number of cases.

doi:10.1371/journal.pone.0136286.g002

Table 3. Independent Variables of the Poisson Regression Model with the respective coefficients and
incidence ratios.

Variable Coefficient βi per 1 unit of predictor
variable

Incidence Ratios eβi

Premises index 8.16 x 10-2 1.085 per unit increase in the
index

Mean Temperature 3.35 x 10-1 1.398 per°C

Minimum
Temperature

6.29 x 10-1 1.876 per°C

Precipitation -2.97 x 10-5 0.997 per 100 mm precipitation

Visitors from SE Asia -6.92 x 10-7 0.933 per 100,000 travellers

Population Size 1.24 x 10−6 1.132 per 100,000 populations

doi:10.1371/journal.pone.0136286.t003

Table 4. Relative risks and associated risk fractions (%) associated with each driver associated with
the trend change in that specific variables over the study period.

Variable RR (relative contribution, %)

Population 42.7 (86)

Min. Temp. 3.9

Mean Temp. 1.8

Climate Combined 7.1 (14)

doi:10.1371/journal.pone.0136286.t004
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year (Fig 4), and a 0.047°C increase in mean temperature per year (Fig 5). Over the study
period of 38 years these coefficients translate to a total growth in population of around 3 mil-
lion, and a warming of 2.2°C for minimum temperature and 1.8°C for mean temperature
according to Eq (3). Adding this increase to the estimated effects of these variables on dengue
incidence according to model M5 we estimate the amount of change over the study period in
the incidence rate ratio. The relative contribution to the change associated with the change
over the study period are presented in Table 4. The relative risk (RR) of the increase in dengue

Fig 3. Temporal variation of population size over the period studied.

doi:10.1371/journal.pone.0136286.g003

Fig 4. Temporal variation of minimum temperature over the period studied.

doi:10.1371/journal.pone.0136286.g004
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incidence due to population growth over the study period was 42.7, while the climate variables
(mean and minimum temperature) together explained a RR of 7.1.

When comparing the importance of the different categories of drivers, the relative propor-
tion of the increasing trends explained by population growth as compared to the population
growth combined with climate, the population growth amounts to 86% of the combined change,
and the relative proportion explained by climate variables explain the residual 14%. Both drivers
thus amount to have increased the disease burden of dengue in Singapore significantly.

Discussion
Of the three putative drivers for dengue expansion, population growth was by far the leading
independent factor associated with the increase in dengue cases observed in Singapore over the
past 40 years, followed by mean temperature change. Air passenger arrivals from dengue
endemic countries had no effect. Poisson regression analyses with autoregressive terms allowed
us to estimate the effect of population growth: for every 100,000 persons population increase
per year, dengue cases increased by 13%. The incidence rate ratio related to the total change in
population size, of approximately 3 million populations, and the incidence of dengue over the
study period amounted to 42.7. We found also mean and minimum annual temperature to
have increased the incidence rate of 39.8% and 87.6% per°C increase, and amounting to a com-
bined incidence rate increase of 7.1 for the approximately 2°C temperature change over the
study period.

Based on our calculations comparing the drivers to each other in a relative fashion, the
increasing trends of dengue infections in Singapore were 86% attributed to population growth
and 14% related to the change in temperature.

We took into account the usual measures of goodness of fit as well as diagnostic procedures
when comparing each model fitting exercise. Our modeling strategy also considered an exten-
sion of the generalized linear models framework to a time series framework. By extending this
framework, we were able to express current incidence as a function of past incidence, an
approach that is important as it indirectly addresses the role of herd immunity in dengue

Fig 5. Temporal variation of mean temperature over the period studied.

doi:10.1371/journal.pone.0136286.g005
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dynamics. We also explored the presence of potential disease cycles by the use of trigonometric
functions. Additional model components, e.g. PCA scores, account for the collinear behavior of
climate variables and mosquito density. By considering all these issues, we were able to robustly
isolate the effect of total population size as a driver of dengue epidemics. It is important to note
that the increase in dengue cases related to population growth was not just a simple matter of
"more people, more cases" e.g. a linear function, but our findings show that the incidence of den-
gue cases increased as an exponential function of population size in the study period.

The notion that population growth is an important driver for dengue is also biologically
plausible. Urbanization substantially increased the density, larval development rate, and adult
survival time of Aedes mosquitoes in a study in China[27]. Rapid dispersal of oviposition is
driven by the availability of oviposition sites that are more readily available in urbanized condi-
tions[28]. Given the close proximity of humans in cities, Aedes mosquitoes can bite several per-
sons within one blood meal, thus amplifying dengue transmission dynamics[29]. Urbanization
drives dengue epidemics because dengue viruses have fully adapted to the human-Aedes
aegypti-human transmission cycle, which can flourish in crowded human populations that live
in intimate association with anthropophilic Aedesmosquito populations[30].

Our models may also explain the paradoxical findings by Egger et al [19] that dengue inci-
dence in Singapore is increasing despite the fact that Singapore is one of the few settings that
have recorded sustained suppression of the vector population over decades[31]. Close proxim-
ity of humans in overcrowded urbanized settings may overcome the reduced force of infection
under highly effective vector control programs with documented reduction in Aedesmosquito
household indices.

Dengue infections are climate sensitive, and increasing mean temperatures have been docu-
mented to correlate with increased dengue incidence and outbreaks in Singapore [9]. Although
in our study the contribution of the temperature trends in Singapore played a lesser role in the
dengue transmission trends over decades compared with population growth, our findings
show an independent and significant increase in dengue incidence associated with mean tem-
peratures. The temperature increase that has been documented over time in Singapore is likely
to be partly due to the heat effect of urbanization and partly due to global climate change.
Hence, population growth also has an indirect effect on temperature increase through urbani-
zation, thus the contributing effect of population growth on dengue incidence also explains
some of the temperature effect in our modeling estimates.

The overall low contribution (14%) of climate parameters in Singapore when calculating the
Population Association Fraction is most likely due to the fact that Singapore overall does not
exhibit much intra-annual and inter-annual climate variability due to its all-year round hot
and humid climate. The relative contribution of temperature and other climate factors may be
higher in other settings that have a more distinct seasonality and inter-annual variation. It is
also important to point out that projected increasing temperature levels in the future will not
necessarily lead to increased dengue epidemic potential in Singapore as temperature driven
vectorial capacity is not linear: temperatures above a certain threshold (e.g. mean temperature
far above 30 C) can lead to severely reduced vectorial capacity of Aedes mosquitoes resulting in
reduced dengue epidemic potential [32].

We hypothesized that the higher the air passenger volume from dengue endemic countries,
the higher the probability of introduction of dengue virus serotypes and novel genotypes. How-
ever, our findings show that air passenger volume from dengue endemic countries of SE Asia
into dengue endemic Singapore was not correlated with increasing dengue incidence. A plausi-
ble explanation could be that the vast majority of travelers from these areas display high pre-
existing dengue immunity. Although introduction of novel dengue virus genotypes may result
in epidemics [33–38], not every new virus or clade introduction results in dengue epidemics
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[39]. In other words, sometimes, novel introductions do not result in an outbreak, instead,
genotypic changes over time within a country independent of new introduction from the out-
side can lead to local epidemics. To specifically study the role of dengue virus introduction,
employing molecular epidemiological studies with dengue virus sequencing would be a better
approach to determine the origin of a newly imported virus.

Our study has several limitations. First of all, we rely on dengue notifications that are subject
to reporting bias. Increasing notifications over the past decades due to increasing awareness of
dengue could have led to an overestimation of increasing trends in dengue incidence. Second,
we only focused on three putative drivers. We did not deem it necessary to include studying
vector densities as a predictive factor because of the documented low and even decreasing vec-
tor indices in Singapore[31]. We therefore also did not include changing patterns in vector
control measures over the past 40 years. However, serotypes and co-circulation of multiple
serotypes would have been a parameter that theoretically could be an independent and signifi-
cant predictive factor for dengue incidence. But we were not able to include co-circulation or
new introductions of serotypes due to the lack of such information over our historically long
time span of 40 years. Similarly, other variables that were not taken into account in our model-
ing efforts could bias the estimates from this study. However, the relatively high explanatory
degree of the models, and the plausibility of the mechanisms related to the variables studied
support the validity and importance of our findings. Third, collinear variables represent an
important source of instability in parameter estimation when they enter simultaneously in the
regression model. Climate variables are well known for being potentially collinear. Therefore,
we entertained models that have as input climate variables in their original formulation or,
alternatively, as orthogonal scores obtained from a principal components analysis.

In conclusion, this study may serve as one of the best proxies we have today to understand
the relative contribution and impact of three potential drivers responsible for dengue incidence
in endemic settings: population growth, climate change and globalization. Societal effects such
as population density, population growth and urbanization appear to be the leading drivers for
the observed rise in dengue cases in Singapore over the past 40 years, much more than meteo-
rological parameters such as temperature and rainfall, and climate change at large. Population
growth is also more important than global mobility in terms of incoming air passenger arrivals,
at least in an endemic setting such as Singapore. Our findings have significant implications for
predicting further trends of the dengue given the rapid urbanization patterns worldwide. The
population size in South East Asia, which carries the main burden of dengue, with currently an
estimated population at around 580 million, has increased by more than 30% since 1990[40].
Unprecedented urbanization in South East Asia began in the years following World War II and
coincided with a remarkable economic boom[41]. Cities like Bangkok, Manila, and Jakarta
exploded in population growth, most of it unplanned[41]. It was at the same time that epi-
demic DHF emerged, first recognized in Manila in 1953–1954, followed by Bangkok in 1958
[30]. The American region became highly urbanized in the 1970s and today, over 75% of the
population live in urban areas, nearly all of which have been re-infested with Aedes aegypti
[42]. It is time for policy-makers and the scientific community alike to pay more attention to
the negative impact of urbanization on diseases such as dengue.

Supporting Information
S1 File. Variables analysed relative to dengue outbreaks in Singapore from 1974 to 2011.
(DOCX)
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