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Abstract

Background: Clarifying the role of the innate immune system of the malaria vector Anopheles gambiae is a
potential way to block the development of the Plasmodium parasites. Pathogen recognition is the first step of
innate immune response, where pattern recognition proteins like GNBPs play a central role.

Results: We analysed 70 sequences of the protein coding gene GNBPB2 from two species, Anopheles gambiae (s.s.)
and An. coluzzii, collected in six African countries. We detected 135 segregating sites defining 63 distinct haplotypes
and 30 proteins. Mean nucleotide diversity (π) was 0.014 for both species. We found no significant genetic
differentiation between species, but a significant positive correlation between genetic differentiation and
geographical distance among populations.

Conclusions: Species status seems to contribute less for the molecular differentiation in GNBPB2 than geographical
region in the African continent (West and East). Purifying selection was found to be the most common form of
selection, as in many other immunity-related genes. Diversifying selection may be also operating in the GNBPB2
gene.

Keywords: Anopheles gambiae, Anopheles coluzzii, Gram-negative binding protein gene, Glucan binding protein
gene, Innate immune system

Background
In order to complete their life-cycle, the malaria para-
sites Plasmodium sp. have to go through important
stages within their mosquito vectors Anopheles sp., be-
fore being transmitted to human hosts. Malaria control
strategies based on obstructing the parasite life-cycle
within the mosquito are dependent on an understanding
of the mosquito anti-pathogen defence system [1, 2].
This has been facilitated by the availability of the
Anopheles gambiae genome sequence [3, 4].
The mosquito innate immune system constitutes a

major barrier to infection [5, 6]. The first step of the

innate immune response is pathogen recognition, which
is activated by pattern recognition receptors (PRRs) that
bind to pathogen-associated molecular patterns [7]. One
important group of PRRs are the Gram-negative
bacteria-binding proteins or glucan-binding proteins
(GNBPs). These were initially identified in An. gambiae
due to the similarities with GNBPs from other insects
and because they are transcriptionally upregulated fol-
lowing infection with bacteria and Plasmodium parasites
[8]. Six members of this gene family are expressed in An.
gambiae and function as PRRs by binding ß-1,3-glucan
and lipopolysaccharide on the surface of pathogens.
GNBPs are divided into two distinct sequence groups:

subfamily A, that includes all known fruit fly and moth
as well as two mosquito sequences (GNBPA 1 and 2);
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and subfamily B that is mosquito-specific (GNBPB 1, 2,
3 and 4) and probably a result from gene duplication [7].
Prior work reported that GNBPs are transcribed in

multiple tissues (hemocytes, midgut, and salivary glands)
and while they are all upregulated following an immune
challenge, they vary in their antimicrobial specificities
[7–14]. Specifically, GNBPs have been shown to regulate
immune gene expression through the Toll or the IMD
(Immune Deficiency) pathways. Certain members are
able to mediate Plasmodium oocyst intensities in An.
gambiae [13] and one GNBP homologue in An. gambiae
was highly expressed in the fat body and salivary glands
[8, 15]. On the other hand, in cultured Anopheles cells
infected with Wolbachia strains, GNBPB1 gene was
downregulated by Wolbachia infection [16]. As for
GNBPB2, it has been shown to be induced by challenges
with Salmonella typhimurium [13] and Beauveria
bassiana [11]. It was also upregulated upon challenge
with Escherichia coli [13].
In sub-Saharan Africa, most malaria transmission is

sustained by members of the Anopheles gambiae com-
plex. Within the nominal species two molecular forms
(denoted M and S) were previously described (see [17]
and references therein). Recently, these molecular forms
were reclassified as distinct species, and the M-form was
named Anopheles coluzzii, while the S form retained the
nominotypical name An. gambiae [17].
Early genome-wide genotyping studies have shown

that most of the genetic divergence between An. gam-
biae (s.s.) and An. coluzzii is concentrated in three
relatively small centromeric regions in X, 2L and 3L
[18–20]. Differentiation was also detected in immunity
genes between the two species [21–23] with the most re-
markable case being the near fixation in An. coluzzii of
an allelic variant of the thioester-containing protein 1
(TEP1) [23]. TEP1 is an important component in the in-
nate immune response of An. gambiae to Plasmodium
infection, which targets malaria parasites for destruction
during their initial invasion of the body cavity. Several
studies have addressed the molecular evolution and gen-
etic diversity of the anti-malaria immune genes of An.

gambiae [21, 22, 24–33]. However, only a few have fo-
cused on GNBP genes [21, 24, 26, 30, 34].
In order to untangle the modes of selection operating

in the gene GNBPB2 and better understand its evolution
in malaria vectors, patterns of genetic diversity and
population differentiation were examined in samples of
An. gambiae (s.s.) and An. coluzzii from six sub-Saharan
African countries.

Methods
Mosquito sampling
Mosquito samples analysed in this study were collected
mainly indoors by various methods of adult sampling
during the rainy season in seven localities from six sub-
Saharan African countries, within the framework of
epidemiological surveys. Details on these collections can
be found in Additional file 1: Table S1. After collection,
individual specimens were kept in silica gel filled tubes.

DNA extraction, PCR amplification and sequencing
Genomic DNA was extracted from each specimen as de-
scribed in Collins et al. [35]. Species identification of the
members of the An. gambiae complex was carried out
by PCR-RFLP as described in Favia et al. [36].
The primers used to amplify the GNBPB2 gene were

designed based on the complete An. gambiae genome at
Ensembl (sequence annotated AGAP002798). These
primers are described in Table 1 and available at NCBI
Probe database (Pr032290638).
Nested PCR assays were performed in 50 μl reaction

volumes with final reagent concentrations of 1× reaction
buffer, 3 μM of MgCl2, 4 μM dNTPs, 0.5 μM of each
primer (except for the centre primers with 0.1 μM), and
0.05 U/μl of Taq DNA polymerase. PCR cycling condi-
tions consisted in 2 min of initial denaturation at 95 °C,
followed by 35 cycles of 1 min at 95 °C, 30 s at 51 °C,
1 min at 72 °C and a final extension step of 5 min at
72 °C. For the primers out, the intermediate step of 72 °C
lasted for 2 min. For the primers centre, the annealing
temperature was 55 °C. PCR products were purified with

Table 1 Primer sequences used to amplify the GNBPB2 gene (NCBI Probe database accession number: Pr032290638)

PCR reaction Primer Sequence 5′-3′ Product size (bp)

1 GNBPB2-out-F CACTCCAGCGAACATTTGTG 1902

GNBPB2-out-R CTTCAGTGTGTGGCGGTTTA

2 GNBPB2-in-3-F CCCTAAATAAAGCGGCACAC 851

GNBPB2-in-3-R GCACTCTTGATGGGGTTGAT

3 GNBPB2-in-5-F GTTCTGGGGATGTGAGCGTA 963

GNBPB2-in-5-R CAGGGATCTTTTGCGTGATT

4 GNBPB2-centre-F ACRGGAGAGCTGATCTTTGA 571

GNBPB2-centre -R GCCWCGRTAGTCCATATTGC
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SureClean kit (BIOLINE, London, UK) and commercially
sequenced by Macrogen, Korea.

Data analysis
Sequences were edited and aligned with BioEdit Sequence
Alignment Editor version 7.0.5.2 [37]. In DnaSP version
5.10.01 [38] the different coding and non-coding regions
were defined and the translated sequences were obtained.
Summary statistics, including the number of segregat-

ing sites (S), number of haplotypes (Hap), Haplotype di-
versity (Hd), nucleotide diversity (π), and the standard
neutrality tests: Tajima’s D [39], Fu and Li’s D* and
F*[40] and Fu’s Fs [41] were calculated using DnaSP.
This program was also used to compute π between spe-
cies and the π(a)/π(s) ratios along the gene GNBP2 using
the sliding window option (window length = 50 bp;
sliding interval = 10 bp).
Additionally, we performed the dN/dS test for detecting

selection implemented in the HYPHY program [42]. This
test was also executed in a new alignment with the ori-
ginal sequences of the exon 2 obtained in the present
study, to which 31 sequences of the same exon (599 bp) of
An. gambiae from Cameroon available on GenBank (ac-
cession numbers AM774987–AM774989, AM774998–
AM775011 [21, 34], AM900863–AM900876 [34]) were
added. The same set of exon sequences was analysed for a
recombination detection using RDP4 software [43] and no
evidence of recombination was found.
Genetic differentiation among populations was

quantified by computing pairwise FST (conventional
F-statistics from haplotype frequencies). Slatkin’s line-
arized FST estimates were tested for correlation with
pairwise measures of the natural logarithm of the
geographic distance using Mantel’s test [44]. In order
to evaluate if some populations contribute differently
than others to the average FST, population specific FST
indices were also calculated [45].

In order to estimate the total percentage of variance
attributable to differences between species and among
geographic areas (western and eastern Africa), a stand-
ard analysis of molecular variance AMOVA was per-
formed with 5000 permutations [46]. These estimates
were obtained with Arlequin version 3.11 [47] using the
complete sequence for 70 individuals.
Sequential Bonferroni corrections adjusted critical

probability values for multiple tests to minimize type I
errors [48].

Results
We obtained 70 sequences of 1335 bp. Twenty-four
of the mosquitoes corresponded to An. coluzzii from
Angola, Ghana-Okyereko and Guinea-Bissau. The
remaining 46 samples corresponded to An. gambiae
from Gabon, Ghana-Accra, Ghana-Okyereko, Guinea-
Bissau, Mozambique and Tanzania. All sequences are
available in the GenBank database under accession
numbers: KX620787–KX620856.

Genetic diversity and neutrality tests
The alignment of the 70 sequences resulted in 135 seg-
regating sites defining 63 distinct haplotypes (Additional
file 2: Table S2).
Summary diversity statistics are presented in Additional

file 3: Table S3 The levels of haplotype diversity were very
high and similar among populations and between species
(0.911–1.000). The levels of nucleotide diversity compared
between species are presented in Fig. 1.
The translation of DNA sequences generated protein se-

quences with 391 amino acids. In GNBPB2, protein diver-
sity was large. We obtained 17 proteins for An. gambiae,
with 13 showing a frequency equal to one. The most com-
mon proteins had a frequency of 11, accounting for 24 %
of the proteins detected. In An. coluzzii, we obtained 12
proteins, seven of which showed a frequency equal to one.

Fig. 1 Nucleotide diversity (π) along the gene GNBP2. Exons are denoted by a grey bold line, introns are denoted by a dashed line. Sliding
window was used (window length = 50 bp; sliding interval = 10 bp) adapted from DnaSP graphs
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The most common proteins had a frequency of 8, ac-
counting for 24 % of the proteins detected (Fig. 2).
For the total sequence, all neutrality tests showed

negative results (non-significant, Additional file 3:
Table S3). However, significant negative values for Fu
and Li’s D* and F* were detected when exon 1 was
analysed separately. Furthermore, the D* value for the
exon 2 was also significantly negative, over all popula-
tions. Considering each population individually, a sig-
nificant positive value of Tajima’s D test was obtained
for the intron section in mosquitoes from Angola.
If most non-synonymous mutations are deleterious,

then the rate of non-synonymous evolution will be lower
than the neutral rate, resulting in π(a)/π(s) and dN/dS
ratios < 1 [49]. Since our data revealed π(a)/π(s) ratio
values lower than one, this suggests negative or purifying
selection (Fig. 3). This ratio was particularly low in exon
2 (Additional file 3: Table S3).
From the dN/dS test performed with HyPhy, in the

whole coding region we found two positively selected
sites and 45 negatively selected sites, mainly evident in
exon 2 (with only one site under positive selection and
40 sites under negative selection). As for exon 1, the
selection signature was negligible (one site positively se-
lected and another negatively selected).
When we focused on exon 2 by analysing more

sequences from GenBank in a new alignment of 101 se-
quences, the number of negatively selected sites increased
to 60, and with only two sites under positive selection.

Genetic differentiation and population structure
Global FST among geographic locations was 0.018
(P < 0.003, Table 2) when the complete sequence was ana-
lysed, and 0.021 (P < 0.003) when only the coding regions

(exon 1 and 2) were considered. The results presented
hereafter refer to the whole sequence.
The pairwise differentiation (FST) estimates ranged from

0 to 0.066, and all comparisons were non-significant (after
Bonferroni correction). The same pattern was obtained
when the species status was also taken into account, e.g.
samples from Guinea Bissau and Ghana (Okyereko) were
divided in two, one corresponding to An. coluzzii individ-
uals and the other to An. gambiae (s.s.). The overall FST
between species was 0.006 (P = 0.027).
We detected a significant correlation between genetic

distance (Slatkin’s linearized FST) and geographic dis-
tance (Mantel test: r = 0.46, P = 0.02). Population specific
FST indices for An. coluzzii ranged between 0.009
(Guinea Bissau) and 0.030 (Angola), while for An. gam-
biae specific FST values ranged between 0.013 (Gabon)
and 0.024 (Tanzania) (Table 2).
The partition of molecular variance was 0.14 % of total

variance (P ≥ 0.05) between species and 1.75 % (P < 0.01
in Table 3) among sample sites. On the other hand,

Fig. 2 GNPB2 translated protein variation in An. gambiae (s.s.) and An. coluzzii

P
i(a

)/
P

i(s
)

Nucleotide position

Exon 1 Exon 2

Fig. 3 π(a)/π(s) ratios along the gene GNBP2. Exons are denoted by
a grey bold line, introns are a dashed line. Sliding window was used
(window length = 50 bp; sliding interval = 10 bp) adapted from
DnaSP graphs
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when the groups were defined based on geographic
areas: (E) East Africa (Mozambique and Tanzania) and
(W) West Africa (all the rest), independent of species
status, the molecular variance among groups increased
to 2.26 % (P = 0.03), and the variance among sample
sites was reduced to 0.85 % (P ≥ 0.05). Furthermore, the
combination with the maximum variation among groups
(2.75 %, P < 0.01) was the one comprising three groups:
Angola, East Africa and West Africa without Angola
(Table 3).

Discussion
The levels of nucleotide diversity for GNBPB2 detected
in this study are comparable with the GNBP gene re-
ported by Lehmann et al. [30] and other immune-related
genes in An. gambiae [24, 27, 32] and Drosophila
melanogaster [50, 51]. As an exception, Morlais et al.
[24] found levels of nucleotide diversity for GNBPB1 ten
times smaller (Π = 0.0016) than the values of GNBPB2,
but this work was based on the analysis of laboratory

strains rather than wild populations so that comparisons
may not be straightforward. The patterns of high protein
variation in GNBPB2, and high haplotype diversity in
exon 2 may be consistent with diversifying selection, a
mode of selection that maintains high levels of diversity
(e.g. MHC genes in mammals [52]) and fits well with the
role of immune recognition [53]. This selection for
hyper-variability was not excluded for the GNBP gene in
the study from Lehman et al. [30] that also presented
large protein diversity.
Our study showed very low levels of genetic differenti-

ation between species (FST = 0.006, P = 0.027), when
compared with values obtained in other population stud-
ies in several immune-related genes [21, 22]. Unlike
these studies where only samples from one village were
used (from Cameroon in [21] and Burkina Faso in [22]),
we sampled mosquitoes from nine countries, ranging
from Guinea Bissau in western Africa to Mozambique in
the Southeast of the continent. Overall, the effect of geo-
graphical distance among populations was more decisive
in our study than that of species status. Indeed, the
genetic discontinuity between West and East Africa ac-
counts for 2.2 % (P = 0.03) of the total variance (Table 3),
while the hierarchical genetic diversity analysis revealed
that 0.14 % (P > 0.05) of the total variance arose from
differences between the two species. Furthermore, we
also detected a pattern of isolation by distance made
evident by the significant positive correlation between
genetic differentiation and geographical distance. This
scenario has already been reported for An. gambiae in
an extensive analysis of neutral markers on a large
geographic scale by [54].
In terms of genetic structure, the sample of An.

coluzzii from Angola stands out in this study. The vari-
ance among groups was maximized when three groups
of samples were defined: West Africa, East Africa and
Angola (2.76 % of variation, P = 0.01, Table 3). The
population from Angola is the most differentiated

Table 2 Population specific FST indices for the complete
sequence of GNBPB2 gene analysed in Anopheles gambiae (s.s.)
and A. coluzii from six African countries

Population Species n FST

Gabon An. gambiae 9 0.013

Ghana (Accra) An. gambiae 7 0.018

Ghana (Okyereko) An. gambiae 6 0.021

Ghana (Okyereko) An. coluzzii 6 0.021

Guinea Bissau An. coluzzii 12 0.009

Guinea Bissau An. gambiae 7 0.018

Angola An. coluzzii 6 0.030

Mozambique An. gambiae 10 0.020

Tanzania An. gambiae 7 0.024

Global FST among populations 70 0.018

Abbreviations: n number of mosquitoes analysed, FST fixation index, a measure
of population differentiation due to genetic structure

Table 3 Partition of genetic variation based on conventional F-statistic from haplotype frequencies (AMOVA) for Anopheles gambiae
(s.s.) and A. coluzzii over six African countries

Tested groups Source of variation Degrees of freedom % of variation P-value

Two species [An. coluzzii & An. gambiae (s.s.)] Among groups 1 0.14 ns*

Among populations within groups 7 1.75 0.006

Within populations 61 98.11 0.001

Two geographical regions (W & E) Among groups 1 2.26 0.030

Among populations within groups 7 0.86 ns

Within populations 61 96.89 0.002

Three geographical regions (W & E & Angola) Among groups 2 2.75 0.004

Among populations within groups 6 0.29 ns

Within populations 61 96.96 0.002

*P-values ≥0.05 were considered non-significant (ns); W West Africa, E East Africa
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population with the highest specific FST index (0.030,
Table 2). This value is 1.7 times the global FST among pop-
ulations, and is higher than the indices calculated for the
most eastern populations (Mozambique and Tanzania).
Such differential contribution to the average FST may sug-
gest special evolutionary constraints in the population
[55]. In fact, in Angola a significant positive value of the D
Tajima’s neutrality test [39] in the intron section of the
GNBPB2 (Additional file 3: Table S3) was detected, which
signifies an excess of intermediate frequency polymor-
phisms, indicating a possible decrease in population size.
Overall our findings may reflect a population structur-

ing associated with different African biomes as reported
by Pinto et al. [56]. These authors analysed An. gambiae
samples from 12 African countries with 13 microsatellite
loci and reported a strong population structuring within
An. coluzzii, which was divided into three distinct gen-
etic clusters (west, central, and southern Africa). These
clusters were associated with the central African rainfor-
est belt and northern and southern savannah biomes,
suggesting limited gene flow between them. Further-
more, a study based on sequence analysis of an X-linked
locus revealed that the majority of An. coluzzii individ-
uals in Angola had a 16-bp insertion that was fixed in
An. gambiae but absent in An. coluzzii individuals from
west and central Africa [57], a finding that suggests in-
terspecific introgression may have occurred in this
geographical region.
The results of neutrality tests were generally variable

and non-significant. Because both, selective events or
demographic changes can produce similar deviations from
neutrality in these tests [58] we used also the dN/dS ratio
test that is not sensitive to demographic events, to
help in the detection of selection effects. In both exons,
dN/dS was <1, which signifies a rate of non-synonymous
evolution lower than neutral rate, due to most non-
synonymous mutations being deleterious (i.e. purifying
selection) [49]. Indeed, a strong signature of purifying
selection was detected essentially in exon 2, and further
confirmed by a joint analysis of other sequences of exon 2
of GNBPB2 available from previous studies [21, 34]. This
is concordant with the majority of Anopheles immune
related genes, which are also under purifying selection
(e.g. [29, 30, 32]). Overall, this suggests functional con-
straints possibly associated with the immunoregulatory
role of this gene.

Conclusions
The present paper expands our limited knowledge about
the gene GNBPB2 with a population genetics approach
in the two main malaria vectors, An. gambiae (s.s.) and
An. coluzzii, over a wide geographic area in Africa. Our
study showed that GNBPB2 is similar in the two species.
On the other hand, the variability of the gene is

differentiated according to the geographic distance of
different populations in the African continent. Generally,
the selection tests results are consistent with most of the
studies that have addressed questions regarding the
evolution and genetic diversity of Anopheles sp. innate
immunity genes involved in Plasmodium infection. Puri-
fying selection was found to be the most common form
of selection operating on these genes [21, 25–34], but di-
versifying selection should not be excluded. Specifically,
Lehmann et al. [30] confirmed similar selective effects
on the GNBP gene on a contemporary time scale.

Additional files

Additional file 1: Table S1. Mosquito samples used in this study
[59, 60]. (DOCX 18 kb)

Additional file 2: Table 2. Alignment of polymorphic positions in
GNBP2 after exclusion of all gaps (indels). Dots indicate identity with
corresponding base of the first sequence. Position number is indicated
above each base and species affiliation on the left of each sequence.
(XLSX 56 kb)

Additional file 3: Table S3. Genetic diversity and neutrality tests for
the GNBPB2 gene in An. gambiae (s.s.) and An. coluzzii. (XLSX 32 kb)
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