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IMPORTANCE Because clinical features do not reliably distinguish bacterial from viral
infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial
infection is missed in others.

OBJECTIVE To identify a blood RNA expression signature that distinguishes bacterial from
viral infection in febrile children.

DESIGN, SETTING, AND PARTICIPANTS Febrile children presenting to participating hospitals in
the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013
were prospectively recruited, comprising a discovery group and validation group. Each group
was classified after microbiological investigation as having definite bacterial infection,
definite viral infection, or indeterminate infection. RNA expression signatures distinguishing
definite bacterial from viral infection were identified in the discovery group and diagnostic
performance assessed in the validation group. Additional validation was undertaken in
separate studies of children with meningococcal disease (n = 24) and inflammatory diseases
(n = 48) and on published gene expression datasets.

EXPOSURES A 2-transcript RNA expression signature distinguishing bacterial infection from
viral infection was evaluated against clinical and microbiological diagnosis.

MAIN OUTCOMES AND MEASURES Definite bacterial and viral infection was confirmed by
culture or molecular detection of the pathogens. Performance of the RNA signature was
evaluated in the definite bacterial and viral group and in the indeterminate infection group.

RESULTS The discovery group of 240 children (median age, 19 months; 62% male) included
52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with
definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had
indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature
distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and
IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript
signature was implemented as a disease risk score in the validation group (130 children, with
23 definite bacterial, 28 definite viral, and 79 indeterminate infections; median age, 17
months; 57% male), all 23 patients with microbiologically confirmed definite bacterial
infection were classified as bacterial (sensitivity, 100% [95% CI, 85%-100%]) and 27 of 28
patients with definite viral infection were classified as viral (specificity, 96.4% [95% CI,
89.3%-100%]). When applied to additional validation datasets from patients with
meningococcal and inflammatory diseases, bacterial infection was identified with a sensitivity
of 91.7% (95% CI, 79.2%-100%) and 90.0% (95% CI, 70.0%-100%), respectively, and with
specificity of 96.0% (95% CI, 88.0%-100%) and 95.8% (95% CI, 89.6%-100%). Of the
children in the indeterminate groups, 46.3% (63/136) were classified as having bacterial
infection, although 94.9% (129/136) received antibiotic treatment.

CONCLUSIONS AND RELEVANCE This study provides preliminary data regarding test accuracy
of a 2-transcript host RNA signature discriminating bacterial from viral infection in febrile
children. Further studies are needed in diverse groups of patients to assess accuracy and
clinical utility of this test in different clinical settings.
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T he majority of febrile children have self-resolving viral
infection, but a small proportion have life-threatening
bacterial infections. Although culture of bacteria from

normally sterile sites remains the gold standard for confirm-
ing bacterial infection, culture results may take several days
and are frequently negative when infection resides in inac-
cessible sites or when antibiotics have been previously
administered.1-3 Current practice is to admit ill-appearing fe-
brile children to the hospital and administer parenteral anti-
biotics while awaiting culture results.4-6 Because only a mi-
nority of febrile children are ultimately proven to have bacterial
infection, the process of ruling out bacterial infection results
in a major burden on health care resources and in inappropri-
ate antibiotic prescription.7

Molecular tests have the potential to identify bacterial
and viral pathogens and improve distinction between bacte-
rial and viral infection.8 Rapid molecular viral diagnostics
have increased the proportion of patients shown to carry
respiratory pathogens,9 but viruses are frequently identified
in nasopharyngeal samples from healthy children.10 Thus,
detection of a virus in the nasopharynx does not rule out
bacterial infection and is of little help in decisions on
whether to administer antibiotics.

A number of studies have suggested that specific infec-
tions can be identified by the pattern of host genes activated
during the inflammatory response.11-15 This study investi-
gated whether bacterial infection can be distinguished from
other causes of fever in children by the pattern of host genes
activated or suppressed in blood in response to the infection
and whether a subset of these genes could be identified as the
basis for a diagnostic test.

Methods
Study Conduct and Oversight
Written informed consent was obtained from parents or guard-
ians using locally approved research ethics committee per-
missions (St Mary’s Research Ethics Committee (REC 09/
H0712/58 and EC3263); Ethical Committee of Clinical
Investigation of Galicia (CEIC ref 2010/015); UCSD Human
Research Protection Program No. 140220; and Academic
Medical Centre, University of Amsterdam (NL41846.018.12 and
NL34230.018.10).

Discovery and Validation Groups
The overall design of the study is shown in Figure 1, Figure 2,
and Figure 3.

Clinical data and samples were identified only by study
number. Assignment of patients to clinical groups was made
by consensus of 2 clinicians independent of those managing
the patient, after review of investigation results using previ-
ously agreed-on definitions (Figure 2). Patients were re-
cruited prospectively as part of a UK National Institute of Health
Research–supported study (NIHR ID 8209), the Immunopa-
thology of Respiratory, Inflammatory and Infectious Disease
Study (IRIS), which recruited children at 3 UK hospitals; pa-
tients also were recruited in Spain (GENDRES network,

Santiago de Compostela), and the United States (Rady Chil-
dren’s Hospital, San Diego). Inclusion criteria were fever (ax-
illary temperature ≥38°C) and perceived illness of sufficient
severity to warrant blood testing in children younger than 17
years. Patients with comorbidities likely to affect gene expres-
sion (bone marrow transplant, immunodeficiency, or immu-
nosuppressive treatment) were excluded. Blood samples for
RNA analysis were collected together with clinical blood tests
at, or as close as possible to, presentation to hospital, irrespec-
tive of antibiotic use at the time of collection.

Additional Validation Groups
Additional validation groups (eMethods and eTable 1 in the
Supplement) included children with meningococcal sepsis,16

inflammatory diseases (juvenile idiopathic arthritis and
Henoch-Schönlein purpura), and published gene expression
datasets that compared bacterial infection with viral
infection12,15,17 or inflammatory disease.18 Healthy children
were recruited from outpatient departments. Data from healthy
controls were not used in identification or validation of gene
expression signatures and were used only for interpretation
of direction of gene regulation.

Diagnostic Process
All patients underwent routine investigations as part of clini-
cal care, including complete blood cell count and differential,
C-reactive protein level, blood chemistries, blood and urine cul-
tures, and cerebrospinal fluid analysis where indicated. Throat
swabs were cultured for bacteria, and viral diagnostics under-
taken on nasopharyngeal aspirates using multiplex poly-
merase chain reaction for common respiratory viruses. Chest
radiographs were undertaken as clinically indicated. Patients
were assigned to diagnostic groups using predefined criteria
(Figure 2). The definite bacterial infection group included only
patients with culture-confirmed infection, and the definite vi-
ral infection group included only patients with culture, mo-
lecular, or immunofluorescent test–confirmed viral infection
and no features of coexisting bacterial infection. Children in
whom definitive diagnosis was not established (indetermi-
nate infection) were categorized into probable bacterial infec-
tion, unknown bacterial or viral infection, and probable viral

Key Points
Question Can febrile children with bacterial infection be
distinguished from those with viral infection and other common
causes of fever using whole-blood gene expression profiling?

Findings In this cross-sectional study that included 370 febrile
children, those with bacterial infection were distinguished from
those with viral infection with a sensitivity in the validation group
of 100% (95% CI, 85%-100%) and specificity of 96.4% (95% CI,
89.3%-100%), using a 2-transcript signature.

Meaning This study provides preliminary data on the
performance of a 2-transcript host RNA signature for
discriminating bacterial from viral infection in febrile children.
Further studies are needed in diverse groups of patients to assess
accuracy and clinical utility of this test in different clinical settings.
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infection groups based on level of clinical suspicion (Figure 2).
Detection of virus did not prevent inclusion in the definite
bacterial, probable bacterial, or unknown infection groups,
because bacterial infection can occur in children co-infected
with viruses.

Peripheral Blood Gene Expression by Microarray
Whole blood was collected into PAXgene blood RNA tubes
(PreAnalytiX), frozen, and later extracted. Gene expression was
analyzed on Illumina microarrays. Additional details of mi-
croarray method, quality control, and analysis are provided in
the eAppendix (eMethods, eStatistical Methods, and eFigure
1 in the Supplement).

Statistical Analysis
Transcript Signature Discovery
Expression data were analyzed using R version 3.1.2 (R Project
for Statistical Computing). Patients with definite bacterial or vi-
ral infection in the discovery group were randomly assigned to
training and test sets (80% and 20% of the patients, respec-
tively), and significantly differentially expressed transcripts dis-
tinguishing definite bacterial infection from definite viral in-
fection were identified in the training set (Figure 3). A linear
model was fitted conditional on recruitment site, and moder-
ated t statistics were calculated for each transcript. The P val-
ues obtained were corrected for multiple testing using the
Benjamini-Hochberg false discovery rate method.19 Logistic re-

gression with variable selection was applied to the signifi-
cantly differentially expressed transcripts (absolute log2-fold
change >1 and 2-sided P < .05) using elastic net (a variable
selection algorithm that selects sparse diagnostic transcript
signatures—see eMethods and eFigure 2 in the Supplement).20

To further reduce the number of transcripts in the diag-
nostic signatures, a novel variable selection method was used
that eliminates highly correlated transcripts: forward selection–
partial least squares (see eAppendix in the Supplement). The
disease risk score (DRS) method21 was applied to the result-
ing minimal multitranscript signature to translate it into a single
value that could be assigned to each individual, to form the
basis of a simple diagnostic test.11,21 The DRS method calcu-
lates a patient score by adding the total intensity of the up-
regulated transcripts (relative to comparator group) and sub-
tracting the total intensity of the downregulated transcripts
(relative to comparator group). The signatures identified in the
discovery group were externally validated on previously pub-
lished validation groups,13 additional patient groups with me-
ningococcal disease and inflammatory diseases, and
published datasets (3 pediatric, 1 adult) (Figure 3).

To evaluate the predictive accuracy of the DRS and of mod-
els derived after variable selection analysis, point and interval
metrics were calculated using the pROC package in R.22 Re-
sults obtained using elastic net and DRS models were com-
pared with reference-standard clinically assigned diagnoses
(Figure 2). The area under the receiver operating characteristic

Figure 2. Classification of Patients Into Diagnostic Groups

Febrile patient meeting entry criteria for study with available whole blood PAXgene sample

Categorization of patients based on clinical data

Review clinical investigation results
Bacteriology, virology, radiology, hematology, chemistry

Bacterial symptoms

Sepsis OR suspected sepsis

Empyema
Meningitis (with neutrophils)
Bone infection
Urinary tract

Focal pyogenic infection
Focal pneumonia

Indeterminate symptoms

Symptoms compatible with
bacterial OR viral infection

Viral symptoms

Febrile illness without localizing
features

Meningitis (with lymphocytes)

Flu-like illness
Respiratory illness without
consolidation or empyema

Definite bacterial
infection

Probable bacterial
infection

Unknown
bacterial or viral
infection

Probable viral
infection

Definite viral
infection

Excluded from
analysis

Bacterial syndrome
but no bacteria
identified

Inconclusive
features OR
microbiology does
not fit syndrome

Viral syndrome,
but no virus
identified

Virus identified
that matches
syndrome

Nonbacterial
nonviral infection
OR noninfectious
illness

Sterile-site
pathogenic
bacteria that
match syndrome

CRP>60 mg/L? CRP ≤60 mg/L
AND neutrophils ≤12 × 109/L?

Yes Yes Yes

No No
Febrile children with infections were
recruited to the Immunopathology of
Respiratory, Inflammatory and
Infectious Disease Study and were
classified into diagnostic groups as
described in methods. To convert
C-reactive protein (CRP) values to
nmol/L, multiply by 0.9524.
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curve (AUC), sensitivity, and specificity were reported. Confi-
dence intervals (95%) were calculated to measure the reliabil-
ity of estimates.

Results
Two hundred forty patients (median age, 19 months; 62% male)
were recruited to the discovery group between 2009-2013 in
the United Kingdom (189 patients), Spain (16), and the United
States (35). The definite bacterial infection group included 52
patients, of whom 36 (69%) required intensive care and 10 died.
In the definite viral infection group of 92 patients, 32 (35%) re-

quired intensive care and none died (Table 1). The patients with
bacterial and viral infection were subdivided into 80% (train-
ing set) and 20% (test set) (Figure 1 and Figure 3). The test set
also included 96 children whose infection was not defini-
tively diagnosed (indeterminate infection) (Figure 1 and
Figure 3). The validation groups comprised 130 UK and Span-
ish children (median age, 17 months; 57% male) previously
recruited13 (IRIS validation; 23 with definite bacterial infec-
tion, 28 with definite viral infection, and 79 with indetermi-
nate infection) and 72 additional validation children—25 from
the United Kingdom, 30 from the Netherlands, and 17 from the
United States (24 with meningococcal infection, 30 with
juvenile idiopathic arthritis, and 18 with Henoch-Schönlein

Figure 3. Analysis Workflow
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significant differentially
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T test to identify probes
satisfying Log2 FC ≥1,
P ≤.05

Define training and test sets

Split to 80% training and 20% test set

DB DV
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and DV samples

Data processing of Illumina HT-12 v3, HT-12 v4, and Ref-8 microarrays

Data Quality Control: principal component analysis

Data preprocessing: background subtraction, robust spline normalization, variance stabilization

Selection of probes shared between HT-12 v3 and HT-12 v4 microarrays

4 Published
datasets from
Gene Expression
Omnibus

DVDB SLE

External validation
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(3 datasets)
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42
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115 Training set (80% of
DB and DV groups)

DB
10
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42

U
49
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5
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19

125 Test set 20% of DB
and DV groups and
indeterminate
infection status

DB
23

DV
28

Merged with IRIS
validation data
using Combat
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Signature derived using
elastic net variable
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240 Discovery groups (test and training)
(H-12 v4 microarray) gene expression analysis
GEO accession: GSE72809

DB
10

Merged with
test set

JIA
30

HSP
18

48 Inflammatory
validation
(HT-12 v4
microarray)
gene expression
analysis

DB
24

24 Meningococcal
validation (Ref-8
microarray) gene
expression
analysis

DB
23

PB
17

U
55

PV
7

DV
28

130 IRIS validation
(HT-12 v3 microarray)
gene expression analysis
GEO accession:
GSE72810

Apply classifier
on validation
group DB and DV

DB DV

Apply classifier
on all test set
samples

DB PB U PV DV

Signature derived using
FS-PLS and implemented
as DRS

Derive minimal classifier Apply DRS
classifier to all
IRIS validation
group samples

DB PB U PV DV

Apply classifier
to inflammatory
patients

DB HSP JIA

Apply classifier
to meningococcal
patients

DB DV

Apply classifier
on external
validation

DB DV SLE

Overall study pipeline showing sample handling, derivation of test and training
sets, data processing, and analysis pipeline including application of
38-transcript elastic net classifier and 2-transcript disease risk score (DRS)
classifier, to the group test set, the validation group data, and published
(external) validation datasets. DB indicates definite bacterial; DV, definite viral;

FC, fold change; FS-PLS, forward selection–partial least squares;
HSP, Henoch-Schönlein purpura; JIA, juvenile idiopathic arthritis;
PB, probable bacterial; PV, probable viral; SDE, significantly differentially
expressed; SLE, systemic lupus erythematosus; U, unknown.
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purpura) (Figure 1 and Figure 3). The numbers in each diag-
nostic category in the discovery, IRIS validation, and addi-
tional validation groups and their clinical features are shown
in Table 1 and in eTable 1 in the Supplement. Details of the types
of infection are shown in eTable 2 in the Supplement. Gene ex-
pression profiles of children in the discovery group clustered
together on principal component analysis (eFigure 1 in the
Supplement).

Identification of Minimal Transcript Signatures
Of the 8565 transcripts differentially expressed between bac-
terial and viral infections, 285 were identified as potential bio-
markers after applying filters based on log fold change and sta-
tistical significance (see Methods). Variable selection using
elastic net identified 38 transcripts (eTable 3 in the Supple-
ment) as best discriminators of bacterial and viral infection in
the discovery test set, with sensitivity of 100% (95% CI, 69%-
100%) and specificity of 95% (95% CI, 84%-100%) (eTable 4
in the Supplement). In the validation group, this signature had
an AUC of 98% (95% CI, 94%-100%), sensitivity of 100% (95%
CI, 85%-100%), and specificity of 86% (95% CI, 71%-96%) for
distinguishing bacterial from viral infection (eTable 4 and eFig-
ures 2 and 3 in the Supplement). The putative function of the

38 transcripts in our signature, as defined by gene ontology,
is shown in eTable 5 in the Supplement.

After using the novel forward selection process to re-
move highly correlated transcripts, a 2-transcript signature was
identified that distinguished bacterial from viral infections, in-
cluding interferon-induced protein 44-like (IFI44L, RefSeq NM
_006820.1), and family with sequence similarity 89, member
A (FAM89A, RefSeq NM_198552.1). Both transcripts were
included in the 38-transcript signature.

Implementation of a DRS
The expression data of both genes in the signature was com-
bined into a single DRS for each patient, using the reported
DRS method, which simplifies application of multitranscript
signatures as a diagnostic test.21 The sensitivity of the DRS
was 86% (95% CI, 74%-95%) in the discovery group training
set, 90% (95% CI, 70%-100%) in the discovery group test set,
and 100% (95% CI, 85%-100%) in the validation data; speci-
ficity in the validation data was 96.4% (95% CI, 89.3%-100%)
(Figure 4, panels A-D; eFigure 4 and eTable 4 in the Supple-
ment). Expression of IFI44L was increased in patients with
viral infection and FAM89A was increased in patients with
bacterial infection, relative to healthy children (eTable 3 in

Table 1. Demographic and Clinical Characteristics of the Study Groups

Characteristics

Discovery Group IRIS Validation Group
Definite Bacterial
Infection
(n = 52)

Definite Viral
Infection
(n = 92)

Indeterminate
Infectiona

(n = 96)

Definite Bacterial
Infection
(n = 23)

Definite Viral
Infection
(n = 28)

Indeterminate
Infectiona

(n = 79)
Age, median (IQR), mo 22 (9-46) 14 (2-39) 27 (7-71) 22 (13-52) 18 (7-48) 15 (2-44)

Male, No. (%) 22 (42) 65 (71) 62 (65) 10 (43) 17 (61) 47 (59)

White race, No./total (%)b 35/48 (73) 46/87 (53) 47/85 (55) 12/22 (55) 14/27 (51) 42/71 (59)

Time from symptoms to blood
sampling, median (IQR), d

5 (2-8.8) 4.5 (3.0-6.0) 5 (4.8-8) 4 (2.5-8) 3.5 (2.8-5.3) 4 (3-7)

Intensive care, No. (%) 36 (69) 32 (35) 57 (59) 13 (57) 7 (23) 42 (53)

Deaths, No. 10 0 2 1 1 8

C-reactive protein,
median (IQR), mg/Lc

176 (98-275) 16 (6-27) 102 (47-176) 217 (168-285) 7 (1-20) 67 (25-128)

Blood cell differential,
median (IQR), %

Neutrophils 75 (49-85) 50 (36-63) 63 (46-79) 82 (71-88) 53 (41-69) 64 (43-82)

Lymphocytes 19 (10-36) 34 (20-44) 22 (15-42) 15 (8-23) 32 (26-48) 30 (14-42)

Monocytes 5 (3-8) 10 (4-14) 6 (2-12) 3 (0-7) 7 (5-10) 5 (2-8)

Main clinical syndrome, No.

Bone, joint, soft tissue
infection

5 0 0 1 0 0

Fever without source/sepsis 21 7 9 5 2 6

Gastroenteritis 0 0 1 0 1 2

Meningitis/encephalitis 14 3 3 5 1 1

Respiratory tract,
upper + lower

10 81 83 11 23 68

Other 2 1 0 1 1 2

Virus detected, No./total (%)d 22/34 (65) 92/92 (100) 62/87 (71) 8/13 (62) 28/28 (100) 52/77 (68)

Abbreviations: IQR, interquartile range; IRIS, Immunopathology of Respiratory,
Inflammatory and Infectious Disease Study.

SI conversion factor: To convert C-reactive protein values to nmol/L, multiply by
0.9524.
a The indeterminate infection group in the discovery group comprised 42

probable bacterial, 49 unknown bacterial or viral, and 5 probable viral
infections. The indeterminate infection group in the validation group

comprised 17 probable bacterial, 55 unknown bacterial or viral, and 7 probable
viral infections.

b Self-reported.
c Maximum value of C-reactive protein in illness is reported.
d Denominator denotes number of patients with viral investigations.
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the Supplement). The summary of diagnostic test accuracy,
including STARD flow diagrams, is shown in eFigure 5 in the
Supplement.

For additional validation, the 2-transcript signature was ap-
plied to patients with meningococcal disease (eFigure 6 in the
Supplement) and inflammatory diseases (juvenile idiopathic ar-
thritis and Henoch-Schönlein purpura). Bacterial infection was
identified with a sensitivity of 91.7% (95% CI, 79.2%-100%) for
patients with meningococcal disease and 90.0% (95% CI, 70.0%-
100%) for those with inflammatory diseases and with a speci-
ficity of 96.0% (95% CI, 88.0%-100%) and 95.8% (95% CI,
89.6%-100%), respectively. When applied to 4 published
datasets for children and adults with bacterial or viral infec-
tion and inflammatory disease (pediatric systemic lupus
erythematosus),12,15,17,18 the 2-transcript signature distin-
guished bacterial infection from viral infection and inflamma-
tory disease in all these datasets, with AUCs ranging from 89.2%
to 96.6% (eTable 6 and eFigures 7 and 8 in the Supplement).

Effect of Viral and Bacterial Co-infection
The effect of viral co-infection on the signatures was investi-
gated (Table 1). In the definite bacterial infection group, 30 of
47 patients tested (64%) had a virus isolated from nasopha-
ryngeal samples. There was no significant difference in DRS
between those with and without viral co-infection.

DRS in Patients With Indeterminate Infection Status
The classification performance of the DRS was investigated
in patients with indeterminate viral or bacterial infection
status. Patients were separated into those with clinical fea-
tures strongly suggestive of bacterial infection (probable
bacterial infection group), those with features consistent
with either bacterial or viral infection (unknown infection
group), and those with clinical features and results sugges-
tive of viral infection (probable viral infection group)
(Figure 2). The probable bacterial and unknown infection
groups included patients with DRS values that indicated

Figure 4. DRS and ROC Curves Based on the 2-Transcript Signature Applied to Definite Bacterial
and Viral Infection Groups
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Validation data

Classification performance and
receiver operating characteristic
(ROC) curve based on the 2-transcript
disease risk score (DRS) (the
combined IFI44L and FAM89A
expression values), in the definite
bacterial and viral infection groups of
the discovery group test set (20% of
the total discovery group), and the
IRIS validation group data. Horizontal
lines in boxes indicate medians; lower
and upper edges of boxes,
interquartile ranges; whiskers,
�1 times the interquartile range.
Boxes and whiskers plotted using
boxplot in R. Sensitivity, specificity,
and area under the ROC curve are
reported in eTable 4 in the
Supplement. Horizontal dotted line
indicates the DRS threshold that
separates patients predicted as
bacterial (above the line) or viral
(below the line), as determined by
the point on the ROC curve that
maximized sensitivity and specificity.
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viral infection, despite having clinical features that justified
initiation of antibiotics by the clinical team. The median
DRS showed a gradient of assignment that followed the
degree of certainty in the clinical diagnosis, although many
of the indeterminate infection group DRS values overlapped
with those of the definite bacterial and definite viral infec-
tion groups (Figure 5A, Figure 4B).

DRS assignment as viral or bacterial was compared with
clinical variables in the indeterminate infection group (eTable
7 in the Supplement). Measurement of C-reactive protein (CRP)
levels is widely used to aid distinction of bacterial from viral
infection and was included in the categorization of definite vi-
ral, probable bacterial, and probable viral infection in this study;
patients categorized as having bacterial infection by DRS had
higher CRP levels than those categorized as having viral in-
fection (median, 101 [interquartile range {IQR}, 48-192] mg/L
vs 71 [IQR, 27-120] mg/L; P = .02 [to convert values to nmol/L,
multiply by 0.9524]). They also had increased incidence of
shock (P = .006), requirement for ventilator support (P = .048),

and intensive care admission (P = .07). There was a nonsig-
nificant increase in white cell and neutrophil counts in pa-
tients assigned by DRS as having bacterial or viral infection
(median, 14.1 [IQR, 8.3-19.4] and 11.1 [IQR, 7.3-16.0] for white
cells [P = .08]; 8.7 [IQR, 5.0-13.8] and 6.8 [IQR, 3.5-11.4] for
neutrophils [P = .11]).

Antibiotic Use
The number of children treated with antibiotics was com-
pared with DRS prediction of bacterial or viral infection. There
were high rates of antibiotic use in all groups, including greater
than 90% in the unknown infection group. The high rate of an-
tibiotic use in the indeterminate infection group contrasted
with the low numbers predicted to have bacterial infection by
both DRS and clinical assignment (Table 2).

Illness Severity and Duration
The study recruited a high proportion of seriously ill patients
needing intensive care, thus raising concern that selection bias

Figure 5. Performance of the 2-Transcript DRS Signature in Indeterminate Infection Group
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Classification performance of the 2-transcript disease risk score (DRS) (the
combined IFI44L and FAM89A expression values) in the indeterminate groups
of probable bacterial, probable viral, and unknown infection of the discovery
test and IRIS validation sets. Horizontal lines in boxes indicate medians; lower
and upper edges of boxes, interquartile ranges; whiskers, �1 times the
interquartile range. Boxes and whiskers plotted using boxplot in R. Horizontal

dotted line indicates the DRS threshold (thresholdtest_data set = −1.03;
thresholdvalidation_data set = −2.63) that separates patients predicted as bacterial
(above the line) or viral (below the line), as determined by the point in the
receiver operating characteristic curve that maximized sensitivity and
specificity. For the discovery group test set, the training threshold was used.

Table 2. Comparison of Disease Risk Score Prediction With Antibiotic Treatmenta

No. (%)
Definite Bacterial
Infection

Probable Bacterial
Infection

Unknown Bacterial
or Viral Infection

Probable Viral
Infection

Definite Viral
Infection

Patients with information on antibiotic useb 28 (84.8) 49 (83.1) 77 (74.0) 10 (83.3) 39 (83.0)

Patients receiving antibiotics 28 (100) 49 (100) 73 (94.8) 7 (70) 33 (84.6)

Patients receiving antibiotics and suggested
by DRS to have bacterial infection

27 (96.4) 32 (65.3) 29 (39.7) 2 (28.6) 1 (3.0)

Abbreviation: DRS, disease risk score.
a Comparison of the proportion of patients in the combined discovery group

test set and validation group receiving antibiotics, and the proportion of
predicted bacterial, as predicted by the DRS (the combined IFI44L and

FAM89A expression values).
b The denominator is 33 definite bacterial, 59 probable bacterial, 104 unknown

bacterial or viral, 12 probable viral, and 47 definite viral infections.
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might have influenced performance of the signature. To ex-
clude bias based on severity or duration of illness, perfor-
mance of the DRS was evaluated after stratification of pa-
tients into those with milder illness or severe illness requiring
intensive care and by duration of reported illness before pre-
sentation. The DRS distinguished bacterial from viral infec-
tion in both severe and milder groups (eFigure 9 in the Supple-
ment) and irrespective of day of illness (eFigure 10 in
the Supplement).

Discussion
This study identified a host whole blood RNA transcrip-
tomic signature that distinguished bacterial from viral infec-
tion with 2 gene transcripts. The signature also distin-
guished bacterial infection from childhood inflammatory
diseases, systemic lupus erythematosus, juvenile idiopathic
arthritis, and Henoch-Schönlein purpura and discriminated
b a c te r i a l f ro m v i r a l i n fe c t i o n i n p u b l i s h e d a d u l t
studies.12,15,17,18 The results extend previous studies sug-
gesting that bacterial and viral infections have different
signatures.12,13,17,23

The transcripts identified in the 38-transcript elastic net
signature comprise a combination of transcripts up-
regulated by viruses or by bacteria. The 2 transcripts IFI44L
and FAM89A in the smaller signature show reciprocal expres-
sion in viral and bacterial infection. IFI44L has been reported
to be up-regulated in antiviral responses mediated by type I
interferons,24 and FAM89A was reported as elevated in
children with septic shock.25

An obstacle in the development of improved tests to dis-
tinguish bacterial from viral infection is the lack of a refer-
ence standard. Some studies include patients with clinically
diagnosed bacterial infection who have features of bacterial
infection but whose cultures remain negative. Negative cul-
tures may reflect prior antibiotic use, low numbers of bacte-
ria, or inaccessible sites of infection. If patients with indeter-
minate status are included in biomarker discovery, there is a
risk that the identified biomarker will not be specific for true
infection. This study adopted the rigorous approach of iden-
tifying the signature in culture-confirmed cases and using the
signature to explore likely proportions of true infection in the
indeterminate infection group.

The proportion of children predicted by DRS signature
to have bacterial infection follows the level of clinical suspi-
cion (greater in the probable bacterial infection group and
less in the probable viral infection group), thus supporting
the hypothesis that the signatures may be an indication of
the true proportion of bacterial infection in each group. Fur-
thermore, a higher proportion of patients in the indetermi-
nate infection group, assigned as bacterial by the signature
(probable infection and unknown infection groups), had
clinical features normally associated with severe bacterial
infection, including increased need for intensive care,
higher neutrophil counts, and higher CRP levels, suggesting
that the signature may be providing additional clues to the
presence of bacterial infection.

The decision to initiate antibiotics in febrile children is
largely driven by concern about missing bacterial infection.
A test that correctly distinguishes children with bacterial
infection from those with viral infections would reduce
inappropriate antibiotic prescription and investigation. The
DRS suggests that many children who were prescribed anti-
biotics did not have a bacterial illness. If the score reflects
the true likelihood of bacterial infection, its implementation
could reduce unnecessary investigation, hospitalization,
and treatment with antibiotics. Confirmation that the DRS
provides an accurate estimate of bacterial infection in the
large group of patients with negative cultures, for whom
there is no reference standard, can only be achieved in pro-
spective clinical trials. Careful consideration will be needed
to design an ethically acceptable and safe trial in which
observation without antibiotic administration is undertaken
for febrile children suggested by DRS to be at low risk of
bacterial infection.

In comparison with the high frequency of common viral
infections in febrile children presenting to health care, inflam-
matory and vasculitic illness are very rare.26-29 However, chil-
dren presenting with inflammatory or vasculitic conditions
commonly undergo extensive investigation to exclude bacte-
rial infection and treatment with antibiotics before the cor-
rect diagnosis is made. Although children with inflammatory
conditions were not included in the discovery process, the
2-transcript signature was able to distinguish bacterial infec-
tion from systemic lupus erythematosus, juvenile idiopathic
arthritis, and Henoch-Schönlein purpura. Additional studies
including a wider range of inflammatory diseases are needed
to assess use of the signature for excluding bacterial infection
in inflammatory diseases.

This study has a number of important limitations. The
cross-sectional design aimed to recruit equal numbers of chil-
dren with bacterial and viral infections. The numbers of chil-
dren recruited thus did not reflect the usual frequency of bac-
terial infection in febrile children presenting to health care
facilities. Further studies of a test based on the 2-transcript sig-
nature in unselected febrile children will be needed to pro-
vide information on positive and negative predictive perfor-
mance of the test.

A second limitation is that validation of the signatures was
undertaken in groups that included a high proportion of pa-
tients requiring intensive care, and with a relatively narrow
spectrum of pathogens, which may not reflect the spectrum
of infection in other settings. The signature performed well,
both in patients with less severe infection and those admit-
ted to intensive care, and performance was not influenced by
duration of illness. However, further studies will be needed to
evaluate the DRS signature in less severely ill patients with a
wider range of infections or in settings such as emergency de-
partments or outpatient offices. Another limitation is the use
in validation of published datasets and data obtained using dif-
ferent microarray platforms. Although batch effects were mini-
mized computationally, additional studies are needed in which
gene expression is measured on identical platforms.

A major challenge in using transcriptomic signatures for
diagnosis is the translation of multitranscript signatures into
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clinical tests suitable for use in hospital laboratories or at the
bedside. The DRS signature, distinguishing viral from bacte-
rial infections with only 2 transcripts, has potential to be trans-
lated into a clinically applicable test using current technol-
ogy such as polymerase chain reaction.30 Furthermore, new
methods for rapid detection of nucleic acids, including
nanoparticles and electrical impedance, have potential for low-
cost, rapid analysis of multitranscript signatures.

Conclusions

This study provides preliminary data regarding test accuracy
of a 2-transcript host RNA signature discriminating bacterial
from viral infection in febrile children. Further studies are
needed in diverse groups of patients to assess accuracy and
clinical utility of this test in different clinical settings.
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