Heller, T; Lessells, RJ; Wallrauch, CG; Barnighausen, T; Cooke, GS; Mhlongo, L; Master, I; Newell, ML; (2010) Community-based treatment for multidrug-resistant tuberculosis in rural KwaZulu-Natal, South Africa. The international journal of tuberculosis and lung disease, 14 (4). pp. 420-6. ISSN 1027-3719 https://researchonline.lshtm.ac.uk/id/eprint/2718

Downloaded from: http://researchonline.lshtm.ac.uk/2718/

DOI:

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Community-based treatment for multidrug-resistant tuberculosis in rural KwaZulu-Natal, South Africa

Heller T¹, Lessells RJ², Wallrauch CG², Bärnighausen T²,³, Cooke GS²,⁴, Mhlongo L¹,², Master I⁵, Newell ML³,⁶

1. Hlabisa Hospital, Hlabisa, KwaZulu-Natal
2. Africa Centre for Health and Population Studies, University of KwaZulu-Natal, Somkhele,
3. KwaZulu-Natal
4. Department of Global Health and Population, Harvard School of Public Health, Boston, USA
5. Department of Infectious Diseases, Imperial College, London, UK
6. King George V Hospital, Durban, KwaZulu-Natal
7. Centre for Paediatric Epidemiology and Biostatistics, Institute of Child Health, University College London, London, UK

Corresponding author:
Dr Richard Lessells

Africa Centre for Health & Population Studies, PO Box 198, Mtubatuba 3935, South Africa

Email: rlessells@africacentre.ac.za
Phone: +27-35-550-7500
Fax: +27-35-550-7565
SUMMARY

Setting Hlabisa health sub-district in KwaZulu-Natal, South Africa

Objective To describe the establishment of a community-based MDR-TB treatment programme embedded in the district TB control programme and to evaluate whether early outcomes are comparable to those in the traditional hospital-based model of care.

Design Cases who initiated community-based MDR-TB treatment between March and December 2008 (CM) were compared to patients who initiated MDR-TB treatment under the traditional hospital-based model of care between January 2001 and February 2008 (TM). Time to initiation of treatment and time to sputum smear and culture conversion were compared for the two groups in Kaplan-Meier survival curves using the Mantel-Cox log rank test.

Results 50 CM cases and 57 TM cases were included. 39/50 CM cases (78.0%) were HIV positive. The median time to initiation of treatment was 84 days for CM and 106.5 days for TM ($p = 0.002$). Median time to sputum smear conversion was shorter for CM than TM (59 days vs. 92 days; $p = 0.055$) as was time to sputum culture conversion (85 days vs. 119 days; $p = 0.002$)

Conclusion Community-based treatment for MDR-TB can be implemented within the existing TB control programme in rural South Africa and should be scaled up where resources allow.

Keywords: TB, drug resistance, HIV
INTRODUCTION

The past few years have seen the escalation of combined epidemics of tuberculosis (TB) and HIV infection in Southern Africa\(^1,2\). Compounding this has been the emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB)\(^3-5\). KwaZulu-Natal (KZN) in South Africa is at the epicentre of these intertwined epidemics with high HIV prevalence and incidence\(^6-8\) and TB incidence of 1,094 per 100,000 person years\(^9\). Over 2,000 laboratory confirmed cases of MDR-TB were identified per year in KZN in 2006 and 2007\(^10\).

The management of MDR-TB in South Africa has historically involved centralised treatment including admission to specialist provincial hospitals for at least the intensive phase of treatment\(^11\). The rationale for this has been to monitor complex drug regimens, optimise adherence, and to limit community transmission. However, there is no evidence that hospitalisation actually limits community transmission and it is likely that most patients have been infectious for several months before hospitalisation given the delays in diagnosis and treatment under routine programme conditions\(^12\). Moreover the risk of nosocomial transmission, both to other patients and to health care workers, is high\(^13-15\). There are also economic and social costs to keeping patients isolated in hospitals often far from home and this can lead to default from treatment programmes\(^16\). The estimated cost of MDR-TB hospitals accounts for half of the national TB programme (NTP) budget in South Africa\(^17\). The centralised model of care currently lacks the capacity to deal with the burden of MDR-TB in South Africa and there is an urgent need to scale-up and evaluate community-based treatment models\(^18,19\).
Community-based treatment for drug-resistant TB is not a new concept and successful outcomes have been reported elsewhere, most notably from Peru20,21. However, most cases in these studies were HIV negative and the high rate of HIV co-infection in Southern Africa presents additional programmatic challenges4,5. Public-private partnerships and non-governmental organisations (NGO) have developed community-based treatment projects in Southern Africa but the sustainability of such programmes is always a concern22,23. We describe experience in Hlabisa sub-district in the province of KwaZulu-Natal, South Africa, with the establishment of a community-based MDR-TB treatment model within the existing Department of Health TB programme.

\textbf{METHODS}

\textbf{Setting}

In KwaZulu-Natal the majority of MDR-TB and XDR-TB patients are treated at a single site: King George V Hospital (KGH), Durban (160 beds). Patients are referred with culture-proven MDR-TB or XDR-TB and individualised drug regimens are prescribed according to national guidelines11. The most common MDR-TB regimen involves 6 months of kanamycin (Km), ofloxacin (Ofx), ethionamide (Eto), cycloserine (Cs), ethambutol (E) and pyrazinamide (Z) followed by 12 to 18 months of Ofx/Eto/Cs/E/Z. Treatment is provided on an inpatient basis at least until sputum
culture conversion and thereafter continued on an outpatient basis with monthly clinic follow-up.

Hlabisa hospital is a 300-bed district hospital with a 40-bed TB ward refurbished in 2008 (including isolation rooms for drug-resistant cases) which, with 16 primary health care (PHC) clinics, serves a population of 228,000 in rural northern KwaZulu-Natal. Hlabisa is approximately 250 km north of Durban and the travel time to KGH is approximately three hours. The TB notification rate in 2008 was approximately 1,700 per 100,000 (personal communication, TB control programme, Umkhanyakude Health District Office), and 76% of TB cases are co-infected with HIV24. The TB control programme adheres to national guidelines and sputum is sent for culture and drug sensitivity testing (DST) in the following circumstances: patients with previous unsuccessful treatment (interruption, failure, relapse); those who remain sputum smear positive at the end of intensive phase or at the end of treatment; and those who are sputum smear negative but in whom there is a strong clinical suspicion of TB25.

Due to the constraints of the centralised hospital-based treatment model, particularly the waiting list for admissions to KGH, a community-based treatment model was established in March 2008. It involved the following changes: the lead TB physician at Hlabisa hospital visited KGH for focused training on management of drug-resistant TB; data capturers were instructed to search for TB culture results in the provincial computerised laboratory information system six weeks after specimen collection; then proven drug-resistant TB cases were referred as outpatients to KGH for assessment and initiation of treatment, followed by inpatient treatment
for 4 weeks in Hlabisa hospital. If no complications were observed then directly-observed treatment (DOT) was continued in the PHC clinic nearest to the patient’s home. Patients were sent for monthly follow-up visits at KGH and could be admitted to Hlabisa hospital at any time if complications arose.

Analysis

Cases were included if pulmonary MDR-TB treatment was commenced between March and December 2008 within the community-based treatment model (CM). All patients who received MDR-TB treatment under the traditional hospital-based model of care between 2001 and February 2008 were included as a control arm (TM). Routine DST in our programme included susceptibility to rifampicin, isoniazid, ethambutol, streptomycin, ciprofloxacin, and kanamycin. MDR-TB was defined for the purpose of this analysis as *M. tuberculosis* resistant to rifampicin and isoniazid but sensitive to ciprofloxacin and kanamycin. Patients were excluded from the analysis if they had other patterns of drug resistance (XDR-TB, pre-XDR-TB, or mono-resistance), missing DST results, or had transferred in from another facility. Demographic, clinical, and laboratory data were extracted from the routine TB programme databases at Hlabisa hospital and KGH. Further information for the CM cases regarding CD4 cell counts and antiretroviral therapy was obtained from the Hlabisa HIV Treatment and Care Programme database. The baseline characteristics of the two groups were compared using \(\chi^2 \) test. The primary outcomes measures were: time to initiation of treatment (number of days between collection of diagnostic sputum culture and commencement of MDR-TB therapy); and
time to sputum smear and culture conversion (number of days between commencement of
treatment and collection of first of two consecutive negative sputum smears or culture\(^2^6\)).

Patients without a date assigned to their diagnostic sputum culture were excluded from the
time to initiation analysis \((n=13)\). Patients with a negative sputum smear prior to initiation of
treatment \((n=23)\) or no sputum smear data after initiation of treatment \((n=4)\) were excluded
from the smear conversion analysis. Patients with a negative sputum culture prior to the
initiation of treatment \((n=11)\) or no sputum culture data after initiation of treatment \((n=4)\) were
excluded from the culture conversion analysis. The time to initiation of treatment for the two
groups was compared using the Mann-Whitney U test. Time to sputum smear conversion and
time to culture conversion were compared for the two groups in Kaplan-Meier survival analysis
and using the Mantel-Cox log rank test. Cox regressions of time to sputum smear conversion
and time to culture conversion were performed with group category (TM vs. CM), sex, HIV
status, and TB drug resistance pattern as independent variables. Three additional patients were
excluded in these regressions because data on baseline weight were missing. In order to avoid
overestimating the duration of time to smear or culture conversion in the TM group relative to
the CM group, observation time in the TM group was censored at the longest observation
period in the CM group (250 days) both in the Kaplan-Meier and the Cox regression analyses. All
analyses were performed using SPSS 15.0 (SPSS inc., Chicago, Illinois) and STATA version 10
(StataCorp, College Station, Texas). The study was approved by the Hlabisa Hospital Ethics
Committee and the KwaZulu-Natal Department of Health.
RESULTS

134 patients were identified as receiving treatment for drug-resistant pulmonary TB between 2001 and 2008 in Hlabisa health sub-district (57 CM; 77 TM). Seven patients were excluded from the CM group (three transferred in from another facility; two treated as XDR-TB; and two with rifampicin mono-resistance). Twenty cases were excluded from the TM arm (16 missing resistance data; three treated as XDR-TB; and one with rifampicin mono-resistance). Thus 50 CM cases and 57 TM cases were available for analysis.

Baseline characteristics of the patients are shown in Table 1. Both the proportion with known HIV status and the proportion HIV positive were higher in the CM group compared to the TM group. The median CD4 count was not significantly different in the two groups but the proportion already on ART was higher in the CM group than the TM group (Table 1). Of the 15 CM patients not established on ART at the time of starting MDR-TB treatment, 7 (46.7%) subsequently initiated ART, 2 (13.3%) died before initiating ART, and 6 (40.0%) had not yet started ART at the time of analysis.

The median time to initiation of MDR-TB treatment was 84 days (95%CI 78.7-93.3) for CM (n=48) and 106.5 days (95%CI 88.6-151.1) for TM (n=46) (p=0.002). The median time to smear conversion was 59 days (95%CI 34.9-83.1) for CM (n=32) and 91 days (95%CI 72.2-119.8) for TM (n=48) (p=0.055). The median time to culture conversion was 85 days (95%CI 68.0-102.0) for
CM ($n=39$) and 119 days (95%CI 106.1-131.9) for TM ($n=53$) ($p=0.002$). Kaplan-Meier plots for

time to sputum smear and culture conversion are shown in Figure 1.

When controlling for sex, weight, HIV status, and resistance pattern in multiple Cox regression,
time to sputum smear conversion was longer for the TM group compared to the patients in the
CM group (adjusted hazard ratio (aHR) = 1.78, $p=0.062$) as was the time to culture conversion
(aHR = 1.82, $p=0.026$).

The 6-month outcomes for the two groups are shown in Table 2. Of the four deaths in the CM
group, one occurred during the first month in hospital and was attributed to disease severity;
the other three occurred after hospital discharge and no further details were available
regarding the circumstances of these deaths. The final outcomes for the TM group (excluding
16 patients still receiving treatment) were as follows: cured 23 (56.1%), failed 2 (4.9%),
defaulted 8 (19.5%), died 8 (19.5%).

Three severe adverse drug reactions were observed amongst the CM cases: two patients
suffered psychotic reactions (attributed to cycloserine) and one patient developed Stevens-
Johnson syndrome (attributed to ethionamide). All reactions occurred after the first month of
inpatient treatment and necessitated re-admission to Hlabisa hospital; all three patients
recovered after cessation of the relevant drug.
DISCUSSION

The growth of the drug-resistant TB epidemic in association with the HIV epidemic in South Africa has presented unique challenges to the national TB control programme. The infrastructure of hospitals designed to deal with relatively small numbers of drug-resistant TB cases has been stretched and this has driven the consideration of community-based treatment models. The emergence of MDR-TB in Hlabisa was reported many years ago but recent years have seen the rapid growth of the HIV/TB co-epidemic in this area. Our results suggest that it is feasible to develop a community-based treatment programme and that patients can be managed safely within the existing infrastructure of the TB programme with specialist expertise available on an outpatient basis.

The main arguments in favour of hospitalisation for drug-resistant TB relate to the need to administer and monitor complex, toxic drug regimens and to limit the community spread of drug resistant-TB. Expertise in the administration of drugs used for treatment of drug-resistant TB can be achieved with focused training and adequate exposure to clinical cases. Most adverse drug reactions are well characterised (e.g. psychosis with cycloserine) and our study shows that these can be managed at a district hospital level. Transmission of drug-resistant TB can occur both in the community and in health care facilities and there needs to be increased focus on infection control strategies at all levels. The majority of our patients remain sputum smear positive at the end of the first month of treatment and therefore transmission could occur after hospital discharge. We unfortunately do not have data on the identification and testing of
contacts for the patients included in this analysis. Further work is required to determine the patterns of drug-resistant TB transmission in the community and to devise optimal strategies for TB screening and follow-up of close contacts30.

The need for expediting treatment is illustrated by reports of high early mortality with drug-resistant TB. In one study also from rural KwaZulu-Natal the median survival time for MDR-TB cases (from time of sputum collection) was 60 days31. Our programmatic data show that for March-December 2008, at the time the culture/DST result was obtained 33\% of MDR-TB cases were confirmed to have died and 16\% were unable to be traced. The CM group included in this analysis therefore represent approximately 50\% of all the laboratory diagnosed MDR-TB and are likely to have significant survival bias in this respect. This also emphasises that much work is still needed to facilitate more rapid identification, diagnosis, and referral of drug-resistant TB cases.

The early results are encouraging in terms of the shorter time to smear and culture conversion, although only the time to culture conversion reached statistical significance. Culture conversion at two months has been shown to be a good predictor of eventual treatment outcome in MDR-TB; the median time to culture conversion in our study is similar to that reported from a DOTS-Plus programme in Latvia32. This study was unable to look in depth at the factors associated with smear and culture conversion. We had no reliable data on extent of pulmonary disease and cavitation which is likely to be a significant factor in the conversion times32. All cases were by definition sensitive to kanamycin and ciprofloxacin but we had no data on susceptibility to
other second-line agents. Whilst differences in CD4 counts are unlikely to explain the
differences, the concurrent use of ART was more common in the CM group and this may
contribute to improved outcomes in co-infected patients. Further research is required to inform
the optimal strategy for co-infected patients with MDR-TB, in particular whether the benefit of
ART extends to those with CD4 counts above current treatment thresholds. We are working
towards the integrated delivery of TB/HIV care through the primary health care system, and
evidence from elsewhere suggests that this is feasible\(^{33}\).

There are clear limitations to our study inherent to retrospective comparisons. In particular, the
TM cohort includes a period when staffing in local service was minimal and before the scale-up
of HIV programmes brought development of local laboratory facilities. This means that the
historical cohort suffers from incomplete data for important variables, for example CD4 counts,
that could confound results and the direction in which such a theoretical bias might act cannot
be known. We did consider alternative study designs for this work, for example the use of a
contemporary cohort from another hospital within the region. However, this too would be
subject to potential confounders including different referral systems, different TB programme
performance, different co-existing ART programmes. On balance, given the urgency and
necessity for data to inform policy we opted for the methods outlined above.

In conclusion, we have shown that a community-based treatment model can expedite
treatment and does not adversely affect early treatment outcomes. The data presented here
suggest that community-based treatment is both feasible and safe in rural South Africa and
that, where resources allow, programmes should be scaled up and, furthermore, should be integrated with HIV treatment and care programmes.

Acknowledgements
We would like to thank all the staff in the Hlabisa TB control programme and the staff at King George V Hospital, Durban for their dedicated work which is an inspiration to us all. We thank Colin Newell, Garth Osburn, and Veronica Raman for database support.

Funding
TH, CW, TB are supported by the Centre for International Migration and Development (CIM), Gesellschaft für Technische Zusammenarbeit (GTZ), Federal Ministry of Economic Cooperation and Development, Germany. The Africa Centre for Health & Population Studies is supported by a core grant from the Wellcome Trust.

Conflicts of interest
We declare that we have no conflicts of interest

Author contributions
TH & RL were responsible for study design, data acquisition, data analysis, and drafting the manuscript. CW, TB, GSC, MLN provided assistance with the data analysis, data interpretation, and revision of the manuscript. LM assisted with data acquisition from Hlabisa and revision of
the manuscript. IM was responsible for data acquisition from KGH and revision of the
manuscript. All authors approved the final version of the article.
REFERENCES

10. Erasmus L, Koornhof H, Coetze G. Multidrug-resistant and extensively drug-resistant tuberculosis in South Africa from data extracted from the NHLS Corporate Data Warehouse.

Table 1. Baseline characteristics of CM group (n=50) and TM group (n=57)

<table>
<thead>
<tr>
<th>Patient characteristic</th>
<th>TM group (n=57)</th>
<th>CM group (n=50)</th>
<th>p-Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, %</td>
<td>52.6%</td>
<td>54.0%</td>
<td>0.887</td>
</tr>
<tr>
<td>Weight, kg, median (IQR)†</td>
<td>52.0 (46.0-59.0)</td>
<td>51.0 (46.0-57.5)</td>
<td>0.686</td>
</tr>
<tr>
<td>HIV status, n, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>30 (52.6%)</td>
<td>39 (78.0%)</td>
<td>0.004</td>
</tr>
<tr>
<td>Negative</td>
<td>17 (29.8%)</td>
<td>10 (20.0%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>10 (17.5%)</td>
<td>1 (2.0%)</td>
<td></td>
</tr>
<tr>
<td>CD4 cell count, cells/mm³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>256 (94-350)</td>
<td>151 (80-235)</td>
<td>0.626</td>
</tr>
<tr>
<td><350</td>
<td>72.7% (8/11)</td>
<td>92.1% (35/38)</td>
<td>0.117</td>
</tr>
<tr>
<td><200</td>
<td>45.5% (5/11)</td>
<td>65.8% (25/38)</td>
<td>0.298</td>
</tr>
<tr>
<td>Antiretroviral therapy‡</td>
<td>30.0% (9/30)</td>
<td>61.5% (24/39)</td>
<td>0.015</td>
</tr>
<tr>
<td>M. tuberculosis resistance pattern, n, %§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RH</td>
<td>15 (26.3%)</td>
<td>20 (40.0%)</td>
<td>0.003</td>
</tr>
<tr>
<td>RHE</td>
<td>6 (10.5%)</td>
<td>1 (2.0%)</td>
<td></td>
</tr>
<tr>
<td>RHS</td>
<td>26 (45.6%)</td>
<td>29 (58.0%)</td>
<td></td>
</tr>
<tr>
<td>RHES</td>
<td>10 (17.5%)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*χ² test
† Missing data from two patients (TM) and one patient (CM)
‡ Established on ART at time of MDR-TB treatment initiation
§ R=rifampicin, H=isoniazid, E=ethambutol, S=streptomycin
Table 2. *Six-month treatment outcomes for both groups*

<table>
<thead>
<tr>
<th>Outcome</th>
<th>TM group (n=57)</th>
<th>CM group (n=46)*</th>
<th>p-Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active & on treatment</td>
<td>52 (91.2%)</td>
<td>39 (84.8%)</td>
<td>0.438</td>
</tr>
<tr>
<td>Died</td>
<td>4 (7.0%)</td>
<td>4 (8.7%)</td>
<td></td>
</tr>
<tr>
<td>Defaulted</td>
<td>1 (1.8%)</td>
<td>1 (2.2%)</td>
<td></td>
</tr>
<tr>
<td>Transferred out</td>
<td>-</td>
<td>2 (4.3%)</td>
<td></td>
</tr>
</tbody>
</table>

* 4 individuals excluded from CM group as not reached 6-month follow-up at time of analysis
† χ²-test
Figure 1. Kaplan-Meier plots for time to a) sputum smear conversion and b) sputum culture conversion (TM group censored at 250 days, equivalent to the longest observation time in CM group)