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Abstract. This study developed and validated a model for predicting the probability that communities in Amhara
Region, Ethiopia, have low sanitation coverage, based on environmental and sociodemographic conditions. Community
sanitation coverage was measured between 2011 and 2014 through trachoma control program evaluation surveys. Infor-
mation on environmental and sociodemographic conditions was obtained from available data sources and linked with
community data using a geographic information system. Logistic regression was used to identify predictors of low commu-
nity sanitation coverage (< 20% versus ≥ 20%). The selected model was geographically and temporally validated. Model-
predicted probabilities of low community sanitation coverage were mapped. Among 1,502 communities, 344 (22.90%)
had coverage below 20%. The selected model included measures for high topsoil gravel content, an indicator for
low-lying land, population density, altitude, and rainfall and had reasonable predictive discrimination (area under the
curve = 0.75, 95% confidence interval = 0.72, 0.78). Measures of soil stability were strongly associated with low commu-
nity sanitation coverage, controlling for community wealth, and other factors. A model using available environmental and
sociodemographic data predicted low community sanitation coverage for areas across Amhara Region with fair dis-
crimination. This approach could assist sanitation programs and trachoma control programs, scaling up or in
hyperendemic areas, to target vulnerable areas with additional activities or alternate technologies.

INTRODUCTION

In 2015, an estimated 13% of the world’s population, or
just under 1 billion people, lacked access to any sanitation
facility and defecated in the open.1 The majority of these
people live in rural areas, where 90% of all open defecation
takes place.1 This crisis remains despite progress made in the
past two decades. Rates of open defecation have declined to
current levels from 24% in 1990, and in 2015, 68% of the
world population had access to improved sanitation facilities.1

Similarly, despite exceptional progress in Ethiopia extending
sanitation coverage over the past decade, recent estimates of
household latrine ownership in rural areas of the Amhara
Region range between approximately 40% and 70%, with the
actual usage of latrines being still low, indicating that a large
proportion of the population lacks access to a sanitation
facility and practices open defecation.2–4

Community-led total sanitation (CLTS) is a mobilization
approach aimed at ending open defecation through community-
wide action. It was initially developed and used in Bangladesh,
but it is now being widely implemented throughout the world.5

In Ethiopia, a variant of CLTS, community-led total sanitation
and hygiene (CLTSH) incorporating additional behavior
change approaches and a focus on hygiene behaviors, has been
adopted within the Federal Ministry of Health’s (FMOH)
national approach and is implemented through the national
Health Extension Program (HEP).6 The HEP trains extension
workers to provide disease prevention and health promotion
services, including sanitation, in rural communities.7 CLTSH

promotes households constructing their own basic pit latrines,
using locally available materials, with the aim of providing a
means to end open defecation.
Pit latrines represent the most basic form of sanitation to

prevent immediate or subsequent human contact with excreta.
Specifications for the construction of an adequate latrine
have long been established.8 CLTS imposes minimal empha-
sis on latrine design, focusing first on ending open defecation
through the deposition of feces in a fixed location and subse-
quently on improving latrine quality.5 As a result, the quality
of built latrines depends on many factors, including the
resources, skill, time, willingness, and capability of household
residents tasked with building their own latrine. An evaluation
of latrine promotion in Amhara Region identified several con-
struction deficiencies with built pit latrines that could affect
their acceptability and sustainability.4 Recent work has also
drawn attention to the influence of factors beyond the individ-
ual or household on behaviors related to water, sanitation,
and hygiene, including the impact of contextual factors, such
as time of year, land ownership, geographical conditions, and
climate, that may motivate or deter positive sanitation behav-
iors like latrine construction and maintenance.9,10

Environmental conditions may have a profound effect on
household uptake or maintenance of sanitation in response
to a community-based sanitation intervention. Soil conditions
were reported by household respondents as a barrier to latrine
construction in Ghana, Tanzania, and Kenya.11–13 Greater
extent of vegetation or land cover near a community may
increase available building materials, facilitating construction.14

Alternatively, local changes related to economic development,
like deforestation, increased population density, and proximity
to roads, reportedly motivated increased latrine adoption in
Benin and Kenya.11,15 Just as local geographic conditions may
deter or promote initial adoption of household sanitation,
environmental factors may strongly influence the durability of
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built latrines, particularly the rudimentary ones constructed in
response to CLTS activities (Figure 1). Destruction of latrines
through flooding during the rainy season were reported in Kenya
and the Gambia and could decrease sanitation coverage.11,16

The relationship between environmental and sociodemo-
graphic conditions in a location and variations in pit latrine
coverage has not been extensively examined.17 Through novel
use of impact assessment survey data collected by a trachoma
control program, the current study aimed to develop and vali-
date a model for estimating the probability of low community
sanitation coverage based on environmental and sociodemo-
graphic conditions. This approach could then be used to iden-
tify and target vulnerable areas with additional promotional
activities or alternate sanitation technologies more suitable for
local conditions.

METHODS

Study area and population. Amhara Region is located in
northwest Ethiopia and has a total area of approximately
150,000 km2. Geographically, the region is centered on Lake
Tana and encompasses a range of physical landscapes, charac-
terized by rugged mountains, plateaus, valleys, and gorges.18

Elevation ranges from 519 m in the northwestern areas to
4,420 m among mountains in the northeast. Land cover con-
sists primarily of shrublands and croplands.19 Based on a
2007 census, Amhara Region has a population of approxi-
mately 17 million.20

Trachoma control impact surveys. Impact surveys were
conducted by the Amhara Regional Health Bureau to provide
population-based woreda (Ethiopian administrative units equiv-
alent to districts) estimates of the prevalence of trachoma dis-
ease and quantify uptake of the World Health Organization’s
SAFE (surgery; antibiotics; facial cleanliness; environmental
improvements, including household water and sanitation access)
strategy for trachoma control. Surveys were implemented in
eligible woreda, or those that had received at least 5 years of
the full SAFE strategy including annual azithromycin mass
drug administration.
For the current study, data were combined from five tra-

choma control impact surveys conducted in distinct areas of
Amhara Region between 2011 and 2014. The first survey was
conducted in South Gondar zone between June and August
2011. The methods and results of this study have been

described previously.2 The second survey was conducted in
North Gondar and West Gojjam zones between May and
June 2012. The next three surveys were conducted in eastern
Amhara from December 2012 to January 2013, in western
Amhara from June to July 2013, and in eastern Amhara from
January to February 2014.
All surveys used a multistage cluster random sampling

methodology and were powered to estimate the prevalence
of trachomatous inflammation-follicular among children aged
1–9 years in woreda. Within each eligible woreda, gotts
(villages) were randomly selected from a geographically
ordered line listing using probability proportional to population
size and were primary sampling units. Within gotts, smaller
administrative units of approximately 40 households, called
development teams (DTs), were used as segments for a modi-
fied segment survey design.21,22 DTs were listed and numbered
upon arrival in the community with assistance from a designated
“gott” representative, who then randomly drew a number from
a hat to select the DT to be surveyed. In each DT, all house-
holds were surveyed. In gotts of 40 households or less, the
entire “gott” was surveyed.
Heads of household were interviewed for demographic,

socioeconomic information and knowledge and practices regard-
ing water, sanitation, and hygiene. Visual inspections were
made of household latrines. Responses were recorded electron-
ically using tablet computers operating Swift Insights software
(The Carter Center, Atlanta, GA).23

Geographic information. Geographic coordinates in World
Geodetic System 1984 were collected using tablet computers
at each household (except 2013 survey, where coordinates were
only collected at two households per community). Household
coordinates were averaged to provide a single point for each
community, and these were projected to Universal Transverse
Mercator (UTM) zone 37N.
Low community sanitation coverage. Community sanita-

tion coverage was calculated as the proportion of households
within the cluster observed to have a pit latrine. The aim of
this study was to explore contextual determinants of sanitation
coverage, simplistically excluding behavioral factors. Whether
the latrine was in use was not considered for the current study.
Community sanitation coverage was dichotomized for statistical
convenience. Less than 20% was selected as low sanitation and
was considered the outcome of interest, given it corresponded
to the referent category used for a complementary study

FIGURE 1. Examples of household pit latrines built in rural areas of Amhara Region, Ethiopia (Photo credit: William Oswald).
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on the association of community sanitation usage with
active trachoma.
Environmental and sociodemographic predictors. Candidate

environmental and sociodemographic predictors were identi-
fied a priori based on literature review.9–16 Table 1 lists each
obtained variable, hypothesized influence on sanitation cover-
age, data source, and how the variable was created or trans-
formed for analysis. Hypothesized influence may be positive
or negative, recognizing the possibility that some variables
may represent multiple influences on household latrine uptake
and community sanitation coverage.17

Information on soil texture class and gravel content was
obtained from the Harmonized World Soil Database (HWSD,
v.1.2), which combines regional and national updates with
information within the Food and Agriculture Organization–
United Nations Educational, Scientific and Cultural Organi-
zation Digital Soil Map of the World.24,25 Information for
the dominant topsoil (0–30 cm) in each soil mapping unit
were used.
Land surface form and topographic position, indicating

low-lying land with higher moisture potential, were obtained
from the U.S. Geological Survey Africa Ecosystems Mapping
project.26 This project used NASA Shuttle Radar Topographic
Mission (SRTM) digital elevation data to classify seven land
surface form classes (plains, irregular plains, escarpments,
hills, breaks/foothills, low mountains, and high mountains/
deep canyons) based on categorizations of local slope and
relief. The obtained topographic position dataset had been
created using 90-m SRTM elevation data and a 3 arc-second
Drainage Direction dataset, to identify two classes of topo-
graphic position (uplands and lowlands/depressions), using
slope measures for raster cells and contributing areas from
“upstream” raster cells, which indicated potential for water to
flow to a point, without considering climate or soil attributes.27

Elevation for the study region was obtained from SRTM
data processed by the Consortium for Spatial Information
of the Consultative Group for International Agricultural
Research.28 Annual average Normal Difference Vegetation
Index for 2011 was obtained from the Africa Soil Informa-
tion Service as a measure of land vegetation cover.29 Annual
total rainfall was calculated from interpolated surfaces with
mean monthly precipitation from 1950 to 2000.30 A shapefile
representing paved, gravel, or dirt/sand roads for Amhara
Region was obtained from the Global Roads Open Access
(1980–2010) dataset.31 Population density in 2011 per square
kilometer was generated using the Oak Ridge National
Laboratory’s LandScan.32 All raster surfaces were clipped to
Amhara’s geographic extent and projected to UTM zone 37N.
Community coordinates were overlaid on raster surfaces in
ArcMap 10.1 (ESRI, Redlands, CA), and values for predictors
were extracted per community to create an analysis dataset.
A measure of community wealth was calculated as the mean

of the total number of wealth indicators reported by households
during interviews, including radio, television, electricity, mobile
phone, and an iron roof. Two additional control variables were
included for time and season of survey activities. A variable for
time trend was created based on years since July 2011, the
month when the first survey began, using the 15th as the refer-
ence date. An indicator of whether the survey was conducted
during the rainy season (June–September) was also generated.
Statistical analyses. Logistic regression was used to identify

sociodemographic and environmental factors predictive of low

community sanitation coverage (< 20% versus ≥ 20%). The
full dataset, combining information from all five surveys, was
partitioned into training and testing datasets to allow for
temporal and geographic validation of the model. The parti-
tion was based on survey year and location to include the
range of landscapes across Amhara Region in both training
and testing datasets (Figure 2). The training dataset included
data from three surveys conducted between 2011 and 2012.
The testing dataset included data from two surveys conducted
between 2013 and 2014.
Collinearity of predictors was first assessed in the full

dataset based on calculated condition indices and variance
decomposition proportions.33 Using the training dataset and
forcing in control variables for time and season of survey
activities, a model selection approach was used, fitting all
possible subsets of predictors to maximize model fit based on
Akaike information criteria (AIC).34–36 The Akaike weight
was calculated for each of the best-fitting models to compare
its suitability among this candidate set of models.35 The sum
of Akaike weights was also calculated for each predictor from
the models in which it was included to determine its relative
importance.35 Estimated coefficients from the selected model
were then fit to testing data.
Because of the observed difference in frequency of low

sanitation coverage between the training and testing datasets,
a recalibrated model was also fit to the testing data.37,38 Prob-
abilities predicted by the model initially fitted to the testing
data were transformed using the logit transformation. These
log odds were then entered as an offset, specifying a coeffi-
cient of 1, into a new logistic model for the testing data,
thereby estimating a new intercept. Outcome probability was
then recalculated for each community from this model.
Finally, using the complete dataset, measures of associa-

tion with low sanitation coverage were estimated for selected
predictors. As a sensitivity analysis, the selected model was
refit to assess its robustness using alternative thresholds for
low sanitation coverage, including less than 10%, 30%, 40%,
and 50%. Possible improvements in model prediction and
changes in estimates from including the measure of commu-
nity wealth were evaluated. The selected model was also refit
using alternate community wealth measures based on the pro-
portion of households per community with each separate
indicator to compare estimation of association measures and
model discrimination. Results using these alternate measures
were similar to those using the mean of the total number of
wealth indicators (Supplemental Table 1). Model selection
and estimation of measures of association were also repeated
using generalized estimating equations (GEE) with an exchange-
able correlation structure to account for possible correlation
of outcomes within districts.33 Based on the quasi-likelihood
under the independence model criterion including a penalty
for the number of parameters (QICu), the selected GEE
model included the same predictors as in the ordinary logistic
model.39 Results using GEE were similar to those from the
ordinary logistic models that are presented here (Supplemental
Table 2).
The Hosmer–Lemeshow statistic was calculated to assess

model fit to training, testing, and complete data, and calibra-
tion was assessed by plotting predicted probabilities against
observed probabilities by deciles of predicted probability.33

Discrimination of all models was assessed using receiver-
operator curves (ROC) and calculating area under the
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curve (AUC).33 A nonparametric approach was used to
compare ROC.40

A model-based probability map of low community sanita-
tion coverage was calculated using ArcMap 10.1, by applying
the inverse logit function to the linear sum of the intercept
and regression coefficients times their local values from raster
surfaces for selected environmental and sociodemographic
predictors. Analyses were performed with SAS 9.4 (SAS
Institute Inc., Cary, NC).

RESULTS

Communities. Across Amhara Region, 1,510 communities
were surveyed in eligible districts between 2011 and 2014.
Geographic coordinates were not available for two commu-
nities (< 1%). Six communities’ coordinates were placed out-
side the region or in areas without predictor information and
were dropped (< 1%). The complete dataset contained infor-
mation on 1,502 communities (Figure 2). The training dataset
contained information on 876 communities, and the testing
dataset contained information on 626 communities.
Table 2 presents characteristics of communities in training,

testing, and complete datasets. Of 1,502 communities,
344 (22.90%) had sanitation coverage below 20% and were
located throughout the region (Figure 2). The distributions

of most environmental and sociodemographic conditions were
similar between testing and training datasets. Clay loam
was the most frequent soil texture (34.09%), and the fre-
quency of clay (22.83% and 36.10%) and sandy clay loam
(26.94% and 14.06%) differed between training and testing
datasets, respectively.
Of 1,502 communities, 651 (43.34%) locations were classi-

fied as low mountainous areas. Elevation, ranging from 568 to
3,644 m, and percent slope, ranging from 0.04% to 40.54%,
reflected topographic variation across study areas. Of 1,502
communities, 59 (3.93%) communities were located in low-
lying areas with higher moisture potential. Approximately half
of all surveyed communities were located in areas with esti-
mated population density of less than 113.53 people/km2 in
2011 and more than 4 km from a georeferenced paved, gravel,
or dirt/sand road. Overall, within communities, households
reported owning few wealth indicators.
Model development. No collinearity was detected among

candidate predictors using the complete dataset. Table 3 shows
eight models selected from all-possible subsets with an AIC
within 2 units of the minimum AIC (AICmin = 880.29), indicat-
ing little difference in estimated likelihood between models.
The variable for land surface form was not selected for any
model. The small ratios of Akaike weights between model 1
and other models (1.6–2.8) indicates only weak support for

FIGURE 2. Distribution of surveyed communities (N = 1,502) and districts, by training or dataset, and low community sanitation coverage in
Amhara Region, Ethiopia, 2011–2014.
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this model, among these eight models. High gravel content
and soil texture indicators were not selected together for any
of the same models, indicating worse fit if modeled jointly.
Soil texture was strongly associated with high gravel content
(P < 0.01), and no community with topsoil classified as clay
had high gravel content. The selected, best-fitting prediction
model included variables for high gravel content, altitude,
rainfall, population density, low-lying land, and controlled
for time since July 2011 and season of survey.
Model calibration and validation. There was no evidence

that the selected model did not fit training data well (Figure 3,
Hosmer–Lemeshow, P = 0.63). When applied to testing data,
the model fit less well and overpredicted probability of a com-

munity having low sanitation coverage (Hosmer–Lemeshow,
P < 0.01; Figure 3). Figure 4 shows the ROC curves for each
model. With training data, the model demonstrated reason-
able discriminatory ability (AUC = 0.75, 95% confidence
interval [CI] = 0.71, 0.79). Discrimination declined when the
model was applied to testing data (AUC = 0.69, 95% CI =
0.63, 0.74). Model recalibration reduced overprediction
(Figure 3), but tests did not indicate better fit (Hosmer–
Lemeshow, P < 0.01) and discriminatory ability was
unchanged (AUC = 0.69, 95% CI = 0.63, 0.74). The final
model fit combined data well and maintained discriminatory
ability (Hosmer–Lemeshow, P = 0.91; AUC = 0.75, 95%
CI = 0.72, 0.78).

TABLE 2
Environmental and sociodemographic conditions of communities in Amhara Region, Ethiopia, 2011–2014

Characteristic

Training: surveyed 2011–2012 (N = 876) Testing: surveyed 2013–2014 (N = 626) Complete: surveyed 2011–2014 (N = 1,502)

Median (IQR) N (%) Median (IQR) N (%) Median (IQR) N (%)

Sanitation coverage < 20% 228 (26.03) 116 (18.53) 344 (22.90)
USDA soil texture classes
Clay 200 (22.83) 226 (36.10) 426 (28.36)
Clay loam 302 (34.47) 210 (33.55) 512 (34.09)
Loam 138 (15.75) 102 (16.29) 240 (15.98)
Sandy clay loam 236 (26.94) 88 (14.06) 324 (21.57)

High soil gravel content 371 (42.35) 263 (42.01) 634 (42.21)
Annual mean, NDVI 2011 0.41 (0.35, 0.46) 0.44 (0.39, 0.49) 0.42 (0.37, 0.47)
Surface land form category
Smooth plains 48 (5.48) 30 (4.79) 78 (5.19)
Irregular plains 174 (19.86) 165 (26.36) 339 (22.57)
Escarpment 40 (4.57) 25 (3.99) 65 (4.33)
Hills 22 (2.51) 15 (2.40) 37 (2.46)
Breaks 147 (16.78) 90 (14.38) 237 (15.78)
Low mountains 394 (44.98) 257 (41.05) 651 (43.34)
High mountains/deep valleys 51 (5.82) 44 (7.03) 95 (6.32)

Percent slope 5.77 (2.93, 11.26) 6.08 (2.48, 12.67) 5.88 (2.72, 11.64)
Altitude (m) 2,222 (1,917, 2,633) 2,277 (1,936, 2,598) 2,241 (1,927, 2,614)
Low-lying land 35 (4.00) 24 (3.83) 59 (3.93)
Annual total rainfall (mm) 1,126 (1,008, 1,349) 1,155 (998, 1,421) 1,138 (1,004, 1,371)
Distance to nearest road (km) 4.41 (1.45, 9.20) 4.10 (1.41, 7.87) 4.30 (1.43, 8.57)
Population/km2, 2011 116.72 (56.05, 277.85) 107.26 (55.88, 305.59) 113.53 (56.05, 289.44)
Community mean total

wealth indicators
0.73 (0.31, 1.07) 1.13 (0.83, 1.57) 0.93 (0.49, 1.30)

Time since July 2011 (year)
0 353 (40.30) 0 (0.00) 353 (23.50)
0.8 208 (23.74) 0 (0.00) 208 (13.85)
1.4 315 (35.96) 0 (0.00) 315 (20.97)
1.9 0 (0.00) 356 (56.87) 356 (23.70)
2.5 0 (0.00) 270 (43.13) 270 (17.98)

Surveyed during rainy season 561 (64.04) 356 (56.87) 917 (61.05)
IQR = interquartile range; NDVI = Normalized Difference Vegetation Index; USDA = U.S. Department of Agriculture.

TABLE 3
Candidate training models for predicting community sanitation coverage < 20% among communities in Amhara Region, Ethiopia, 2011–2012

Model Intercept Altitude
Annual
rainfall

High
gravel

Population
density

Low-lying
land Clay Clay loam Loam NDVI

Distance
to road Slope Time Rainy Δi† ωi

1 +X* −X* −X* +XNS −X* +X* – – – – – – +X +X* 0.00 0.22
2 +X* −X* −X* – −X* +X* −XNS +XNS +XNS – – – +X* +X* 0.86 0.14
3 +X* −X* −X* +XNS −X* +X* – – – −XNS – – +X +X* 0.88 0.14
4 +X* −X* −X* – −X* +X* – – – – – – +X +X* 0.91 0.14
5 +X* −X* −X* – −X* +X* −XNS +XNS +XNS −XNS – – +X* +X* 1.61 0.10
6 +X −X* −X* +XNS −X* +X* – – – – +XNS – +X +X* 1.78 0.09
7 +X* −X* −X* – −X* +X* – – – −XNS – – +X +X* 1.89 0.09
8 +X* −X* −X* +XNS −X* +X* – – – – – +XNS +X +X* 1.93 0.08P

ωi( j) 1.00 1.00 1.00 0.53 1.00 1.00 0.24 0.24 0.24 0.32 0.09 0.08 1.00 1.00
AIC = Akaike information criteria; NDVI = Normal Difference Vegetation Index; X = variable tested in model; – = variable not tested in model; − = negative association; + = positive associ-

ation; NS = not significant; Δi = AICi − AICmin; ωi = exp(−1/2 Δi)
�P

exp(−1/2 Δi);
P

ωi(j) = sum of ωi values from all models in which variable i was present.
*P ≤ 0.01.
†AICmin = 880.29.
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Environmental and sociodemographic conditions and low
community sanitation coverage. Based on fitting the selected
model to the complete dataset (Table 4), communities in
areas with high topsoil gravel content had 1.76 times the
odds of low sanitation coverage compared with communities
in areas with low gravel content (odds ratio [OR] = 1.76, 95%
CI = 1.28, 2.41), independent of other conditions. Communi-
ties in low-lying areas had 2.74 times the odds of low sanita-
tion coverage (OR = 2.74, 95% CI = 1.49, 5.02) compared

with upland areas with lower moisture potential, adjusting
for other conditions. Communities in areas with higher popula-
tion density, higher elevation, and higher rainfall were signifi-
cantly less likely to have low sanitation coverage. Communities
surveyed during the rainy season, independent of other factors,
had 2.59 times the odds of low sanitation coverage (OR = 2.59,
95% CI = 1.69, 3.96). Based on the sensitivity analysis, the
association of low-lying land and years since July 2011 with
low sanitation coverage attenuated to null using a threshold
of < 50% for low sanitation (Supplemental Table 3). There
was little change in magnitude or direction of association for
other predictors using alternative low sanitation thresholds,
but discrimination did decrease with higher thresholds
(Supplemental Table 3). In an alternate model that included
a variable for community wealth, the estimated measures of
association changed little (Table 4), except population density
and time since 2011, which were no longer significantly associ-
ated with low sanitation coverage. An increase of one in mean
total wealth indicators was associated with a 58% decrease in
the odds of low community sanitation coverage (OR = 0.42,
95% CI = 0.32, 0.55), controlling for other factors. Including
this variable led to a small, but significant increase, in model
discrimination (AUC = 0.77, 95% CI = 0.74, 0.80; P < 0.01).
Figure 5 shows geographic distribution of predicted proba-

bilities of communities having low sanitation coverage, based
on estimated coefficients for environmental and socio-
demographic conditions, adjusting for survey season and
year. The map highlights areas in the northwestern areas of
North Gondar zone, the northern half of Waghemra zone,
and areas on the northern and eastern shores of Lake Tana.

DISCUSSION

Our study used information on environmental and socio-
demographic conditions from a variety of existing data sources
to develop a model to predict low sanitation coverage among
communities in Amhara Region. Based on the training data,
the model predicted whether less than 20% of households in
a community had a latrine with fair discrimination. The
model’s discriminatory performance decreased when applied
to populations from distinct areas surveyed at later dates.
We identified environmental conditions associated with low
community sanitation coverage, before and after controlling
for a measure of community wealth. Finally, the model was
used to produce a map of the predicted probability that com-
munities have low sanitation coverage based on local envi-
ronmental and sociodemographic conditions.
Using our selected model, communities where topsoil had

higher gravel content were found to have significantly higher
odds of low sanitation coverage, compared with where top-
soil had low gravel content, controlling for other factors. Soil
characteristics and resultant mechanics represent a complex
science. We based our hypotheses regarding latrine pit col-
lapse on the relationship between soil texture and gravel
content and soil cohesiveness and stability. Soils with a larger
proportion of sand, silt, or clay are considered coarse, medium,
or fine, respectively. Cohesive soils, the most stable, commonly
have finer textures: clay, silty clay, sandy clay, clay loam, and
sometimes silty or sandy clay loam.41 Cohesive soils become
only moderately stable with medium textures of silt or silt
loam and least stable with coarse textures of sand or loamy
sand and gravel content.41,42 In study communities, soil texture

FIGURE 3. Observed vs. predicted probability for low sanitation
coverage by deciles of predicted probability for models fit to training
and testing datasets.

FIGURE 4. Receiver–operator curves showing sensitivity vs. 1 −
specificity for models fit to training, testing, and complete datasets.
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was highly associated with gravel content. Areas with clay
loam, loam, and sandy clay loam had higher frequencies of
high gravel content compared with areas with clay, which did
not have any high gravel content. Our model selection chose
high gravel content as the best soil-related predictor of low
sanitation coverage in our data. The use of continuous mea-
sures for soil percentage content of sand, silt, and clay and
gravel content would have allowed application of the model
beyond the study region but was avoided because of concerns
about accuracy. Future studies should explore the use of these
alternate measures. Future applications of this approach

should also consider including the major soil group classifica-
tions.43 These classifications combine multiple aspects of soil
characterization; however, the mechanistic relationship with
latrine pit collapse is less clear. One soil group, Vertisols, is
known to be associated with structural instability and soil
collapse. Vertisols, constituting the “black cotton” soils com-
mon throughout South Sudan and parts of Ethiopia, have
high clay content but are expansive in nature and have a
high risk of collapse.41 The current study might have been
strengthened by including an indicator for this soil group to
potentially better characterize the risk of soil collapse.

TABLE 4
Logistic regression models for predicting sanitation coverage < 20% among communities in Amhara Region, Ethiopia, 2011–2014

Parameters (unit of change)

Selected and validated model Selected model + community wealth

Coefficient SE P OR (95% CI) Coefficient. SE P OR (95% CI)

Intercept 3.54 0.52 < 0.01 – 2.84 0.53 < 0.01 –
High gravel content (yes/no) 0.56 0.16 < 0.01 1.76 (1.28, 2.41) 0.46 0.16 < 0.01 1.58 (1.15, 2.19)
Low-lying land (yes/no) 1.01 0.31 < 0.01 2.74 (1.49, 5.02) 1.04 0.31 < 0.01 2.82 (1.53, 5.20)
Population/km2, 2011 (log10) −0.55 0.11 < 0.01 0.58 (0.46, 0.73) −0.19 0.13 0.14 0.83 (0.64, 1.07)
Altitude (100 m) −0.08 0.02 < 0.01 0.92 (0.89, 0.95) −0.09 0.02 < 0.01 0.91 (0.88, 0.94)
Annual total rainfall (100 mm) −0.21 0.04 < 0.01 0.81 (0.75, 0.88) −0.16 0.04 < 0.01 0.85 (0.79, 0.92)
Community mean total wealth indicators (+1) – – – – −0.86 0.14 < 0.01 0.42 (0.32, 0.55)
Time since July 2011 (year) −0.20 0.10 0.04 0.82 (0.68, 0.99) 0.05 0.10 0.66 1.05 (0.85, 1.28)
Rainy season (yes/no) 0.95 0.22 < 0.01 2.59 (1.69, 3.96) 1.10 0.23 < 0.01 3.00 (1.93, 4.66)

CI = confidence interval; OR = odds ratio; SE = standard error.

FIGURE 5. Map of model-predicted probability of low community sanitation coverage (< 20%) in Amhara Region, Ethiopia, 2011–2014, based
on selected environmental and sociodemographic factors and adjusted for survey season and year.
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Soil conditions related to instability and rock content were
identified in a global review as challenges to both construction
and durability of household latrines.10 The recommended
depth for pit latrines is approximately 2 m, though the specific
pit volume needed depends on intended lifespan, the number
of users, and anal cleansing materials used.8 In their guide to
onsite sanitation, Franceys and others described how cohesive
soils may appear self-supporting when first excavated, but
over time bonding properties of the soil may be lost, making
it almost impossible to predict if or when soil may collapse.44

At approximately 1,880 kg/m3, soil’s weight alone could exert
extreme pressures on pit walls, which would be exacerbated
by other factors, such as natural zones of weakness, water
content, weather conditions, and the depth of excavation, that
influence the stability of excavation walls.41

The stability of latrine pits influences both adoption and
sustainability of latrines in sub-Saharan Africa. In Ghana,
Jenkins and Scott described how soil conditions were an
external barrier to sanitation adoption that operated late in
the decision process, after households show preference and
intention, by impeding construction.12 Similarly, in Benin
and Tanzania, individuals motivated to adopt sanitation
reported that unsuitable soil conditions were an obstacle.13,45

After sanitation has been adopted, collapse of latrine pits
due to weak soil structure, particularly during the rainy sea-
son, was reported as a problem hindering sustainable sanita-
tion coverage in Kenya.11

In addition to the influence of poor soil conditions, heavy
rain and flooding can exacerbate structural weaknesses of the
rudimentary onsite sanitation facilities typically found in sub-
Saharan Africa.46 A follow-up study of 666 latrines provided in
the Gambia documented that 77 of the latrines collapsed over
the course of two wet seasons.16 The authors of that study
described how sandy soil became liquefied, causing the latrines’
cement slab and ring block to sink or collapse under their own
weight. In contrast to our hypothesis, we found that areas with
higher annual rainfall had significantly lower odds of low sanita-
tion coverage, adjusting for other factors in the model. As such,
annual rainfall may predict sanitation coverage, but it may not
reflect mechanisms leading to low sanitation. An alternative
predictor of low sanitation for future studies may be rainfall
intensity. Whether the surveys in our study were conducted
during the main rainy season, from June to September, was
found to be strongly associated with higher odds of low sanita-
tion coverage, which could also reflect the influence of rainfall
on coverage estimates. This measure was included as a control
variable. Research and evaluation activities to estimate sanita-
tion coverage levels using household surveys should consider
the season in which surveys were conducted.
The indicator for low-lying areas with higher moisture

potential highlighted areas on the northeastern and northern
edges of Lake Tana. Of all the predictors, this measure had
the strongest association with low sanitation coverage. These
areas flood during the rainy season, and inhabitants reportedly
continue to reside in the area during these times. In Kenya,
flooding was a major constraint to sanitation coverage in cer-
tain districts, where latrines were reported to fill up and over-
flow or collapse during the rainy season. After such events,
residents reported preferring open defecation to the difficult
and expensive repairs needed for their latrines.11

Flooding, high rainfall, and soil type have been described
previously as challenges for sanitation.11–13,16,45,46 Our study

quantifies the association of these factors with frequency of
low sanitation coverage in communities across Amhara Region.
The FMOH acknowledged the influence of environmental
factors like soil structure, topography, and climate in its 2005
National Hygiene and Sanitation Strategy (NHSS).47 There-
fore, what may be needed in areas that are identified to be
at high risk of low sanitation coverage is information and
capacity building on appropriate and affordable sanitation
solutions for the environmental challenges they face. For
example, it is generally recommended that all latrine pits are
lined to their full depth to prevent collapse.44 Pit collapse
can be hazardous to the person excavating, disturbing to
users, and can discourage households from sustaining improved
sanitation practices.41,44,47 Stabilized soil blocks are an environ-
mentally sustainable and affordable alternative to fired brick
that are gaining recognition in east Africa and could be used
for lining pit latrines.48

Alternative approaches may also be needed to provide
sanitation for populations living in flood-prone areas. A full
review of solutions is beyond the scope of this discussion, but
some sustainable onsite sanitation options exist for flood-
prone areas.49 Raised pit latrines have been constructed in the
riverine areas of Bangladesh, where communities inhabit the
small islands that are left as rivers subside and are periodically
inundated when rivers rise again.44 An intervention program
there raised houses, tube wells, and pit latrines on earthen
“plinths” to protect them from floodwaters and reported suc-
cess extending sanitation coverage and asset protection to the
residents of these communities.50 The intervention provided a
subsidy for families to raise these plinths. Flexibility for crea-
tive finance options, including subsidies where adverse ground
conditions were confirmed, is also possible within the NHSS
and protocol.47,51 The model developed by our study could
assist sanitation authorities and programs to identify areas
where alternate interventions may be needed, based on chal-
lenging environmental conditions.
Our selected model had a reasonably high ability to classify

communities as having low sanitation coverage by combining
data from trachoma impact surveys and publicly available
environmental data sources. This model was validated among
communities distinct in both time and location. Interestingly,
model discrimination was only slightly improved by inclusion
of a measure of community wealth. This community wealth
measure was derived from information collected at great cost
during extensive population-based, household surveys. Com-
paring model prediction utilizing only community-level versus
household-level information alongside measures of pit latrine
construction quality and maintenance would be an interesting
next step.
To our knowledge, a predictive model for sanitation cover-

age using environmental and sociodemographic conditions has
not been developed previously. Care was taken to choose
optimal data sources, but their accuracy at the scale used
might be limited. For example, the HWSD was originally
compiled from different sources with varying quality per
region, though east Africa was covered by more reliable data
sources.24 Regardless, the predictive model documented here
can only improve in the future as more environmental infor-
mation becomes available.
The map based on the predictive model highlights spatial

heterogeneity in the probability of low sanitation coverage
across Amhara Region. Additional studies to examine and

717PREDICTION OF LOW SANITATION COVERAGE



confirm the reasons for low coverage in these areas are
warranted. A recent study described high geographic inequality
for improved sanitation within countries across sub-Saharan
Africa.52 Pullan and other suggested that areas with lowest
access to sanitation are likely the most challenging in terms
of environmental conditions.52 Our results demonstrate that
environmental conditions, independent of community wealth,
significantly predict low sanitation coverage, and that a mea-
sure of community wealth improved prediction only slightly.
Areas hyperendemic for trachoma, like Amhara Region, or
where interventions are being scaled up could benefit from
additional tools to help prioritize and target control efforts.
This prediction tool may benefit programs in Amhara Region
and elsewhere by improving the targeting of information and
resources to bring about practical and sustainable sanitation
improvements to these areas most in need.
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