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The last decade has witnessed a steady reduction of the malaria burden worldwide. With various countries targeting disease
elimination in the near future, the popular parasite infection or entomological inoculation rates are becoming less and less
informative of the underlying malaria burden due to a reduced number of infected individuals or mosquitoes at the time of
sampling. To overcome such problem, alternativemeasures based on antibodies against specificmalaria antigens have gained recent
interest in malaria epidemiology due to the possibility of estimating past disease exposure in absence of infected individuals. This
paper aims then to review current mathematical models and corresponding statistical approaches used in antibody data analysis.
The application of these models is illustrated with three data sets from Equatorial Guinea, Brazilian Amazonia region, and western
Kenyan highlands. A brief discussion is also carried out on the future challenges of using these models in the context of malaria
elimination.

1. Introduction

Malaria is a global health problem with more than 1 billion
people estimated to be at risk.This infectious disease is caused
by Plasmodium parasites transmitted to humans through
bites of infected Anopheles mosquitos. Geographically, Plas-
modium falciparum (P. falciparum) parasites predominate
in sub-Saharan Africa while Plasmodium vivax (P. vivax) is
the major infectious agent in South America and Southeast
Asia. According to the latest World Malaria Report [1],
disease mortality and risk have been steadily decreasing
in the last decade to the point that many countries are
already targeting malaria elimination and eradication [2–
5]. This decreasing trend in malaria transmission intensity,
although highly beneficial to the affected populations, brings

additional challenges to disease surveillance and elimination
(reviewed in [6]). One of these challenges is related to the use
of the current metrics of malaria risk in populations where
disease transmission intensity is low and potentially affected
by seasonal effects. The popular parasite rate is determined
by the proportion of infected individuals at time of the
survey. However, in low transmission settings, this measure
is critically affected by the different performance of current
diagnostic tools to detect the presence of infection while
screening asymptomatic individuals. Another difficulty of
using such measure is the high chance of finding only a few
infected individuals in the sample, thus, having limited power
to discriminate disease hotspots fromother less-affected sites,
as demonstrated in studies from Brazil [7] or Somalia [8].
The entomological inoculation rate is yet another popular
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measure of malaria risk. It is defined by the frequency at
which people are bitten by infectious mosquitoes, thus, being
informative on the direct interaction between the human
andmosquito populations.The gold standard to estimate this
measure is to use human-landing catches where mosquitoes
are caught as they attempt to land on the exposed limbs of
field workers [9, 10]. Although alternative methods exist in
the literature, the estimation of the entomological inoculation
rate is in general a laborious and time-consuming task in
low transmission settings owing to a low number of infected
mosquitoes [11]. It is also affected by seasonal effects and
mosquito population dynamics and the degree of mosquito
attractiveness to the human hosts or the chemicals used in
the study [11].

To tackle the limitations of the above malaria risk
measures, alternative indicators based on antibodies against
different malaria antigens have been proposed [12] and
tested in different epidemiological contexts [7, 8, 13–16].
The rationale of using antibody data is that the antibody
concentrations in the serum are a direct correlate of parasite
exposure, thus, providing information on current and recent
infections. The temporal stability in antibody concentrations
is an important advantage to reduce any seasonal effect on
malaria transmission. In seroepidemiological studies, the
most popular antibodies are those against the blood-stage
apical membrane antigen-1 (AMA1) and merozoite surface
protein-1 (MSP1) [7, 8, 13–16] owing to their broad immuno-
genicity and putative role in malaria vaccine development
[17, 18]. Recent research identified other parasite targets [19,
20] but these remain to be tested in different epidemiological
settings. Experimentally, antibody quantification is usually
done by means of traditional enzyme linked immunosorbent
assays [21]. Optical densities or titres in arbitrary units are
then used for the subsequent data analysis.Themost popular
approach is to first define the serological status, seropositive
or seronegative, of each individual. One then calculates the
so-called seroprevalence that is defined by the proportion of
seropositive individuals in the sample. Several studies showed
an increased resolution of seroprevalence in discriminating
sites with different endemicity levels in relation to parasite
rate [7, 8]. Further analysis is then carried out in order
to estimate current malaria transmission intensity. Since
seroprevalence tends to increase with age as a result of
augmenting immunity against malaria parasites, different
stochastic models can be constructed for the data using age
as a proxy of time. The common assumption to all these
models is that individuals transit between seronegativity and
seropositivity states upon malaria exposure or absence of it.
In this scenario, one typically estimates the rate by which
seronegative individuals become seropositive, the so-called
seroconversion rate (SCR). SCR was found to correlate well
with the parasite rate [13] or the entomological inoculation
rate [12], thus, capturing the underlying malaria transmis-
sion intensity. Moreover, SCR also strongly correlates to
the annual parasite index (the number of confirmed cases
during 1 year/population under surveillance)× 1000—usually
calculated by official health authorities [7].

This paper aims to review the mathematical and statis-
tical aspects underlying the analysis of antibody data for

inferring malaria transmission intensity. Special attention
will be given to current methods aiming to define seroposi-
tivity and the subsequentmathematicalmodels for estimating
SCR under different epidemiological settings: stable malaria
transmission intensity, abrupt reduction in SCR due to a
malaria control intervention, change in SCR due to a putative
age-dependent behavior, detection of migration effects, and
detection of individual level heterogeneity through a set of
covariates. Models for antibody acquisition using antibody
titres themselves will also be described. Three different
data sets from Bioko Island in Equatorial Guinea [15],
Jacarecanga from the Brazilian Amazonia region [7], and
western highlands from Kenya [22] are used to illustrate the
application of these models to real-world problems. Finally,
future analytical challenges will be discussed in the context
of malaria elimination and eradication.

2. Mathematical Approaches to
Analyzing Serology Data

2.1. Defining Seropositivity. In practice, there are two popular
approaches to determine the serological status of an individ-
ual. The first approach uses an additional sample of nonex-
posed individuals in order to determine the distribution of
the antibody levels referring to the underlying seronegative
population. Statistically, the antibody levels of this sample
are usually log transformed in order to approximately obtain
a Gaussian distribution for the data. The serological classi-
fication of each individual in the sample is done by the 3𝜎
rule for Gaussian distributions described in any introductory
textbook of statistics. In more detail, this rule defines the
range of antibody levels containing a 0.999 probability under
the assumption of a Gaussian random variable for the data.
One then classifies the individuals as seropositive if the
respective antibody levels exceed the mean plus 3 times the
standard deviation of the seronegative population, otherwise
the individuals are considered as seronegative. This simple
approach, despite ensuring a high probability of correctly
classifying exposed individuals, has the disadvantage of
underestimating seroprevalence.

The second approach focuses on the data under analysis
only. The basic assumption is that the sample is composed of
a mixture of latent seronegative or seropositive populations.
The respective data is then analyzed by the so-called two-
component mixture Gaussian model invoking a Gaussian
distribution with average value 𝜇

0
and standard deviation

𝜎
0
for the seronegative population and another one with

average value 𝜇
1
and standard deviation 𝜎

1
for the seropos-

itive population. For independent and identically distributed
random sample of 𝑛 individuals, the corresponding sampling
distribution is described by the following equation:
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density functions of the Gaussian distributions associated
with seronegative and seropositive populations, respectively,
and 𝜋 is the probability of sampling a seropositive individ-
ual from the population. Maximum likelihood estimation
is facilitated by using the expectation-maximization (EM)
algorithm that can be found in the mixtools package for
the R software [23]. The next stage of the analysis is to
assign each individual to each corresponding serological
population. Again, one can use the 3𝜎 rule as described
above [14]. An alternative way to perform such classification
is to jointly use the probabilities of classifying an individual
with antibody level 𝑥 as either seropositive or seronegative
and then specify appropriate cut-off values to determine
the serological status of each individual. The probabilities of
classifying an individual with antibody level 𝑥 as seropositive
and seronegative are, respectively, given by
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The classification rule of the 𝑖th individual in the sample is
then described as follows:
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(3)

where 𝑐
− and 𝑐

+ are the cut-off values in the antibody
distribution that ensure a given classification probability, for
instance, 90%. Note that individuals with antibody levels
between 𝑐

− and 𝑐
+ are deemed indeterminate due to the

uncertainty in the corresponding serological classification.
Besides checking whether model assumptions hold true on
the data under analysis, an additional assessment of the
quality of the classification rule is to report the size of this
indeterminate region and the proportion of indeterminate
individuals in the sample.

Example I (Bioko Island). In 2004 the health authority
of Equatorial Guinea launched integrated treatment and
mosquito control programs in the Bioko Island. After 4
years of their initiation, a large cross-sectional survey was
conducted at 18 sentinel sites in the island in order to assess
the impact of these programs on malaria transmission [15].
IgG antibody levels of 6400 individuals were measured for P.
falciparumAMA1 by ELISA.The antibody levels as measured
by arbitrary titres range from −116.3 to 2618.9, suggesting a
wide breadth of immune responses to this malaria antigen
(Figure 1(a)). The average antibody level was 390.8 while
the standard deviation was estimated at 457.4. As expected
from data of a malaria endemic region, the corresponding
quantile-quantile plot showed a strong departure of the data
in relation to the Gaussian distribution due to presence of
recently or currently exposed individuals with high antibody
levels (Figure 1(b)). By fitting the above two-component
Gaussian mixture model to the data, the serological status of

each individual was determined by (3) with 𝑐
−

= 97.0 and
𝑐
+
= 200.8 (Figure 1(c)). These cut-off values suggested that

31.2% and 56.1% of the sample consisted of seronegative and
seropositive individuals, respectively.The remaining 12.7% of
the sample had unclear serological classification (Table 1).

The above Gaussian mixture model can be extended to
the setting where there are more than two components.
Immunologically, such extension is in line with the notion
that antibody levels can be boosted by frequent malaria
exposure [24]. In this scenario, each component can be
interpreted as corresponding to a specific degree of malaria
exposure: not exposed, once exposed, twice exposed, three
times exposed, and so forth.

Under the assumption of a knownnumber of components
for the data (say 𝐾 + 1), the corresponding sampling distri-
bution is given by
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seropositive and seronegative individuals given antibody
level 𝑥 can be generalized as follows:
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The corresponding classification rule is also given by (3) but
now the cut-off valuesmust be recalculated according to these
new classification probabilities. As for the two-component
Gaussian mixture model, maximum likelihood estimation
via EM algorithm can also be performed to estimate the
unknown parameters {𝜇

𝑘
, 𝜎
𝑘
, 𝜋
𝑘
, 𝑘 = 0, . . . , 𝐾}. Starting

this estimation algorithm with different initial conditions is
recommended to obtain the correct convergence to the global
maxima of the log-likelihood function.

An important question in practice is to know how many
components one must consider to describe the data well. In
terms of maximum likelihood estimation, this question can
be answered by using the profile likelihood method. This
method proceeds as follows: (i) start the analysis with𝐾 = 1,
(ii) obtain the corresponding maximum likelihood estimates
and then calculate the respective value of the likelihood func-
tion, (iii) add another component into the analysis and repeat
step (ii), and (iv) keep increasing the number of components
until reaching a realistic maximum value for that parameter.
The optimal number of components is the one providing
the maximum value of all maximum likelihood values cal-
culated for each number of components considered in the
analysis. The profile likelihood method, despite estimating
the total number of components, brings potential problems
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Figure 1: Determining seropositivity of anti-AMA1 antibodies from Bioko Island. (a) Probability density plot for the titre data. (b) Gaussian
(orNormal) quantile-quantile plot for the data. (c) Classification probability curves predicted by the two-componentGaussianmixturemodel.
(d) Classification probability curves predicted by the best three-componentGaussianmixturemodelwhere the intermediate component refers
to a seropositive population.

of model overfitting and uncertainty in the classification rule.
Overfitting can be obtained by considering a model with too
many components. This problem can be surpassed by using
different information measures with the aim of weighting
the quality of the data fitting with the intrinsic complexity
of a model. The most popular information measure is the
Akaike’s information criterion (AIC) defined by twice the
absolute value of the log-likelihood function evaluated at
the maximum likelihood estimates (measuring the quality
of the respective data fitting) plus twice the total number
of estimated parameters (estimating the intrinsic model
complexity). Since models are penalised in this criterion
as function of the total number of parameters, one should
choose the model that shows the lowest AIC value among all
models tested. Uncertainty in the classification rule can arise
fromdatawhere the different serological populations are tight
together in the antibody distribution. A simple solution is to
choose the model with the highest likelihood but implying a

sufficiently clear serological classification of the individuals
in the sample.

An additional difficulty in using a Gaussian mixture
model with more than two components is the ambiguity in
linking each component to the corresponding serological sta-
tus. Let us consider the three-component mixture model for
the moment. In this setting, the components with the lowest
and highest average titres are easily interpreted as related to
seronegative and seropositive populations, respectively. On
the one hand, the component with intermediate average titres
can be interpreted as a seronegative population if one assumes
two populations with different genetic backgrounds. This
interpretation agrees with studies from Burkina Faso where
the Fulani typically have higher antibody concentrations at
baseline in comparison to other ethnic groups living in the
same area [25, 26]. On the other hand, this intermediate com-
ponent can also be interpreted as a seropositive population
under the assumption of immunity boosting upon recurrent
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Table 1: Gaussianmixture modelling analyses for determining seropositivity to AMA1 titre data in a sample of around 6400 individuals from
Bioko Island using 90% as the cut-off value for the correct classification probability.

Number of
components AICa Mean (SD)b Definition of Cut-off valuesc Classification probabilitiesd

𝑆
+ and 𝑆

−
𝑐
−

𝑐
+

𝑃
𝑆
− 𝑃ind 𝑃

𝑆
+

2 84601.2 59.3 (48.4) 𝑆
−
= 1, 𝑆+ = 2 95.9 202.9 31.2 12.7 56.1

668.1 (450.4)
3 83395.2 35.8 (26.8) 𝑆

−
= 1, 𝑆+ = 2, 3 44.6 109.8 19.3 13.8 66.8

214.0 (115.4) 𝑆
−
= 1, 2, 𝑆+ = 3 103.8 515.2 32.3 33.3 34.4

848.3 (425.6)
4 82887.4 14.1 (9.1) 𝑆

− = 1, 𝑆+ = 2, 3, 4 NA 37.2 — 17.0 83.0
64.7 (32.4) 𝑆

−
= 1, 2, 𝑆+ = 3, 4 34.0 149.5 16.1 22.1 61.9

252.2 (120.6) 𝑆
−
= 1, 2, 3, 𝑆+ = 4 135.4 560.3 36.4 31.3 32.3

873.2 (420.6)
aThe best model is the one providing the lowest estimated value.
bMean and standard deviation (SD) are for each Gaussian component in the model ordered by the corresponding average titres.
c
𝑐
− and 𝑐+ are the cut-off values for determining the seronegative and seropositive populations, respectively.

d
𝑃
𝑆
− , 𝑃ind, and 𝑃𝑆+ are the estimated classification probabilities of seronegative, indeterminate, and seropositive individuals, respectively.

malaria exposure as described above.This and the component
with the highest average concentrations are then related
to exposed and boosted populations, respectively. Similar
reasoning can easily be applied to the scenario of a higher
number of components. For that one just needs to consider
the putative existence of more than one seronegative and
seropositive population. In absence of additional information
about the populations under study, it is difficult to resolve
the ambiguity about component interpretation. A possible
solution is to first understand how the performance of the
classification is affected by changing the interpretation of
the components and then make a judgement call upon the
reasonability of the corresponding results.

Example I (Bioko Island continued). Previous analysis was
extended to fit Gaussian mixture models with more than
two components. Models with three and four components
seemed to describe the data better than the onewith two com-
ponents only, according to AIC (Table 1). Despite providing a
good balance between data fitting and model complexity, the
four-componentmodels implied high percentages of individ-
uals with unclear classification (>22%).The bestmodel would
appear to be the onewith three components where the second
and the third components were interpreted as referring to
seropositive populations. This model improves the quality
of the data fitting and implied a percentage of individuals
with unclear classification (14%) similar to the one obtained
from the two-component model. Comparing to previous
results for the two-component model, the inclusion of a
third additional component suggested that the seropositive
population could in fact be split into exposed and boosted
individuals with average antibody titres of 214.0 and 848.3,
respectively. The new cut-off values for the classification rule
led to the classification of 19.3% and 66.8% of the sampled
individuals as seronegative and seropositive, respectively.

Recent research has highlighted the great potential of
using Bayesian approaches in Gaussian mixture models. The

major advantage of these methods is to provide a coherent
and elegant analytical framework for estimating the total
number of components from the data. Since this number is
unknown quantity, it is considered as random variable with a
given probability distribution before conducting data analysis
the so-called prior distribution. Bayes theorem then allows
linking the prior distributions for all unknown parameters
with the sampling distribution of the data. As a result, prior
distributions of the parameters are updated by the data,
giving rise to the so-called posterior distributions. These
latter distributions are then the core of the Bayesian statistical
inference. The current success of Bayesian approaches is
intimately related to the use of powerful simulation methods
in order to determine the posterior distributions given the
data. In Gaussian mixture models, the Markov Chain Monte
Carlo with reversible jumps is a popular choice for posterior
estimation [27]. Similar simulation algorithm can theoret-
ically be applied to multivariate Gaussian mixture models
[28]. These models are particularly suitable for analyzing
data of more than one malaria antigen simultaneously (e.g.,
for analyzing AMA1 and MSP1 data together). A Bayesian
two-component mixture model using arbitrary probability
distributions for the latent populations was proposed for
classifying fever and nonfever malaria cases according to
the underlying parasitaemia [29, 30]. Up to now a single
seroepidemiological study in malaria [14] is known to have
analyzed data via Bayesian methods and, thus, little can be
said about their performance in practice.

2.2. Detecting Stable Malaria Transmission Intensity Using
Seropositivity Data. After classifying individuals into their
serological status, the corresponding data analysis proceeds
by estimating stochastic models that aim to inform about the
underlying malaria transmission intensity. The most popular
models belong to the class of the reversible catalytic models
(RCMs) [31–33]. When applied to serological data from
infectious diseases that do not induce long-lasting immunity,
such as the case of malaria, these models assume that age
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Figure 2:Analysis of seropositivity data. (a)Compartmental representation of the reversible catalyticmodelwhere individuals transit between
seronegative and seropositive states with rates 𝜆 (SCR) and 𝜌 (SRR). (b) Compartmental representation of the superinfection model in which
there aremultiple seropositive states owing to immunity boosting upon recurrentmalaria infections. (c) Analysis of seropositivity AMA1 data
from northwest region of Bioko Island under the assumption of stable malaria transmission over time. (d) Similar data analysis for northeast
region of Bioko Island. In plots (c) and (d), the dots represent the observed seroprevalence of distinct age groups by splitting the sampled age
distribution into 7.5% centiles. To plot each seroprevalence, the median value of each age group was used.

is deemed an appropriate proxy of the historical time so
that data from each individual can be seen as a random
realization of a seroconversion-seroreversion stochastic law.
More precisely, individuals are born as seronegative but can
be converted into seropositive upon malaria exposure. In
the absence of frequent malaria exposure, individuals can
revert to a seronegative state (Figure 2(a)). Mathematically,
this idea can be described as a Markov chain model where
one must specify the average rates by which the individuals
become seropositive and return to the seronegative, the sero-
conversion, and seroreversion rates (SCRs and SRRs), respec-
tively. Epidemiologically, SCR is related to the underlying

disease transmission intensity as it correlates well with typ-
ical malariometrics, such as parasite rate or entomological
inoculation rate. It is also related to (host) factors affecting
antibody production. In contrast, SRR reflects host factors
(e.g., genetics or age) affecting antibody decay in absence of
malaria infection.

The simplest model for the data is to assume stable
and constant malaria transmission intensity over time. A
fixed SRR is also assumed because seropositivity data has
limited power to describe variations in that parameter. For
mathematical simplicity, the seroconversion-seroreversion
dynamics of each individual is easily described by a Markov
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chain with two states, seronegative (𝑆−) and seropositive (𝑆+).
The resulting RCM is described by the following probability
of an individual aged 𝑡 being seropositive:

𝑝
𝑆
+ (𝑡) =

𝜆

𝜆 + 𝜌

(1 − 𝑒
−(𝜆+𝜌)𝑡

) , (6)

where 𝜆 and 𝜌 are the SCR and SRR, respectively. It is worth
noting that the above probability is an increasing function of
age reaching a plateau at 𝜆/(𝜆 + 𝜌) when age goes to infinite.

The above model can be extended to the so-called super-
infection model (SIM), where immunity boosting can occur
owing to recurrent malaria infections [24]. In line with the
Gaussian mixture models with more than 2 components for
antibody titre data, the notion of boosting can be translated
into distinct seropositive states, for instance, 𝑆+, 𝑆++, and
𝑆
+++, depending on the cumulative level of malaria expo-
sure (Figure 2(b)). In particular, a seronegative individual
becomes a first-order seropositive upon a malaria infection.
This same individual while still being first-order seropositive
can evolve to a second-order seropositive upon an additional
malaria exposure and so forth. A practical implication of
this idea is a longer sojourn time in the seropositive state(s)
in relation to the one predicted by RCM. Moreover, since
there are multiple latent seropositive states, the estimates of
the seroconversion rate tend to be higher in this model than
in its reversible catalytic counterpart for the same data. The
probability of an individual aged 𝑡 being at any seropositive
state is now given by

𝑝
𝑆
∗ (𝑡) = 1 − 𝑒

−(𝜆/𝜌)(1−𝑒
−𝜌𝑡
)
, (7)

where 𝑆∗ represents the set of all possible seropositive states
an individual can belong to. More details on the correspond-
ing mathematical derivation can be found elsewhere [24]. In
practice, the application of this model to real-world problems
shows limitations in terms of estimation [34]. On the one
hand, SIM and RCM are approximately equivalent to each
other in low transmission settings due to the rarity of boost-
ing events. On the other hand, seroreversion is a rare event
in high transmission settings due to boosting. Thus, for the
matter of simplicity, amodel considering seroconversion only
is more reasonable for that situation. Interestingly, (6) and (7)
when 𝜌 → 0 can be rewritten as the classical complementary
log-log model [35]:

log [− log (1 − 𝑝
𝑆
+ (𝑡))] = log 𝜆 + log 𝑡. (8)

Despite having limited application in malaria research [36],
the complementary log-log model has been used in non-
malaria immunological settings where a single immunization
is thought to exert a permanent seropositive phenotype [37,
38].

With respect to model estimation, seropositive data
adjusted for age is organized as a two-way frequency table
with𝐴 rows and two columns, where𝐴 is the total number of
different age values in the sample and the two columns refer to
the serological status of the individuals (i.e., seronegative and
seropositive). In this data format, the sampling distribution
is assumed to be a Binomial-product sampling distribution,

an independent Binomial distribution per age value and
probability of success given by the model under fitting; that
is,

𝑓 ({𝑚
𝑡
} | {𝑛
𝑡
} , 𝜆, 𝜌)

=

𝐴

∏

𝑡=1

(

𝑛
𝑡

𝑚
𝑡

) [𝜋 (𝑡)]
𝑚𝑡

[1 − 𝜋 (𝑡)]
𝑛𝑡−𝑚𝑡

,

(9)

where 𝑚
𝑡
and 𝑛

𝑡
are the frequency of seropositive and

all individuals aged 𝑡 years, respectively, and 𝜋(𝑡) is the
expected seroprevalence at age 𝑡 described by (6), (7), or (8) if
estimating RCM, SIM, or the complementary log-log model,
respectively. Maximum likelihood estimation can be applied
to the data. Stata and R scripts for data fitting are currently
available from the authors upon request.

Example I (Bioko Island continued). As mentioned earlier,
the cross-sectional survey from Bioko Island consisted of 18
sentinel sites spread over the island. To increase statistical
power, the corresponding data was analyzed by considering 5
major geographical regions: northeast, northwest, southeast,
southwest, and Malabo. A comprehensive analysis of this
data set can be found in the original study report [15]. For
illustrative purposes, the statistical analysis was carried out
on data from northeast and northwest regions specifically.
According to the seropositivity determination step, there
are 1332 and 877 individuals with an assigned serological
status from northwest and northeast regions, respectively.
The corresponding overall seroprevalence was estimated at
86.7% (95% CI: 84.8%–88.5%) and 69.9% (95% CI: 66.7%–
72.9%). These estimates are higher than the ones reported in
the original study (69.2% and 46.6%, resp.) because this study
used a two-component Gaussian mixture model for titre
data, thus, predicting a higher cut-off value for seropositivity
(Table 1). As expected from a malaria endemic area, the
seroprevalence increased with age in both regions (Figures
2(c) and 2(d)). With respect to northwest region, both
models described the seroprevalence curvewell (Figure 2(c)).
However, SIM provided a slightly better fit to the data than
RCM (log-likelihood = −69.71 and −71.31, resp.), a result
in line with the use of a three-component mixture model
for seropositivity determination. Also in agreement with
theoretical expectations was the higher SCR obtained from
SIM in relation to the one predicted by RCM (0.359 versus
0.286; Table 2). For northeast region, the overall seropreva-
lence is decreased, thus, implying lower SCR estimates for
RCM and SIM (0.124 and 0.139 for RCM and SIM, resp.).
Although RCM showed a better fit to the data than its SIM
counterpart (log-likelihood = −96.87 and −102.95, resp.),
both models overestimated the seroprevalence of young aged
individuals (up to 10 years ago) (Figure 2(d)) and, thus, they
could not be considered as good candidate models for the
data. Such overestimation suggested that young aged and
older individuals have different serological dynamics that
cannot easily be captured by a stable malaria transmission
assumption. An easy explanation is the putative reduction in
malaria transmission intensity after the initiation of malaria
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control programs in 2004 in the island.This and other related
topics will be explored in the following section.

2.3. Detecting Heterogeneity inMalaria Transmission Intensity
Using Seropositivity Data. Aunique advantage of using serol-
ogy data is the possibility of detecting heterogeneity in dis-
ease transmission across different epidemiological situations.
This advantage has been demonstrated in several studies
where seroprevalence taken as a function of age qualitatively
changes at a given age value. Such change might be attributed
to an abrupt reduction in malaria transmission after the
initiation of amalaria control or elimination program [15, 16].
Similar phenomenonwas found for Trachoma [39] or Chagas
disease [40]. Another possible explanation for that change
is related to distinct malaria risk between young and older
individuals owing to behavioral factors [41]. A third and
last explanation is the occurrence of migration waves over
time [42], as observed in Chagas disease [43]. A detailed
description of these scenarios follows.

2.3.1. Detecting Historical Changes in Malaria Transmission.
The commitment of many national health authorities in
reducing or targeting elimination in future years brings future
challenges in assessing the real impact of the designed inter-
ventions on the target populations. This assessment can be
made by analyzing seropositivity data conveniently. For that
one assumes there was an abrupt reduction of malaria trans-
mission intensity at some time point before data collection. It
is expected that an abrupt reduction in malaria transmission
intensity would translate in a similar effect on the SCR.
Sampled individuals are then split according to their date of
birth in relation to the calendar time when the reduction
in malaria transmission intensity actually occurred. More
precisely, the serological history of individuals born before
that reduction contemplates a first time period where the
past SCR operates followed by a second period where the
current SCR sets the rules. In contrast, individuals born after
the reduction would lie down on that second time period
and, thus, their serological dynamics are simply described by
previous RCM and SIM for stable malaria transmission.

To calculate the seroprevalence of an individual with
age 𝑡 that experienced a reduction in malaria transmission
intensity at time 𝜏 before sample collection, one must
consider the sum of two probabilities associated with the
following mutually exclusive events: (i) an individual became
seropositive between birth and 𝑡−𝜏 and remained so after that
and (ii) an individual remained seronegative between birth
and 𝑡−𝜏 and became seropositive after that. Since RCMcan be
formulated as a two-state Markov chain, the seroprevalence
for individuals with age 𝑡 is calculated by multiplying the
vector of probabilities associated with an individual being
seropositive and seronegative at time 𝑡 − 𝜏 (see (6)) by the
probability transition matrix of the second Markov chain
associated with the current SCR and evaluated at time 𝜏. The
resulting expected seroprevalence is then given by
𝑝
𝑆
+ (𝑡)

=

{

{

{

𝜃
2
(1 − 𝑒

−𝛾2𝜏
) + 𝜃
1
(1 − 𝑒

−𝛾1(𝑡−𝜏)
) 𝑒
−𝛾2𝜏

, if 𝑡 > 𝜏

𝜃
2
(1 − 𝑒

−𝛾2𝑡
) , if 𝑡 ≤ 𝜏,

(10)

where 𝜃
𝑖
= 𝜆
𝑖
/(𝜆
𝑖
+ 𝜌), 𝛾

𝑖
= 𝜆
𝑖
+ 𝜌, 𝑖 = 1, 2, 𝜆

1
and 𝜆

2
are the

past and current SCR under the restriction of 𝜆
2
< 𝜆. Similar

argument can be applied to the superinfectionmodel, leading
to the following seroprevalence:

𝑝
𝑆
+ (𝑡)

=

{

{

{

1 − 𝑒
−(𝜆1/𝜌)(𝑒

−𝜌𝜏
−𝑒
−𝜌𝑡
)−(𝜆2/𝜌)(1−𝑒

−𝜌𝜏
)
, if 𝑡 > 𝜏

1 − 𝑒
−(𝜆2/𝜌)(1−𝑒

−𝜌𝑡
)
, if 𝑡 ≤ 𝜏.

(11)

With respect to parameter estimation, the sampling distribu-
tion is again assumed to be a Binomial-product distribution
((9), where 𝜋(𝑡) is described by (10) or (11)). To estimate
all parameters (𝜆

1
, 𝜆
2
, 𝜌, and 𝜏) via maximum likelihood,

a profile likelihood approach is usually applied to the data
under analysis: (i) set 𝜏 = 1, (ii) determine the respective
maximum likelihood estimates for the remaining parameters,
(iii) calculate the corresponding log-likelihood function, (iv)
increase one unit to 𝜏 and repeat steps (ii-iii), and (v)
keep increasing 𝜏 until reaching the maximum expected
value for that parameter. The overall maximum likelihood
estimates are those associatedwith the value of 𝜏 that provides
the maximum value of all log-likelihood values. Although
statistically sound, thismethod tends to overestimate the true
change point (i.e., estimates located further in past than they
should), even if using a large sample size (our own results).
This suggests that seropositivity data might not have enough
information to estimate that parameter with high precision.
Therefore, the interpretation of a specific estimate for the
reduction time point should be done with caution. In prac-
tice, models assuming a stable or an abrupt reduction in
malaria transmission intensity must compare to each other
for the same data. A log-likelihood ratio test can then be
applied to the corresponding results using the following test
statistic under the null hypothesis:

𝐿 = (−2) × (Λ stable − Λ reduction)  𝜒
2

(2)
, (12)

where Λ stable and Λ reduction are the log-likelihood functions
evaluated at the maximum likelihood estimates for the
models assuming a stable or an abrupt reduction in malaria
transmission intensity, respectively, and 𝜒

2

(2)
is a Chi-square

distribution with the two degrees of freedom resulting from
the difference in the total number of parameters of the
models under testing (𝜆 and 𝜌 versus 𝜆

1
, 𝜆
2
, 𝜌, and 𝜏). For

a 5% significance level, 𝑝 values < 0.05 show evidence for a
significant change in disease transmission.

With the increasing complexity of themodels under anal-
ysis, statistical inference via maximum likelihood methods
becomes more cumbersome due to possible lack of con-
vergence of the numerical algorithms leading to maximum
likelihood estimates [15] and the inaccuracy of large sample
approximations for the confidence intervals and test statistics
[34]. These problems can be surpassed by using Bayesian
inference. In this approach, each parameter in a model has
an associated prior distribution that, in turn, is updated with
the observed data by means of Bayes theorem. The resulting
distribution is in the core of Bayesian inference and called
posterior distribution. Posterior mean and median of this
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Table 2: Maximum likelihood estimates for seroconversion and seroreversion rates (SCRs and SRRs, resp.) of antibodies against AMA1
expected for northwest and northeast regions of Bioko Island using the reversible catalytic and superinfection models (RCMs and SIM, resp.)
under the assumptions of constantmalaria transmission intensity over time and an abrupt reduction inmalaria transmission at a given change
time point before data collection.

Region Model Malaria transmission SCR (95% CI) SRR (95% CI) log-likelihood
Northwest RCM Constant 0.286 (0.249, 0.328) 0.008 (0.005, 0.015) −71.31

SIM Constant 0.359 (0.307, 0.419) 0.091 (0.069, 0.120) −69.71
Northeast RCM Constant 0.124 (0.109, 0.141) 0.006 (0.004, 0.011) −96.87

SIM Constant 0.139 (0.119, 0.163) 0.039 (0.028, 0.056) −102.95

RCM Abrupt reduction (change point = 6) 0.274 (0.200, 0.376) 0.009 (0.005, 0.014) −84.25
0.077 (0.058, 0.100)

SIM Abrupt reduction (change point = 6) 0.900 (0.431, 1.879) 0.150 (0.097, 0.232) −83.37
0.098 (0.075, 0.129)

distribution are two possible Bayesian estimates for the same
parameter. Credible intervals are the Bayesian equivalent to
the confidence intervals of classical statistics and calculated
by the appropriate quantiles of the posterior distribution that
ensure a given probability mass (i.e., 95%). Model compari-
son can be performed via AIC or other Bayesian information
measures, such as the Deviance Information Criterion (DIC)
[44]. Theoretically, DIC is defined by the posterior mean
of the deviance function (twice the absolute value of log-
likelihood function) plus the effective number of parameters
of a given model. In turn, the effective number of parameters
is calculated by the difference between the posterior mean of
the deviance function and the same function evaluated at the
posterior means of the parameters. Likewise with AIC, one
should choose the model that shows the lowest DIC value
among all models tested.

In general, there are two major difficulties in performing
Bayesian analysis. The first one relates to how to choose the
prior distributions for the unknown parameters. One solu-
tion is to use noninformative prior distributions in situations
where prior information about the parameters of interest is
limited or scarce. Popular choices for noninformative prior
distributions are the uniform distribution for parameters
defining probabilities or Gaussian distributions with mean
0 and sufficiently large standard deviation for parameters
defined in real space. In contrast, if one has strong prior
beliefs about the parameters of interest, informative prior dis-
tributions can be elicited. Prior elicitation is generally based
on a convenient probability distribution (e.g., a Gaussian
distribution) upon which one determines the correspond-
ing prior parameters—the so-called hyperparameters—by
conjugating the expected prior mean with a set of prior
quantiles set for that distribution. Although informative prior
distributions are in linewith the permanent dialogue between
inductive and deductive reasoning intrinsic to the scientific
method, most researchers adopt a conservative strategy to
data analysis by using noninformative prior distributions for
the unknown parameters. The second difficulty concerns the
calculation of the posterior distributions. However, this is
greatly reduced by the powerful Markov Chain Monte Carlo
(MCMC) that, virtually, can deal with any kind of model
complexity. In practice, R/Jags is an easy-to-use package for

MCMC computing. Illustrative scripts for the above RCM
and SIM are available from the authors upon request.

Example I (Bioko Island continued). As highlighted earlier,
the fits of RCM and SIM assuming stable malaria transmis-
sion intensity suggested a variation in malaria risk between
younger and older individuals living in the northeast region
of the island (Figure 2(d)). Such variationmight be attributed
to a reduction in malaria transmission intensity owing to a
known malaria control initiative launched in 2004. To test
this hypothesis, RCM and SIM with an abrupt reduction
in malaria transmission intensity were fitted to the data via
maximum likelihood estimation. The most likely reduction
point for both models was 6 years before data collection
(Figure 3(a)); the corresponding 95% confidence intervals
were 4.2–8.4 and 4.8–7.7 for RCM and SIM, respectively.
Both models were in close agreement with the data visually
(Figure 3(b)) and better than the previous ones assuming
stable transmission, according to likelihood ratio test (𝑝
values < 0.001). SIM led to a higher log-likelihood value
than its RCM counterpart (Table 2) and, thus, it might be
deemed the best model for the data. Again, this result is
consistent with the choice of three-component Gaussian
mixture model for the corresponding titre data. Previous and
current SCRs were estimated at 0.900 and 0.098 for SIM and
at 0.274 and 0.077 for RCM. These implied a reduction in
malaria transmission intensity of around 89% and 72% for
SIM and RCM, respectively. Note the putative overestimation
of the time point for the reduction event (6 years before
sampling versus the time when the Bioko malaria control
initiative started). This result is in line with ongoing research
where the profile likelihood method overestimated the true
change point from simulated data typically found in African
population (our own results).

2.3.2. Detecting Changes in Malaria Exposure due to Age-
Dependent Behaviors. Avery similar age-adjusted seropreva-
lence curve to previous case can be found for populations
where older individuals have a higher malaria transmission
intensity compared to the one for younger individuals due
to an age-dependent behavior factor. A typical example is
the commute of adults to working sites that are malaria
transmission hotspots in contrast to children and adolescents
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Figure 3: AMA1 seropositivity data analysis of northeast region from Bioko Island under the assumption of a past abrupt reduction in
malaria transmission intensity. (a) Profile likelihood plot to estimate the best change point for the reversible catalytic model, where the solid
and dashed lines refer to the log-likelihood value for the model assuming a stable transmission intensity and the cut-off value accepting that
model at a 5% significance level, respectively. (b) Maximum likelihood fits of the reverse catalytic and superinfection models assuming an
abrupt reduction in malaria transmission intensity estimated to have occurred 6 years before sampling.

who do not travel to those sites. This situation was reported
for some populations living in the forests of Cambodia and
Indonesia [41, 45]. The above RCM and SIM are easily
translated to this new situation. More precisely, both younger
and older individuals share the same SCR until a certain age.
Then SCR abruptly increases to a new level in a similar way
as previous case. Therefore, (10) for an abrupt reduction in
malaria transmission intensity can be adapted as follows:

𝑝
𝑆
+ (𝑡)

=

{

{

{

𝜃
1
(1 − 𝑒

−𝛾1𝜏
) + 𝜃
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) 𝑒
−𝛾1𝜏

, if 𝑡 > 𝜏
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SCR for younger and older individuals, respectively, under
the restriction of 𝜆

1
< 𝜆
2
. For the superinfection assumption,

the resulting model can be expressed as follows:
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(14)

Parameter estimation and model comparison can be per-
formed via maximum likelihood and Bayesian methods as

described above for the models with an abrupt change in
malaria transmission intensity.

Example II (Jacareacanga, Brazil). A recent study was con-
ducted in the Brazilian Amazonia region [7] where P. vivax is
currently the major malaria threat opposed to what occurred
in the past where P. falciparum infections predominated.
A total of around 1300 individuals were sampled from 7
different municipalities in Pará state. Previous analysis sug-
gested stable malaria transmission for P. vivax infections but
detected a putative abrupt reduction of P. falciparum trans-
mission intensity estimated to have occurred around 25–30
years before sampling. Although this change is in line with
the intensification of malaria control initiatives by Brazilian
health authorities in the area, alternative explanations were
also discussed but not formally tested. More precisely, gold
mining is one of the key economic activities in the area
but also an important risk factor for malaria transmission.
Miningwas also a determinant factor of the knownmigration
wave from nonendemic states to the region since 1970s. In
this line of thought, the detection of a change occurred
25–30 years before sampling might be confounded by the
increased malaria risk of the older population that are
typically miners. This hypothesis is now tested against the
one assuming an abrupt reduction of malaria transmission
intensity.The analysis is focused on theP. falciparum seropos-
itivity data from the municipality of Jacareacanga where
the past reduction in SCR seemed more pronounced (i.e.,
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Figure 4: Analysis of P. falciparum seropositivity data from Jacareacanga (Brazil) using Bayesian methods. (a) Seroprevalence curves as
predicted by RCMs assuming an abrupt reduction in SCR with and without migration and assuming a behavioral factor dependent on a
given age cut-off, where dots represent the observed seroprevalence for age groups by splitting the age distribution in deciles. (b) Posterior
distributions for the age cut-off for the models mentioned in (a). (c) Posterior probability densities for the reduction in SCR assuming or not
migration effects. (d) Posterior median for the fraction of time living in the area in relation to the corresponding age of the individuals, as
expected from RCM assuming migration effects and an abrupt reduction in SCR.

from 0.514 to 0.017 [7]). Data under analysis comprised a total
of 172 individuals of which 2.3% were infected with malaria
parasites at the day of the survey. The seroprevalence for any
P. vivax andP. falciparum antigenswas estimated at 69.2% and
59.3%, respectively, using a two-component Gaussian mix-
ture model for the corresponding titre data. These estimates
suggested a high malaria endemicity for that municipality
as issued by the Brazilian authority for malaria control
but using the recorded annual parasite index. In contrast
to previous example, Bayesian methods were alternatively
applied to the data using the following noninformative prior
distributions for the parameters: (i) Gaussian distributions

with mean 0 and standard deviation 103 for all SCRs and
SRRs in log scale and (ii) a discrete uniform distribution
between 1 and 40 for the age cut-off. Since seropositivity
data was previously derived from a two-component Gaussian
mixture model, this analysis is based on the RCM only.
MCMC simulation via R/Jags package was used to obtain
the posterior estimates for the parameters; a long chain of
1,050,000 iterations was generated where the first 50,000were
discarded as the burn-in period and a lag of 100 was used to
reduce correlation between simulated values. As previously
reported, the model assuming an abrupt reduction in SCR
captures data well (Figure 4(a)). However, there was some
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degree of uncertainty on the time inwhich that reduction had
occurred (Figure 4(b)).The posterior mean andmedian were
consistent with a sudden drop in P. falciparum transmission
intensity 28 years before data collection (e.g., around 1980).
The posterior mean for past and current SCR was 0.436
and 0.019, respectively, while the corresponding posterior
medians were 0.386 and 0.019 (Table 2). In agreement with
a Bayesian analysis using noninformative prior distribution,
these posterior estimates implied a reduction in SCR in the
same order of magnitude to that obtained in the original
study. The model assuming a behavioral factor also fitted the
data well (Figure 4(a)) with a slightly higher age cut-off for
the occurrence of such behavior (around 29 years old). Again,
there was some uncertainty associated with the age value
where that behavior becomes epidemiologically relevant. In
absence of that putative behavioral factor, the baseline SCR
was estimated at 0.051 or 0.046 if one chooses the posterior
mean or median, respectively (Table 2). This SCR increased
to the posterior mean and median of 0.654 and 0.693 at
older ages. DIC was then used to compare both models. The
respective DIC estimates are 89.72 and 96.67 for the RCMs
assuming an abrupt reduction and a change in SCR due to an
age-dependent behavioral factor. Since the best model is the
one that shows the lowest value for DIC, the change in SCR
seemed to be better explained by an abrupt reduction in P.
falciparum transmission intensity rather than the existence of
a putative risk factor dependent on age, such as those related
to gold mining activities in the heart of the Amazonia forest.

2.4. Detecting Migration Effects on Malaria Exposure. Up to
now all models were analyzed under the assumption of stable
populations with no migration effects. This assumption is
reasonable in most studies because individuals living shortly
in a given study area are typically excluded from the survey.
However, in the current era of facilitated movement between
populations, it might be difficult to recruit locally born
individuals only, thus, affecting the estimation of the SCR. In
one extreme, the easiest migration setting is the importation
of malaria cases to nonendemic regions where there are no
sufficient conditions for efficientmalaria transmission. In this
case, there is no strong rationale to use any of the above
models since SCR would reflect the disease transmission
intensity of the places where the sampled individuals come
from. On the other extreme, migration from nonendemic
region to endemic ones might introduce bias on SCR esti-
mates. More precisely, at the time of migration, individuals
are immunologically naive tomalaria parasites in comparison
to those with the same age but locally born in the region.This
is the case of the history of malaria in Brazil where a gold
rush in 1970s led to themigration of thousands of people from
nonendemic states to the heart of the Amazonia forest [42].
Such migration caused an increase in population size and
malaria cases in the region. Another known example from
the literature is the founder effect in a Peruvian community
affected by Chagas disease where locally born individuals and
founders have distinct seroprevalence histories [43].

Until now age was considered a proxy of the total
exposure time of each individual to malaria antigens. In the
situation where individuals migrated from a nonendemic

region to an endemic one, age used in all abovemodels is sim-
ply replacedwith the total residence time of each individual in
the endemic area if available. In practice, such information is
not routinely collected, thus, requiring additional estimation.
Without lack of generality, let us focus on the simple RCM
with stable malaria transmission intensity. Similar argument
can be applied to the remaining models. As seen earlier,
the expected seroprevalence curve is given by (6). The same
model including migration effects is described as follows:

𝑝
𝑆
+ (𝑡) =

𝜆

𝜆 + 𝜌

(1 − 𝑒
−(𝜆+𝜌)𝑡

∗

) , (15)

where 𝑡 and 𝑡
∗ are the age and the total residence time of an

individual living in an endemic area, respectively. In absence
of information of the total residence time, the estimation of
𝑡
∗ can be done by considering 𝑡

∗
= 𝑡 × 𝑝

𝑡
, where 𝑝

𝑡
∈ (0, 1]

is the proportion of residence time of individuals with age
𝑡. In practice, estimation of each 𝑝

𝑡
might be cumbersome

by maximum likelihood methods. Firstly, the above RCM
and SIM are intrinsically nonlinear and these additional
unknown parameters might lead to convergence problems
of the respective maximization algorithms. Secondly, sample
informationmight be insufficient to provide accurate estima-
tion of the residence time of each individual. Alternatively,
Bayesianmethods can overcome someof these limitations. As
mentioned earlier, Bayesian inference is nowadays facilitated
by the availability of powerful MCMC simulators that can
estimate any kind of statistical model. Moreover, Bayesian
inference can also coherently integrate external information
on the residence time by describing the prior distribution
accordingly. In so doing, one can consider the following
family of prior distributions for 𝑝

𝑡
:

𝑃 [𝑝
𝑡
= 𝑥]

=

{
{
{

{
{
{

{

𝑝
0
, if 𝑥 = 1,

(1 − 𝑝
0
)

𝑥
𝛼𝑡−1

(1 − 𝑥)
𝛽𝑡−1

Be (𝛼
𝑡
, 𝛽
𝑡
)

, if 0 < 𝑥 < 1,

(16)

where 𝑝
0
is the prior probability of an individual with age 𝑡

being locally born and 𝑝
𝑡
for a migrant is modeled a priori

by a Beta distribution with hyperparameters 𝛼
𝑡
and 𝛽

𝑡
. If

little information is known about themigrant population, one
can specify 𝛼

𝑡
= 1 and 𝛽

𝑡
= 1 in order to obtain uniform

distribution. Note that the parameter 𝑝
𝑡
is a priori allowed to

vary with age.This is particularly useful to capture migration
effects of specific age groups, such as adults who tend to
migrate for work reasons.

Example II (Jacareacanga, Brazil, continued). As mentioned
above, the history of malaria in Brazil is intimately related to
a gold rush in 1970s from nonendemic regions to endemic
ones in the heart of the Amazonia forest [42]. Since mining
is the main economic activity of Jacarecanga, it is possible
that the above past and current SCR estimates can be
improved in order to take into account any past migration
effects. Unfortunately data concerning time of residence were
not consistently recorded across individuals and study sites
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Table 3: Bayesian analysis of P. falciparum seropositivity data from Jacearecanga where RCMred, RCMred+mig, and RCMbehavior denote the
reversible catalytic models assuming an abrupt reduction in SCR only, an abrupt reduction together with migration effects, and a change in
SCR due to a behavioral factor dependent on a given age cut-off.

Model Parameter Posterior estimates
Mean Median 95% credible intervala

RCMred Past SCR 0.436 0.386 0.099–0.948
Current SCR 0.019 0.019 0.009–0.033

Time elapsed since reduction 27.6 28.0 22.0–33.0
RCMred+mig Past SCR 0.292 0.192 0.052–0.916

Current SCR 0.038 0.037 0.013–0.067
Time elapsed since reduction 24.5 26.0 4.0–39.0

RCMbehavior Baseline SCR 0.051 0.046 0.019–0.106
Risk SCR 0.654 0.693 0.153–0.988
Age cut-off 28.9 29.0 26.0–33.0

aCredible interval based on 2.5% and 97.5% quantiles of the respective posterior distribution.

in the original study and, thus, the parameters 𝑝
𝑡
s were

directly estimated from seropositivity data. The above data
analysis was then extended to the situation of RCM assuming
an abrupt reduction in the disease transmission intensity
together with putative migration effects described by (10).
Little information was known about the migrant population
and, thus, a prior uniform distribution for the parameters
𝑝
𝑡
’s was specified for the Bayesian analysis. With respect to

the prior probability 𝑝
0
, the Brazilian Office for Geography

and Statistics states that 14.4% of the population living in
Jacareacanga in the 2010 census were not born in the north
states comprising the Amazonia region [46]. Therefore, it
seemed unlikely that the percentage of the migrant popula-
tion from Jacareacanga was lower than 15%. To understand
the impact of 𝑝

0
on the subsequent inferences, different

values for that hyperparameter were tested, specifically, 0.25,
0.50, 0.75, and 0.9. The best one appeared to be 0.75 because
it implied the highest posterior median and mean of the log-
likelihood function (results not shown). The introduction
of migration effects in the RCM with an abrupt reduction
resulted in a seroprevalence curve with a more complex
pattern (Figure 4(a)). However, this higher complexity in the
seroprevalence curves augmented the uncertainty associated
with the posterior distributions of the time in which that
reduction in SCR actually occurred and of the ratio between
current and past SCR (Figures 4(b) and 4(c)). Adjusting for
putative migration effects, the posterior median and mean
for the changing point are around 24.5 and 26 years before
sampling, two estimates close to the previous ones assuming
no migration (around 28 years; Table 3). For the reduction
in SCR itself, the respective posterior mean and medians are
75.8% and 75.9%, two estimates slightly more conservative
than those obtained for the RCM with no migration effects
(93.5% and 95.3%, resp.). Finally, notwithstanding the limited
sample size, it was possible to borrow information from the
sample in order to update the prior distributions of the resi-
dence time of each individual (Figure 4(d)).Many individuals
could be assumed as locally born in Jacareacanga because the
respective posterior median for the fraction of time living
in area was close to 100% (Figure 4(d)). In the remaining

cases, there was evidence for the presence of migrants in the
sample. In conclusion, although model complexity increased
uncertainty of the subsequent parameter estimation, the
results provided a more realistic snapshot of the P. falciparum
malaria history of Jacareacanga.

2.5. Detecting Individual Level Heterogeneity in Malaria
Exposure. All above models for seropositivity data provide
a broad description of the SCR at the population level.
Their utility is then limited if one aims to understand more
granular, individual level heterogeneities inherent to malaria
transmission. For example, a recent study from Cambodia
has highlighted the role of age, ethnicity, village of residence,
or forest work on the seroconversion of each individual
during rainy season [45]. Other examples are the effect of
elevation in SCR in northeast Tanzania [12, 13] or the impact
ofmalaria control interventions in western Kenyan highlands
[22]. Although age is an intrinsic variable of the above RCM
and SIM, the effect of other types of covariates affecting
seropositivity suggests adopting a regression-type approach
to tackle putative individual level heterogeneity in SCR. This
can be easily done by considering the following log-linear
model for the SCR of the 𝑖th individual with a set of 𝑝

covariates 𝑥
1,𝑖
, 𝑥
2,𝑖
, . . . , 𝑥

𝑝,𝑖
:

log 𝜆
𝑖
= 𝛽
0
+ 𝛽
1
𝑥
1,𝑖

+ 𝛽
2
𝑥
2,𝑖

+ ⋅ ⋅ ⋅ + 𝛽
𝑝
𝑥
𝑝,𝑖
, (17)

where 𝛽
0
is the overall effect in absence of covariates and

𝛽
1
, . . . , 𝛽

𝑝
are the regression coefficients associated with each

covariate. This regression model is then coupled with RCM
or SIM (see (6) and (7)) with stable transmission intensity
but describing 𝜆 with the above model. In the unrealistic
situation that malaria infections induce lifelong immunity
(see (8)), the inclusion of covariates is facilitated because the
resulting model is integrated in the well-known generalized
linear model framework via a complementary log-log model
for binary variables [47].

Since the analysis must take into account the data from
each individual, previous Binomial-product for the sampling
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Figure 5: Maps of the western Kenyan highlands showing the distribution of the surveyed households and household level exposure. (a)Map
based on the combined seroprevalence for AMA1 andMSP1 antigens. (b) Map based on the posterior mean of SCR adjusting for variations in
elevation and gender and use of mosquito control interventions. Each household is represented by a circle and the shading shows the intensity
of malaria exposure from blue (low) to red (high).

distribution (see (9)) is now reconverted into a Bernoulli-
product, one Bernoulli distribution per individual; that is,

𝑓 ({𝑦
𝑖
} | {𝜋
𝑖
}) =

𝑛

∏

𝑖=1

𝜋
𝑦𝑖

𝑖
(1 − 𝜋

𝑖
)
1−𝑦𝑖

, (18)

where 𝑦
𝑖
is the serological status of the 𝑖th individual, 𝜋

𝑖
is

the probability of the 𝑖th individual being seropositive, and 𝑛

is the sample size.
In theory, maximum likelihood and Bayesian methods

can be applied to estimate all unknown parameters of the
abovemodel. In practice, computationally efficientmaximum
likelihood methods still need to be developed and, there-
fore, Bayesian methods via MCMC are the most pragmatic
approach to data analysis. In absence of prior information
about the regression parameters, the usual choice for the
respective a priori distribution is to use Gaussian distribution
with mean 0 and a sufficiently large standard deviation
(e.g., 100). If any prior information exists for the regression

parameters, one can alternatively use any elicitingmethod for
Bayesian regression analysis as described elsewhere [48, 49].

Example III (Rachuonyo South, Kenya).Thewestern Kenyan
highlands are currently characterized by low-level endemic
and highly heterogeneousP. falciparummalaria transmission.
To ensure high resolution to detect heterogeneity in malaria
exposure, approximately one-third of the total population,
around 17,500 individuals, were sampled from a 100 km2 area
in Rachuonyo South in the western Kenyan highlands [22].
The analysis was focused on P. falciparum seropositivity data
from about 13,000 individuals with complete data. Combined
seropositivity for AMA1 and MSP1 antigens was calculated
using the two-component Gaussian mixture model approach
for determining seropositivity to each antigen. RCM with
stable malaria transmission was then fitted to the data using
maximum likelihood methods. The overall SCR was esti-
mated at 0.132, suggesting an overall seroprevalence of 55.2%.
When the observed seropositivity of each individual was
aggregated to the household level and plotted on amap, there
is a substantial variation within the study area (Figure 5(a)).
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However, the large amount of variation renders it difficult
to delineate hotspots of seroprevalence. With this in mind,
the previous analysis was then refined in order to take into
account available information on gender, elevation, residing
or not in a house that received indoor residual spraying in the
previous 12 months, and sleeping or not under a bednet the
previous night. Similar to the Jacareacanga example, Bayesian
methods were applied to the data using noninformative prior
distributions for the regression coefficients and SRR. Since
a two-component Gaussian mixture model was used for
determining seropositivity to each antigen, this extended
analysis focused on the RCM model given by (6) where SCR
was described by a log-linear regression model including the
above-mentioned covariates. Posterior estimates highlighted
a significant role of elevation on SCR while the remaining
covariates, despite explaining some individual variation in
seropositivity, were not statistically significant in the regres-
sion model (results not shown) but were maintained due to
their known impact on malaria. A new map based on the
posterior means of SCR for each individual aggregated to the
household level was then generated (Figure 5(b)). This map
suggested that significant variation in SCR exists within this
100 km2 study area and identifies households with high SCRs.
The identification of these putative hotspots of exposure may
be instrumental to design future interventions in the study
area.

2.6. Antibody Acquisition Models. In all models described
above, the information on antibody titres is reduced to the
proportions of seropositive and seronegative. Alternatively
one can analyze data of antibody titres themselves using the
antibody acquisition models [50, 51]. In these models, one
assumes that the rate at which antibody levels are acquired
can be used as a marker for transmission intensity. If an
individual’s antibody level𝐴 is boosted at rate 𝛼(𝑡) and decays
at rate 𝑟 then antibody levels can be described by the following
ordinary differential equation [51]:

𝑑𝐴

𝑑𝑡

= 𝛼 (𝑡) − 𝑟𝐴. (19)

Whenmalaria transmission is constant over time, the same is
assumed for the rate of generation of antibodies in response
to infection; that is, 𝛼(𝑡) = 𝛼. Under the initial condition of
𝐴(0) = 0, the above equation can be solved analytically to
give

𝐴 (𝑡) =

𝛼

𝑟

(1 − 𝑒
−𝑟𝑡

) , (20)

where 𝑡 is again regarded as the age of an individual at data
collection. The above model can be also extended to include
the effect of maternal antibodies [51].

Likewise for seropositivity-based models, historical
changes in malaria transmission intensity can also be
accounted for. For example, if there was an abrupt reduction
in transmission 𝜏 years before data collection such that the

rate of acquisition of antibodies changed from 𝛼
1
to 𝛼
2
, then

the expected antibody titre of an individual with age 𝑡 is

𝐴 (𝑡)

=

{
{

{
{

{

𝛼
2

𝑟

(1 − 𝑒
−𝑟𝑡

) , 𝑡 ≤ 𝜏,

𝛼
1

𝑟

(1 − 𝑒
−𝑟(𝑡−𝜏)

) 𝑒
−𝑟𝑡

+

𝛼
2

𝑟

(1 − 𝑒
−𝑟𝜏

) , 𝑡 > 𝜏.

(21)

The above equation is explained as follows. For individuals
born after the change in transmission (𝑡 ≤ 𝜏), the expected
antibody dynamics follow exactly as in the constant trans-
mission scenario but with boosting rate 𝛼

2
(see (20)). For

the individuals born before the change in transmission, one
can partition the antibody levels into two terms, the first
one referring to the expected antibody levels produced until
the change point with boosting rate 𝛼

1
discounted by an

exponential decay with rate 𝑟 until present time and the
second one referring simply to the antibody counts expected
to be produced since the change point.

Equations (20) and (21) provide expressions for an indi-
vidual’s antibody titre as a function of age. However, in a
population of individuals there is likely to be substantial
variation in antibody titres. Asmentioned earlier for seropos-
itivity determination, antibody titre data are often approxi-
mately Gaussian distributed on a log scale. Therefore, when
constructing the sampling distribution for the comparison of
the antibody acquisition model with data, one can assume
that at age 𝑡 antibody data is log-Normally distributed with
parameters 𝜇 = log(𝐴(𝑡)) and 𝜎. Note that in this interpreta-
tion 𝐴(𝑡) is the geometric mean titre (GMT) at age 𝑡 (corre-
sponding to the mean on a log scale). For a random sample
of 𝑛 individuals, the respective sampling distribution is given
by

𝑓 ({𝑥
𝑖
} | 𝜃, 𝑛) =

𝑛

∏

𝑖=1

1

𝑥
𝑖
𝜎√2𝜋

𝑒
−(log 𝑥𝑖−log𝐴(𝑡𝑖))2/2𝜎2

, (22)

where 𝑥
𝑖
and 𝑡
𝑖
are the antibody titres and age of the 𝑖th indi-

vidual, respectively, and 𝜃 is the parameter vector associated
with antibody acquisition model under analysis. This param-
eter vector is given by 𝜃 = (𝛼, 𝑟, 𝜎) or 𝜃 = (𝛼

1
, 𝛼
2
, 𝜏, 𝑟, 𝜎) if

fitting themodelwith constantmalaria transmission intensity
or fitting themodel with an abrupt reduction in transmission,
respectively. Since the abovemodels are nonlinear, parameter
estimation can be performed by nonlinear least squares
available for the R software or by Bayesian methods via
MCMC. For cases where the data are not well described by
a log-Normal distribution, alternative sampling distributions
will need to be constructed. For example, if a proportion of
the population has never been exposed to malaria (i.e., their
antibody titres are just background responses), then a zero-
inflated log-Normal distribution could be used as an alterna-
tive sampling model. Statistical methods to fit that distribu-
tion to data can be found elsewhere [52–54].

Example I (Bioko Island continued). To extend previous
analysis based on seropositivity data, antibody titre data from
northeast and northwest regions of Bioko Islandwere alterna-
tively analyzed using the above antibody acquisition models.
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Table 4: Parameter estimates for antibody acquisition models applied to anti-AMA1 antibody titre data (AU: arbitrary units) from northwest
and northeast region of Bioko Island. Estimates are presented as posterior medians with 95% credible intervals in brackets.

Region Malaria transmission 𝛼
1

𝛼
2

𝜏 𝑟 𝜎

Northwest Constant 60.4 (50, 65) — — 0.098 (0.07, 0.12) 1.36 (1.32, 1.41)

Northeast Constant 20.2 (18, 23) — — 0.053 (0.04, 0.07) 1.36 (1.31, 1.42)
Drop 128 (65, 232) 20 (17, 23) 7.2 (6.2, 8.7) 0.16 (0.11, 0.21) 1.33 (1.28, 1.39)

The respective data is shown in Figures 6(a) and 6(b). To com-
pare with previous results, the above antibody acquisition
models assuming a constant malaria transmission intensity
(Figures 6(c) and 6(d)) and an abrupt reduction in malaria
transmission (Figures 6(e) and 6(f)) were fitted to each
data set separately. Again, there was evidence for a constant
malaria transmission intensity in the northwest region of
the island (Figure 6(c)) with an average increase of antibody
titres of around 60.4 units per year of exposure (Table 4). In
contrast, the antibody acquisitionmodel with constant trans-
mission intensity showed some fitting deficiencies at younger
ages for the northeast region (Figure 6(d)), which were elim-
inated by assuming a drop in malaria transmission intensity
(Figure 6(f)). That drop in malaria transmission intensity
seemed to have occurred 7 years before sampling, an estimate
consistent with the one obtained from seroprevalence data
(6 years before sampling; Table 2). According to posterior
estimates in Table 4, the average value of antibody acquisition
per year decreased from 128 to 20. These estimates suggested
a reduction of 84% inmalaria transmission intensity, which is
in close agreement with a reduction in SCR of 89% estimated
from the superinfection model (Table 2).

3. Envisioning the Future: Serology and
Malaria Elimination

Malaria eradication and elimination are currently in the
agenda of various countries worldwide, such as Sri Lanka [3]
or Haiti [4]. With this mind, an important question naturally
arises: How can one declare if elimination or eradication was
actually achieved? Again, serology can help answering this
question due to its capacity to detect recent malaria exposure
in an apparently asymptomatic population.

As discussed above, the first step of serology data anal-
ysis is typically to determine seropositivity from titre data.
However, in a malaria elimination setting, seroprevalence is
supposedly low in the population, thus, making it difficult to
discriminate whether the data comes from a single Gaussian
distribution or from a Gaussian mixture model. In this con-
text, the presence of a single Gaussian distribution in the data
can be interpreted as indicative of a seronegative population
only, thus, suggesting malaria elimination (or eradication).
On the other hand, the detection of a mixture distribution
indicates the presence of seropositive individuals that might
be on their way to seronegativity but also might have been
exposed to malaria after a putative elimination event. Hence,
sample size determination before data collection ensures to
some extent the accuracy of the findings. However, sample
size determination is theoretically challenging in the context
of mixture distributions because standard asymptotic theory

for hypothesis testing does not hold. This implies using less-
known statistical methods, such as the bootstrap approach
proposed by McLachlan [55] or the adjusted likelihood
ratio test derived by Lo et al. [56]. Limited sample size
guidelines exist for these alternative methods and, therefore,
future research is needed to better help designing malaria
surveillance based on serology data.

Under the assumption of detecting amixture distribution
in the antibody titre data, it was shown above how to infer
different sources of heterogeneity in malaria transmission
intensity as long as the correct antibodies are analyzed. In this
regard, recent research produced a list of putative antigens
that can be used in malaria elimination studies for being
highly informative on the time to most recent infection [20].
Althoughmalaria elimination and eradication aremore likely
to be achieved by a slow decrease of malaria transmission
intensity towards 0, a reasonable analytical starting point
is to aim at using the above RCM and SIM under the
assumption of an abrupt reduction in SCR at a given time
point before sampling collection. In a malaria elimination
setting, current SCR of these models is set at 0 while past
SCR should be estimated from the data. The corresponding
age-adjusted seroprevalence curve shows a distinctive pattern
where children born after the time of malaria elimination are
all seronegative while the remaindermight or not be seropos-
itive depending on the past malaria exposure before malaria
elimination (Figure 7(a)). These latter individuals would
slowly revert to a seronegative state over time. For certifica-
tion purposes, these models must be compared to the ones
assuming a (very low) stable malaria transmission intensity
for the same data. Therefore, one needs to understand
whether data has enough statistical power for detecting
disease elimination. To overcome eventual problems later in a
study, it is then recommended to perform sample size calcu-
lation before collecting data. This problem has recently been
tackled for estimating the SCR in stable malaria transmission
intensity settings [34]. General guidelines for sample size
determination are difficult to put forward because estimation
precision and statistical power are intimately related to the
age distribution associated with a given study design. In
this regard, African studies are more facilitated than those
conducted elsewhere because the age distribution tends to be
consistent across populations with a decreasing trend from
newborns to elders (Figure 7(b)). If such distribution is com-
binedwith the expected age-adjusted seroprevalence, one can
have an idea of the evolution of overall seroprevalence over
time (Figure 7(c)). Since age distribution can vary from one
study to another, the minimum sample size for detecting
malaria elimination is better calculated by means of data
simulation using the expected age distribution for the sample
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Figure 6: Data analysis of anti-AMA1 antibody titres from Bioko Island using the antibody acquisition models. (a) Sample distribution of
antibody titres from northwest region. (b) Sample distribution of antibody titres from northeast region. (c) Antibody acquisition model with
constant transmission applied to data from northwest Bioko. (d) Antibody acquisition model with constant transmission applied to data
from northeast Bioko. (e) Posterior probability distribution of change point predicted by the antibody acquisition model applied to data from
northeast region. (f) Antibody acquisition model with a drop transmission applied to data from northeast region.

together with the most likely age-adjusted seroprevalence
curve for themalaria elimination. As an example, Figure 7(d)
shows the power to detectmalaria elimination as a function of
sample size under the assumption of simple random sampling
from a typical African population where the past SCR was
conceptually equivalent to 0.1 infectious bites per person per
year. As expected, the required sample size decreases with

time of the malaria elimination event. For a 90% power,
detecting malaria elimination occurring 3, 5, and 10 years
before data collection requires sample sizes of 1,000, 500,
and <250 individuals, respectively. It is worth noting that
the choice of a particular sample strategy involves weighting
ethical issues, availability of human and economic resources,
and so forth, in order to be officially approved and feasible
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Figure 7: Certifyingmalaria elimination under a serology-based approach. (a) Expected seroprevalence curve from RCM assuming different
elimination time points in relation to data collection. (b) Typical age distribution of an African population. (c) Expected seroprevalence
in a random sample taken from a typical African population. (d) Probability to detect elimination as a function of sample size under the
assumption of a community-based survey conducted in a typical African population.

in real time. Moreover, targeting or oversampling specific
age groups might be alternative sampling strategies to reduce
sample size. This and other issues will be tackled in a future
research.

4. Conclusion

In conclusion, serology data in conjunction with mathe-
matical modelling provides a powerful approach to inform
epidemiologists on malaria transmission intensity and its
putative changes over time. However, serology-based analysis

needs to be complemented with any additional data available
that would provide an external validation to the serological
findings. Imagining the best model for a given data set
assumes a constant malaria transmission intensity over time.
Checking the official statistics of the malaria cases if available
might shed some light on whether such assumption holds
true in reality. Similar rationale can be applied to situations
where a drop in malaria transmission intensity was detected
on the data.This approach of using official data to consolidate
serological finding was indeed followed by the study in the
Brazilian Amazonia region here analyzed [7]. In this study,
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the seroconversion rates for P. vivax antigens from several
sites with different malaria endemicity levels were highly
correlated with the corresponding annual parasite indexes
compiled by the Brazilian health authorities, suggesting that
the serological analysis was capturing the epidemiology of the
study sites [7]. In the same line of thought, another study
found that seroconversion rates were highly correlated with
the parasite rates in northeast Tanzania [13]. Notwithstanding
this good agreement between serological findings and other
data, it is worthmentioning that themathematicalmodels for
serology data are a simplified abstraction of the real world;
a discussion about how robust these models are in practice
can be found elsewhere [12]. However, in the words of the
statistician George Box [57], all models are wrong but some
are useful and that seems to be the case for the mathematical
models here presented.

Two main limitations can be pinpointed to the use of
a serological approach to malaria epidemiology. The most
obvious one is related towhich antigens are epidemiologically
informative. With this respect, the two antigens most used in
practice are MSP1 and AMA1 due to their immunogenicity
together with the existence of optimised experimental pro-
tocols. Research efforts are currently carried out in order
to identify the panel of antigens that would provide the
best characterization of the epidemiological status quo of a
population [20, 58]. However, these new identified antigens
remained to be fully tested in subsequent field studies. One
less obvious limitation is the putative lack of statistical power
to estimate the seroreversion rate and its putative changes
throughout life.This is very clear in low transmission settings
where only a few seronegative individuals might result from
seroreversion events. Ideally, seroreversion rate is a quantity
that is best estimated via longitudinal studies. However, in
practice, seroreversion rate is estimated indirectly via cross-
sectional data, possibly leading to poor estimation precision
as discussed in depth elsewhere [34]. Possible solutions for
this problem include using prior information in the analysis
or analyzing data fromdifferent populations together in order
to borrow information from samples where the estimation of
seroreversion rate is facilitated. Several future challengeswere
identified in particular in the context of malaria elimination
and eradication. It is worth noting that a serology approach
should not be seen as strict to malaria epidemiology with the
potential of being applicable to other infectious diseases as
long as these are capable of triggering an antibody-mediated
immune response in the host. In particular, antibody data is
particularly useful to track down the transmission intensity
of some neglected tropical diseases, such as Trachoma [39],
Chagas [40, 43], orDengue [57, 59], due to their low endemic-
ity and the lack of clinical symptoms of most infections.
However, this requires a deeper knowledge of the antibodies
with the highest potential of informing the underlying disease
transmission intensity. An interesting idea with public health
potential is to use a panel of multidisease antibodies that can
be instrumental to know what the infectious agents are in
circulation in a given population and their putative dynamics.
This idea has not been tested in practice but definitely will
require extending the above mathematical models to fully

account for the immunological interaction between different
diseases.
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