
Bottomley et al. BMCMedical ResearchMethodology  (2016) 16:29 
DOI 10.1186/s12874-016-0127-1

RESEARCH ARTICLE Open Access

Can the buck always be passed to the
highest level of clustering?
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Abstract

Background: Clustering commonly affects the uncertainty of parameter estimates in epidemiological studies.
Cluster-robust variance estimates (CRVE) are used to construct confidence intervals that account for single-level
clustering, and are easily implemented in standard software. When data are clustered at more than one level (e.g.
village and household) the level for the CRVE must be chosen. CRVE are consistent when used at the higher level of
clustering (village), but since there are fewer clusters at the higher level, and consistency is an asymptotic property,
there may be circumstances under which coverage is better from lower- rather than higher-level CRVE. Here we assess
the relative importance of adjusting for clustering at the higher and lower level in a logistic regression model.

Methods: We performed a simulation study in which the coverage of 95% confidence intervals was compared
between adjustments at the higher and lower levels.

Results: Confidence intervals adjusted for the higher level of clustering had coverage close to 95%, even when there
were few clusters, provided that the intra-cluster correlation of the predictor was less than 0.5 for models with a single
predictor and less than 0.2 for models with multiple predictors.

Conclusions: When there are multiple levels of clustering it is generally preferable to use confidence intervals that
account for the highest level of clustering. This only fails if there are few clusters at this level and the intra-cluster
correlation of the predictor is high.
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Background
Observations are often grouped in assortative clusters, so
that two observations from the same cluster tend to be
more similar than two selected at random. For example,
members of the same household might share genetic and
environmental risk factors such that the presence of a dis-
ease in one member is predictive of that in others in the
same household.
Clustering can influence the amount of uncertainty in

parameter estimates. For the sample mean, the standard
estimate of the variance must be inflated by a factor 1 +
ρ(n − 1), where ρ is the intra-cluster correlation, which
equals the ratio of the variance of cluster means to the
total variance of the observations [1], and n is the num-
ber of clusters. For measures of association between an
outcome (y) and predictor (x) the effect of clustering in
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the outcome is complicated by the distribution of x across
clusters—i.e., the degree of clustering in x—and it may not
always inflate the variance. In a linear regression model
the variance of the regression coefficient associated with
the predictor is increased by 1+ (n−1)ρxρy relative to the
OLS estimate [2, 3]. Thus clustering has no effect when
either ρx or ρy is zero and a large effect when both are
close to one.
Generally, parameter estimates from generalised lin-

ear models, such as logistic regression, are consistent in
the presence of clustering, provided that the relation-
ship between the mean of the outcome and the predictor
variables is correctly specified. But the standard vari-
ance estimates of the regression parameters that ignore
clustering are not consistent, and therefore confidence
intervals that are based on these variance estimates are
incorrect [4]. Fortunately, it is possible to obtain consis-
tent variance estimates for regression parameters using
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cluster-robust variance estimates (CRVE), which are con-
sistent irrespective of the correlation structure within
clusters, provided that observations between clusters are
independent [4]. In particular, when there is more than
one level of clustering (e.g., individuals clustered in house-
holds and households clustered in villages), then CRVE
applied at the higher level are consistent, despite the
correlation structure within the higher-level clusters (vil-
lages) being complicated by correlations within the lower-
level clusters (households). Thus a researcher who is faced
with multiple levels of clustering can obtain consistent
confidence intervals by using CRVE at the highest level of
clustering: Angrist and Pischke refer to this as ‘passing the
clustering buck’ to the higher level [5].
Consistency, however, guarantees lack of bias only

asymptotically, i.e., for sufficiently large sample sizes.
Unfortunately, CRVE are biased when there are few clus-
ters. Furthermore, the bias is usually downward so that
confidence intervals are too narrow [6]. There is there-
fore a trade-off. At the lower level of clustering there will
be more clusters, but observations from different clusters
will be dependent. While, at the higher level, observations
from different clusters are more likely to be independent
but there will be fewer clusters and the CRVE will be
biased.
In this study we explore this trade-off in the context of

logistic regression. We use a random effects (conditional)
model to simulate binary data that are clustered at two lev-
els, and fit a marginal model to these data, using CRVE to
adjust for clustering at either the higher or the lower level.
Before we present the simulation, we describe the rela-
tionship between marginal and conditional models, and
discuss the intra-cluster correlation as a measure of the
degree of clustering.

Methods
Marginal and conditional models
We model the relationship between a binary outcome
and a set of binary predictors in the presence of nested
clusters, where the disease and predictors can vary in
prevalence between clusters. For example, we might want
to predict the probability of a disease based on certain
risk factors, and the disease and risk factors are known to
cluster in households and villages. In this example, house-
holds are the lower-level clusters, and they are nested in
villages because members of a household belong to the
same village.
One approach used to account for clustering is to

include random effects in the regressionmodel. For exam-
ple, we might model the effects of household and village
as independent, normally distributed random variables zjk
and uk and include these, together with the predictors
x1, . . . , xp, in the model

log
(

πijk

1 − πijk

)
= α0 + α1x1ijk + α2x2ijk + . . . + αpxpijk + uk + zjk

(1)

where πijk is the probability of disease in individual i from
household j and village k.
We refer to this as the conditional model as the parame-

ter estimates for the predictor variables are conditional on
the village and household effects. The model can be fitted
by integrating the likelihood over the distribution of the
unobserved random effects of village and household, and
then maximising this marginal likelihood. A drawback of
this approach is that it is necessary to assume distributions
for the random effects, and the parameter estimates can
be sensitive to the choice of distribution [7].
Alternatively, we can fit a marginal, or population aver-

age, logistic regression model that ignores clustering

log
(

πijk

1 − πijk

)
= β0 +β1x1ijk +β2x2ijk + . . .+βpxpijk .

(2)

The parameters of this model can be estimated by fit-
ting the model using maximum likelihood, ignoring the
cluster effects. This is equivalent to solving a set of esti-
mating equations (Eq. A-2 in the Appendix) that have
been derived by setting the derivative of the log-likelihood
to zero. Each parameter estimates is consistent, provided
that the relationship between the probability of disease
and predictor variables is correctly specified, but the usual
variance estimate based on the second derivative of the
log-likelihood is not correct. For a single level of cluster-
ing, a cluster robust variance estimate (CRVE) can be used
instead (see appendix). This estimate is unbiased as the
number of clusters tends to infinity, but may be biased
when the number of clusters is small.When there aremul-
tiple levels of clustering, a consistent variance estimate
can be obtained by adjusting for clustering at the higher
level—this implicitly accounts for lower-level clustering—
but, since the number of higher-level clusters is often
small, bias maybe a concern.
The parameters, apart from the intercept, represent log

odds ratios in bothmodels. But they are interpreted differ-
ently in the two models. For example, for a single, binary
predictor, x1, β1 is the difference in log odds comparing
individuals with x1 = 1 and x1 = 0 across the whole pop-
ulation; while α1 is the difference comparing x = 1 and
x = 0 within a household. The odds ratio, unlike the risk
difference and risk ratio, is not collapsible across strata,
therefore α1 and β1 will be different unless α1 = β1 = 0
or there is no variation between households and villages
in disease risk.
In general, the relationship between the two sets of

parameters can be derived by imagining a dataset that
consists of the entire population, and that is generated by
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the random effects model. The parameters of themarginal
model are the ‘estimates’ that are obtained when the
marginal model is fitted to this dataset. Mathematically,
this is equivalent to solving equation A-2 in the appendix,
after replacing Yij with Eα[Yij|xij]= πij [8]. Using this
approach, Zeger et al. [8] derive the following relationship

β ≈ α
(
1 + c2

(
σ 2
h + σ 2

v
))−1/2 (3)

where α is the vector of parameters from the random
effects model, β is the vector of parameters from the
marginal model and c = 16

√
3/(15π). From equation

3, it can be seen the odds ratio is closer to the null in
the marginal model than the random effects model, and
the magnitude of the difference between the odds ratios
depends on the amount of variation between clusters,
both at the level of the household and the village.

Intra-cluster correlation
The variance of a regression parameter estimate depends
on the amount of clustering in both the outcome and the
predictor. The intra-cluster correlation, defined as the cor-
relation between two observations from the same cluster,
can be used to quantify the degree of clustering in both
variables. Mathematically, it is defined as

ρ = E(Zij − μ)
(
Zi∗j − μ

)
E

(
Zij − μ

)2 i∗ �= i (4)

where μ is the overall mean and the expectation is taken
over all clusters and pairs of observations within clusters
[1]. Assuming that observations are independent condi-
tional on the cluster

ρ = E
(
μj − μ

)2
E(Zij − μ)2

(5)

where μj is the mean for cluster j. Therefore ρ represents
the ratio of the variance in cluster means to the overall
variance of the observations.
By definition, ρ = 1 for cluster-level variables because

all the variation is then between clusters, but ρ is less than
1 when variables pertain to lower-level units. For example,
in a study where data are collected from different villages,
village size would be a cluster-level variable with ρ = 1,
but for household and individual-level variables ρ < 1.
In fact, the intra cluster correlation is usually consider-
ably less than 1 for observationsmade on lower level units.
In a survey of binary and continuous outcomes recorded
in cluster-based studies conducted in primary care the
median intra-cluster correlation was 0.01 and 90% were
less than 0.055 [9].
The intra-cluster correlation of the outcome can be cal-

culated directly from the random effects model (Eq. 1) for
given values of the parameters and covariate. The intra-
cluster correlation can also be calculated for each of the

predictors, but in this case since these are not defined by a
stochasticmodel it is calculated based on an empirical ver-
sion of Eq. 4. Note that Eq. 5 implies that ρ ≥ 0, but for the
predictors the intra-cluster correlation is calculated from
the sample rather than the model, consequently the inde-
pendence assumption necessary for Eq. 5 is not met and
the intra-cluster correlation is not necessarily positive. In
fact, it reaches a lower bound of −1/(n − 1) when the
prevalence of the predictor is the same in each of n clusters
[3].Wewill use the notation ρy to denote intra-cluster cor-
relation defined by the stochastic model for the outcome
and ρ̂x to denote the empirical intra-cluster correlation of
a predictor.

Simulation
We conducted a simulation study to explore the coverage
of confidence intervals for the parameters of the marginal
model. The parameter values used in the simulation are
given in Table 1, and we estimated coverage for every
combination of these parameters.
For each parameter combination, we estimated coverage

by simulating 10,000 samples from the population using
the conditional model (Eq. 1). The marginal model (Eq. 2)
was fitted to each sample, and we calculated confidence
intervals unadjusted for clustering (CI(un)), and intervals
adjusted for clustering within households (CI(hh)) and vil-
lages (CI(vil)). We estimated the coverage for each type of
interval by calculating the proportion of the 10,000 inter-
vals that contained the true marginal log odds ratio, which
was calculated by solving Eq. A-2 in the Appendix with
Yij replaced by Eα[Yij|xij]= πij (see previous section on
marginal and conditional models).
We used predictors of the outcome that varied in their

degree of clustering within households and villages. At the
extremes, we explored predictors where the proportion
positive for the predictor was the same in each village such
that ρ̂

(vil)
x = −1/(n − 1), and predictors where the vil-

lage consists entirely of positives or negatives ρ̂
(vil)
x = 1.

Table 2 shows, for each predictor, the proportion of indi-
viduals positive in each village. We used both household,
x1−x4, and individual-level, x5−x7 predictors. The former

Table 1 Parameter values

Parameter Description Values or range

α0 Log odds when xijk = uk = zjk = 0 log(0.1/0.9), log(0.2/0.8)

α1 . . . αp Conditional log odds ratios log(1.1), log(2), log(5)

σh SD of household effect log(1.1), log(2), log(5)

σv SD of village effect log(1.05)–log(5)

I No. individuals per household 5, 20

J No. households per village 20, 100

K No. of villages 5, 20



Bottomley et al. BMCMedical ResearchMethodology  (2016) 16:29 Page 4 of 7

Table 2 Distribution of predictors (x1-x7) across villages (V1-V5)
and the resulting intra-cluster correlation of the predictor

Proportion of Intra-cluster correlation ρ̂
(vil)
x

individuals positive

Predictor V1 V2 V3 V4 V5

x1, x5 0.2 0.2 0.2 0.2 0.2 –0.01

x2, x6 0 0.1 0.1 0.3 0.5 0.19

x3, x7 0 0.05 0.1 0.1 0.75 0.48

x4 0 0 0 0 1 1

N.B. In the simulation with 20 villages we created 4 identical sets of villages using
the proportions for V1-V5

are the same for all members of the household (e.g.,
household income) and the latter vary between household
members (e.g., age). We fitted models with a single pre-
dictor and also multivariable models that included all the
predictors simultaneously.
CI(hh) and CI(vil) were calculated using CRVE (see

Appendix) with two corrections to adjust for downward

bias. First, the CRVE was inflated by a factor of n/(n− 1),
where n is the number of clusters. Second, the confidence
interval was calculated using a t-distribution with n − 1
degrees of freedom as the reference distribution rather
than a standard normal distribution.
We did the simulations in R [10] using the rms package

[11] to fit logistic regression models and calculate CRVE.

Results
Simulation results
CI(un) and CI(hh) had close to 95 % coverage when there
was limited village-level clustering in the outcome or pre-
dictor, but for both coverage decreased as clustering in
the outcome and predictor increased (Fig. 1). CI(vil) per-
formed well when the number of villages was large, and
also when the number of villages was small (K = 5), pro-
vided that the predictor was not too strongly clustered
at the village-level. For example, coverage was more than
85 % for ρ̂

(vil)
x < 0.5, in models with a single predictor,

and in models that included all predictors simultaneously

Fig. 1 Coverage of 95% confidence intervals for the log odds ratio of a household-level predictor. The lines correspond to coverage of confidence
intervals that adjust for clustering at the village-level, household-level or do not adjust for clustering. Coverage is presented as a function of the
degree of village-level clustering in the outcome as measured by the intra-cluster correlation (ICC). The intra-cluster correlation of the predictor
ranges between 0 (top) and 1 (bottom), for K=5 (left) or K=20 (right) villages. The remaining parameter values are α0 = log(0.1/0.9),
α1 = σh =log(2), I = 5, J = 20
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it was more than 85% for ρ̂
(vil)
x < 0.2. CI(vil) was only

outperformed by CI(hh) when there was limited village-
level clustering in the outcome (ρ

(vil)
y < 0.02) and the

intra-cluster correlation of the predictor was close to 1
(ρ̂

(vil)
x ≈ 1).
Our findings were similar irrespective of whether a

household (Fig. 1) or individual-level predictor (Addi-
tional file 1: Figure S1) was used. They were also similar
when all predictors (individual and household-level) were
included in the model simultaneously (Additional file 2:
Figure S2 and Additional file 3: Figure S3), although the
coverage of CI(vil) was less good.

Example
We illustrate our findings by analysing data from a ran-
domised trial of a house screening intervention to reduce
malaria in children 6 months to 10 years [12]. The inter-
vention was evaluated in terms of its impact on the
numbers of mosquitoes caught, anaemia and malaria par-
asitaemia. The study also collected data on risk factors for
malaria, including bed net use. Here we will focus on the
presence of malaria parasites in the child, and estimate its
association with bed net use and house screening. We use
data from the six largest villages (or residential blocks in
urban areas) collected on 428 children living in 209 house-
holds. The protocol was approved by the Health Services
and Public Health Research Board of the MRC UK and
The Gambia Government and MRC Laboratories Joint
Ethics Committee, and the Ethics Advisory Committee of
Durham University. All participants provided consent.
At household-level, malaria was strongly clustered, as

were the two predictors: the intracluster correlation was
0.47 for malaria, 0.79 for bed net use and 1 for screen-
ing (by design). At the village-level, malaria and bed net
use were strongly clustered (intra-cluster correlations 0.28
and 0.33), but screening was not clustered because it was
randomly allocated to households.
The odds ratio for screening was 1.13 and the 95%

confidence interval adjusted for household clustering was
0.55 to 2.31. Since there are many households and screen-
ing is uncorrelated with village, we expect the coverage of
CI(hh) to be close to 95%.
The odds ratio for bed net use was 0.90. The confi-

dence interval adjusted for household clustering was 0.50
to 1.63 and adjusted for village clustering it was 0.30 to
2.76. Becausemalaria and bed net use are both highly clus-
tered at the village-level, we expect that CI(vil) will have
better coverage than CI(hh).
To further explore the difference between coverage of

the two confidence intervals, we fitted a random effects
model to the malaria data with bed net use as the pre-
dictor. We then simulated samples from this model to
estimate the coverage of CI(hh) and CI(vil) for the marginal

odds ratio, using the approach described in the previ-
ous section. As predicted, we found that the coverage of
CI(hh) (68%) was considerably worse than CI(vil), which
had reasonable coverage (85%), despite the small number
of villages.

Discussion
In general, we recommend using CRVE to adjust for clus-
tering at the higher level. From simulation studies, we
found that generally the coverage was better when con-
fidence intervals were adjusted for the higher level of
clustering. Adjusting for the lower level of clustering only
gave better coverage (i.e., a higher proportion of confi-
dence intervals included the true odds ratio) when the
number of higher-level clusters was small and the intra
cluster correlation of the predictor at this level was close
to 1. Neither adjustment produced satisfactory coverage
when, at the higher level, there were few clusters and the
outcome and predictor were both highly correlated with
cluster.
We used two simple adjustments to improve the cov-

erage of confidence intervals: the variance estimate was
multiplied by n/(n − 1), and the t-distribution with n − 1
degrees of freedom was used as the reference distribu-
tion rather than the standard normal distribution. Both
adjustments are implemented in the svyset command in
Stata. Other methods for adjusting confidence intervals
might give better coverage, but are not currently imple-
mented in routine software. Pan and Wall [13] suggest
modifying the degrees of freedom used for the reference
t-distribution, and a number of authors have proposed
methods for correcting for the bias in the variance esti-
mates [14–16]. Bootstrap methods, in which clusters are
resampled with replacement, offer another approach, but
do not perform better than CRVE [17].
The results we have presented here are from simula-

tion, rather than algebraic demonstration. Nevertheless
the simulations cover wide ranges of the key parameters—
ρx and ρy at the higher level of clustering—and our con-
clusions were not sensitive to the values used for the other
parameters, except the number of higher level clusters.
For this parameter we present results for a small (K =
5) and large (K = 20) number. At K = 20 the cov-
erage was close to 95% when confidence intervals were
adjusted for higher-level clustering, and we expect cover-
age to improve if K > 20. We chose not to explore with
further granularity the region of parameter space where
adjustment at the lower level of clustering is favourable
(high ρx, low ρy at the higher level of clustering and a small
number of clusters at this level) because the region is small
and the lower level has only a slight advantage here.
We have explored the performance of standard errors

adjusted for clustering without adjusting the log odds
ratio. In the framework of Generalised Estimating
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Equations (GEE) this is equivalent to assuming an ‘inde-
pendence’ working correlation matrix. The log odds
ratio can be estimated more efficiently (i.e., with smaller
asymptotic variance) if the correlation structure is used
to inform the estimate. For a single level of clustering, a
constant correlation between observations from the same
cluster is often assumed—the so-called ‘exchangeable’ cor-
relation structure. When there are multiple levels of clus-
tering one could assume a constant correlation at the
higher-level, but this is a crude approximation because the
correlation between observations from the same higher-
level cluster will depend on whether they also come from
the same lower-level cluster. Several authors have there-
fore modelled the correlation structure that occurs when
there is multi-level clustering and have demonstrated that
this gives more efficient estimates compared to either
the independence or the exchangeable structure [18–20].
While these methods provide benefit in terms of effi-
ciency, the complicated correlation structure is not easily
implemented in standard software, and the additional
parameters can lead to problems with convergence, par-
ticularly when the number of cluster is small [20]. Further-
more, the loss of efficiency that results from assuming an
independence structure is generally small [4, 21], except
when the intra-cluster correlation of the outcome is large
(ρy > 0.3) and the predictor varies within clusters [22].
The relative simplicity of assuming an ‘independence’ cor-
relation structure (i.e., the CRVE approach discussed in
this manuscript) might therefore remain attractive to the
applied researcher, even if the resulting estimate it is not
the most efficient.

Conclusions
CRVE are commonly used to construct confidence inter-
vals that take account of clustering. When clustering
occurs at multiple levels, CRVE can be used at the higher
level of clustering, except if there are few clusters at this
level and the intra-cluster correlation of the predictor is
high.

Appendix
In a logistic regression model, the relationship between a
binary variable Yij and predictors x1ij, . . . , xpij is

log
(

πij

1 − πij

)
= β0 + β1x1ij + β2x2ij + . . . + βpxpij

= x′
ijβ (A-1)

where πij=P(Yij = 1|xij) for observation i from cluster j.
Assuming responses are independent, the maximum

likelihood estimate, β̂ , is the solution to the equations

U(β) =
n∑

j=1
X′
j
(
Yj − πj(β)

) = 0 (A-2)

where Yj is a column vector of responses in cluster j, and
Xj is matrix whose columns are the predictors of Yj. Since
the Yj are independent, it can be shown by the central
limit theorem and using a Taylor expansion that, asymp-
totically, as the number of clusters (n) tends to infinity, β̂
is normally distributed with mean β and variance

(
∂U ′

∂β

)−1
Var(U(β))

(
∂U ′

∂β

)−1

where Var(U(β)) = ∑
j X′

jVar(Yj)Xj, ∂U ′
∂β

= ∑
j X′

jVjXj
and Vj is a diagonal matrix with elements πij(1 − πij).
The so-called sandwich estimator, which is also referred

to as the cluster robust variance estimate (CRVE), is
obtained by replacing πij in Vj with π̂ij and using (yj −
π̂j)(yj − π̂j)′ to estimate the covariance matrix Var(Yj).

Additional files

Additional file 1: Figure S1. Coverage of 95% confidence intervals for
the log odds ratio of an individual-level predictor. The intra-cluster
correlation of the predictor ranges between 0 (top) and 1 (bottom), for
K = 5 (left) or K = 20 (right) villages. The remaining parameter values are
α0 = log(0.1/0.9), α1 = σh =log(2), I = 5, J = 20 . (TIFF 30617 kb)

Additional file 2: Figure S2. Coverage of 95% confidence intervals for
the log odds ratio of a household-level predictor from a logistic regression
model that includes multiple predictors (x1 − x7). The intra-cluster
correlation of the predictor ranges between 0 (top) and 1 (bottom), for
K = 5 (left) or K = 20 (right) villages. The remaining parameter values are
α0 = log(0.1/0.9), α1 = · · · = α7 = σh =log(2), I = 5, J = 20.
(TIFF 30617 kb)

Additional file 3: Figure S3. Coverage of 95% confidence intervals for
the log odds ratio of an individual-level predictor from a logistic regression
model that includes multiple predictors (x1 − x7). The intra-cluster
correlation of the predictor ranges between 0 (top) and 1 (bottom), for
K = 5 (left) or K = 20 (right) villages. The remaining parameter values are
α0 = log(0.1/0.9), α1 = · · · = α7 = σh =log(2), I = 5, J = 20.
(TIFF 30617 kb)
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