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Abstract

Background: Although covariate adjustment in the analysis of randomised trials can be beneficial, adjustment for
continuous covariates is complicated by the fact that the association between covariate and outcome must be
specified. Misspecification of this association can lead to reduced power, and potentially incorrect conclusions
regarding treatment efficacy.

Methods: We compared several methods of adjustment to determine which is best when the association between
covariate and outcome is unknown. We assessed (a) dichotomisation or categorisation; (b) assuming a linear
association with outcome; (c) using fractional polynomials with one (FP1) or two (FP2) polynomial terms; and (d)
using restricted cubic splines with 3 or 5 knots. We evaluated each method using simulation and through a
re-analysis of trial datasets.

Results: Methods which kept covariates as continuous typically had higher power than methods which used
categorisation. Dichotomisation, categorisation, and assuming a linear association all led to large reductions in
power when the true association was non-linear. FP2 models and restricted cubic splines with 3 or 5 knots
performed best overall.

Conclusions: For the analysis of randomised trials we recommend (1) adjusting for continuous covariates even if
their association with outcome is unknown; (2) keeping covariates as continuous; and (3) using fractional polynomials
with two polynomial terms or restricted cubic splines with 3 to 5 knots when a linear association is in doubt.

Keywords: Randomised controlled trial, Covariate adjustment, Continuous variables, Fractional polynomials, Restricted
cubic splines

Background
Adjustment for prognostic covariates in the analysis of
randomised controlled trials (RCTs) can offer substantial
benefits [1–12]. These include increased power [1–6],
protection against chance imbalances between treatment
arms [1], and correct results when the covariate was
used as a stratification factor during randomisation [1,
8–12]. Adjustment for binary or categorical covariates is
relatively straightforward through the use of indicator
(or dummy) variables, as there is no risk of mispecifying
the nature of the association with the outcome. However,
adjustment for continuous covariates is more complex, as

the shape of this association does need to be specified. For
example, we could assume this association is linear, quad-
ratic, logarithmic, or takes on some other form.
When the shape of the association between covariate

and outcome is known (due to previous data, or bio-
logical or medical reasons), adjustment for continuous
covariates is straightforward. However, when the associ-
ation is unknown the best method of adjustment is un-
clear. Potential options include dichotomisation or
categorisation (grouping the covariate into two or more
categories); assuming a linear association between covar-
iate and outcome; or using the data to estimate a poten-
tially non-linear association, for example by using
fractional polynomials [13] or restricted cubic splines
(RCS) [14, 15].
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The issue of adjusting for continuous covariates has
been studied in the context of observational, non-
randomised studies [13, 16–19], however there has been
comparatively little research into this issue in RCTs. The
Committee for Proprietary Medicinal Products’ (CPMP)
guidance document Points to Consider on Adjustment
for Baseline Covariates states that “… in the absence of
any well-established prior knowledge about the relation-
ship between the covariates and the outcome (which is
often the case in most clinical trials) the model should
use a simple form. For example, when the covariate is
continuous, then the model might be based on a linear
relationship between the covariate and outcome, or on a
categorisation of the covariate into a few levels, the num-
ber of levels depending upon the sample size” [20]. How-
ever, these simple approaches may lead to misspecification
of the association between the covariate and outcome,
which can lead to a decrease in power [21]. Allowing for
more complex associations between covariate and out-
come may therefore be useful in order to maximise statis-
tical power.
The goals of this paper are to investigate which

methods of adjusting for a continuous covariate in the
analysis of a RCT maximise power whilst still retaining
correct type I error rates and unbiased estimate of treat-
ment effect, when the true association between covariate
and outcome is unknown.

Methods
Problems with misspecification
We begin by exploring some of the potential issues that
may occur if the association between a continuous co-
variate and the outcome is misspecified (that is, when
the assumed association is different to the true associ-
ation). In general, misspecification will affect results only
when there is a true association between covariate and
outcome, and for the purposes of this discussion we as-
sume that the covariate does influence outcome. It should
be noted however that the association between covariate
and outcome does not need to be causal. Finally, we only
consider covariates measured before randomisation, as ad-
justment for post-randomisation factors can lead to biased
estimates of treatment effect [22, 23].
In observational studies, one of the primary issues

with misspecification is residual confounding; that is,
adjusting for the misspecified covariate will not fully ac-
count for the confounding. This can lead to biased esti-
mates and misleading conclusions. However, residual
confounding is not an issue in RCTs, provided the ran-
domisation procedure has been performed correctly, as
this ensures there are no systematic differences between
treatment arms (although chance imbalances can still
occur) [24]. The primary concern regarding misspecifi-
cation in RCTs is therefore whether it affects the general

operating characteristics of the trial, e.g. the estimate of
the treatment effect, type I error rate, or power.
Current evidence suggests that misspecification of the

covariate-outcome relationship will not increase the type
I error rate [21, 25]. However, it can affect power and
the estimated treatment effect, though these issues differ
for linear vs. non-linear models (where linear models
include analyses that estimate a difference in means for
continuous outcomes, or a risk difference or risk ratio for
binary outcomes, and non-linear models include those
that estimate an odds ratio for binary outcomes, or a
hazard ratio for time-to-event models with censoring).
For linear models (e.g. a difference in means or pro-

portions), misspecification will not affect the unbiased-
ness of the estimator of the treatment effect; this
remains unbiased regardless of the extent of the misspe-
cification. However, the precision with which the treat-
ment effect is estimated will be reduced, leading to a
reduction in power [25].
For non-linear models (e.g. models that estimate odds ra-

tios, or hazard ratios with censoring), misspecification will
affect the estimated treatment effect; it will be attenuated
towards the null, and power will be reduced [21, 26–28].
In general, the impact will depend on the extent of the

misspecification (how far our assumed association is
from the true association); greater degrees of misspecifi-
cation will lead to greater decreases in power, and a
higher degree of attenuation in treatment effect for bin-
ary or time-to-event outcomes.

Methods of analysis
Below we outline various methods to adjust for continu-
ous covariates, and highlight the assumptions made by
each analysis. Figures 1 and 2 compare the estimated
association for each method of analysis to the true
association.

Dichotomisation
Dichotomisation involves splitting patients into two
groups based on their covariate values. For example, pa-
tients may be grouped according to their body mass
index (BMI) score as either overweight (25 or over) or
not overweight (under 25). As noted by others, this type
of grouping can be helpful in clinical practice, but is not
necessarily helpful for data analysis [29].
A dichotomised analysis can be implemented using

the following model:

Y ¼ αþ βTXT þ βOXO þ ε

where XT is a binary variable indicating whether the pa-
tient received treatment or control, βT is the effect of re-
ceiving treatment, XO is a binary covariate indicating
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whether the patient was overweight (BMI > 25), βO is the
effect of being overweight, and ε is a random error term.
The primary issue with dichotomisation is that it

throws away a large amount of information, which can
reduce power. For example, an analysis that treated BMI
as continuous would recognise that BMI values of 24
and 26 are different, but much more similar to each
other than BMI values of 16 or 34 are. However, a
dichotomised analysis (grouped as less or more than 25)
treats values of 16 and 24 as identical, values of 26 and

34 as identical, but treats BMI values of 24 and 26 as
opposite.

Categorisation
Categorisation is when patients are grouped into mul-
tiple categories. It is a generalisation of dichotomisa-
tion; in this paper we assume categorisation involves
three or more groups, in order to distinguish it from
dichotomisation.

True association Dichotomisation Categorisation

Linear Fractional polynomials Splines

Fig. 1 Estimated associations for different methods of analysis for y = log(x). *To obtain the estimated association between f(x) and y for each
method of analysis, we first generated a single data set from the model y = log(x) + ε (where ε ~ N(0, 1). We then fit a linear regression model of
the form y = f(x) to obtain the estimated association

True association Dichotomisation Categorisation

Linear Fractional polynomials Splines

Fig. 2 Estimated associations for different methods of analysis for y = x2. *To obtain the estimated association between f(x) and y for each method of
analysis, we first generated a single data set from the model y = x2 + ε (where ε ~N(0, 1). We then fit a linear regression model of the form y = f(x) to
obtain the estimated association
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Like dichotomisation, categorisation reduces the amount
of information in the analysis, potentially leading to a loss
in power. However, due to the increased number of
categories, less information will be lost than in dichotomi-
sation, and it should therefore give better results. For
example, categorising BMI into underweight (<18.5),
normal weight (18.5 to 24.9), overweight (25 to 29.9),
or obese (30 or more) allows BMI scores of 16, 24, 26,
and 30 to each have a different effect on outcome, un-
like dichotomisation.
A categorised analysis can be implemented using the

following model:

Y ¼ αþ βTXT þ βNXN þ βOVXOV þ βOBXOB þ ε

where XN, XOV, and XOB indicate whether the patient is
normal weight, overweight, or obese respectively, and
βN, βOV, and βOB are the effects of being in these BMI
categories compared to being underweight.
In general, a higher number of categories leads to less

information lost [21]. However, having too many cat-
egories can be problematic, particularly with a small
sample size. This can lead to reduced power due to the
extra parameters in the model [1]. It can also lead to in-
flated type I error rates and biased estimates of treat-
ment effect for binary or time-to-event outcomes when
the number of categories is high compared to the num-
ber of events [1].

Linear association
A linear analysis keeps the covariate as continuous, and
assumes the association between covariate and outcome
is linear. This analysis assumes the effect of an increase
in the covariate is constant across the range of the co-
variate. For example, an increase in BMI from 15 to 16
would have the same impact on outcome as an increase
from 29 to 30.
A linear analysis can be implemented using the follow-

ing model:

Y ¼ αþ βTXT þ βBMIXBMI þ ε

where XBMI represents BMI on a continuous scale, and
βBMI represents the effect of a one-unit increase in BMI
on outcome.
The primary advantage of a linear analysis over cat-

egorisation is that it makes full use of the data, and so
should increase study power. However, if the true associ-
ation between covariate and outcome is non-linear, then
a linear analysis will be misspecified and may lead to re-
ductions in power.

Fractional polynomials
Fractional polynomial models use polynomial trans-
formations to estimate the association between the

covariate and outcome. They typically use either one or
two polynomial terms. A model using only one polyno-
mial term is referred to as an ‘FP1’ model, and a model
using two polynomials terms an ‘FP2’ model. An FP1
can be written as follows:

Y ¼ αþ βTXT þ β1X
P1
BMI þ ε

where p1 is a polynomial transformation estimated from
the set {−2, −1, −0.5, 0, 0.5, 1, 2, 3} (where p = 0 is taken
to mean, by convention, log(X)).
A model with two polynomial terms (FP2) can be writ-

ten as:

Y ¼ αþ βTXT þ β1X
P1
BMI þ β2X

P2
BMI þ ε

where p1 and p2 are polynomial transformations esti-
mated from the set {−2, −1, −0.5, 0, 0.5, 1, 2, 3} (where
p = 0 corresponds to log(X)). By convention, p1 = p2 is
taken to mean a model in which the two terms are
β1XBMI

P1 and β2XBMI
P2 log(XBMI).

Either FP1 or FP2 models could be used in practice. It
is possible to use the trial data to select between FP1
and FP2 models, however we do not recommend this
approach, as covariate selection procedures have been
shown to lead to poor results [30]. We therefore recom-
mend pre-specifying the use of either an FP1 or FP2
model, and consider both approaches in this paper. Fur-
thermore, in some software packages fractional polyno-
mials also incorporate a model selection algorithm,
where they drop covariates which are not prognostic
enough (e.g. in the example above, they may drop BMI
from the final model if it does not meet some pre-
defined statistical significance threshold). As mentioned
earlier, we do not recommend model selection in RCTs,
and so for the purposes of this paper we have only con-
sidered fractional polynomial models which include all
covariates, regardless of their statistical significance.
The benefits of using a fractional polynomial approach

include keeping the data as continuous, and allowing for
non-linear associations. Fractional polynomials can be
implemented in most standard statistical packages (e.g.
using the fp or mfp commands in Stata, or the mfp pack-
age in R). Further details on fractional polynomials are
available elsewhere [13, 31].

Restricted Cubic Splines
RCS is implemented by splitting the continuous cova-
riate into separate sections, separated by m different
knots, k1 < k2 <… < km. Within each of these sections, a
polynomial relationship between the covariate and out-
come is estimated; these polynomial functions are joined
up at the knots, to ensure a smooth curve across the
range of the covariate. Two boundary knots kmin < k1
and kmax > km (usually placed at the extremes of the
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covariate) are also used; RCS estimates a linear associ-
ation between covariate and outcome in these boundary
knots, i.e. between kmin and k1, and km and kmax.
The model can be written as:

Y ¼ βTXT þ S BMIð Þ þ ε

where

S BMIð Þ ¼ γ0 þ γ1XBMI þ
Xm
j¼1

γ j

h
XBMI−kj
� �3

þ

−λj XBMI−kminð Þ3þ− 1−λj
� �

XBMI−kmaxð Þ3þ
i

and

XBMI−kð Þ3þ¼ fðXBMI−kÞ3 if XBMI ≥ k
0 if XBMI < k

and

λj ¼ kmax − kj
kmax − kmin

Although seemingly complicated, RCS can easily be
implemented in most software packages (e.g. the
mkspline command in Stata, the effect option in SAS, or
the hmisc package in R). In practice one must specify
the number of knots to use, and where to place them.
One could estimate the optimal number and location of
the knots based on the trial data, but as above, these
types of model selection procedures do not always work
well for RCTs, and we therefore recommend that these
choices are pre-specified. In this paper, we consider both
3 and 5 knots, and placing them at specified percentiles
of the data [15].
RCSs have similar benefits to fractional polynomials:

they keep the data as continuous, and allow for non-
linear associations. Further details on RCSs are available
elsewhere [15].

Simulation study
We performed a simulation study to compare different
methods of accounting for a continuous covariate in the
analysis of a RCT with both continuous and binary
outcomes.
We generated outcomes from the following model:

Y i ¼ αþ βTXTi þ βcov f Xið Þ þ εi

where XTi is a binary variable indicating whether the pa-
tient received treatment or control, βT is the effect of re-
ceiving treatment, Xi is a continuous covariate, f (.) is a
transformation, βcov is the effect of the transformed co-
variate, and εi is a random error term.
For continuous outcomes, we set εi to follow a normal

distribution with mean 0 and standard deviation σe, with
σe equal to 1.

For binary outcomes, we set εi to follow a logistic dis-
tribution with mean 0 and variance π2/3. Yi then repre-
sents a latent continuous outcome, and a binary
response was generated as 1 if Yi > 0 and 0 otherwise.
This model implies the β’s represent log odds ratios.
For both outcome types we assessed three scenarios

for X:

� A linear association with the outcome: f (X) = X
� A non-linear, monotonic association with the out-

come: f (X) = eX

� A non-linear, non-monotonic association with the
outcome: f (X) = X2

For each scenario we generated X from a normal dis-
tribution with mean 0 and standard deviation 1.
We chose βcov based on the following formula:

βcov p90−p10ð Þ ¼ σe

where pz is the zth percentile of f(X); that is, an increase
from the 10th to the 90th percentile in f(X) would in-
crease the outcome by one unit of σe. For continuous
outcomes, this led to βcov values of 0.385, 0.300, and
0.372 for linear, non-linear monotonic, and non-linear
non-monotonic associations respectively. For binary out-
comes, this led to βcov values of 0.700, 0.550, and 0.674
for linear, non-linear monotonic, and non-linear non-
monotonic associations respectively.
We set the sample size to 200 patients for continuous

outcomes, and to 600 for binary outcomes. These values
were selected based on a review of trials published in
high impact general medical journals which found these
were the median sample sizes for trials with each out-
come type [8]. Patients were randomised to one of two
treatment arms using simple randomisation. For each
simulation scenario (linear, monotonic, non-monotonic)
we used two treatment effects: βT was set to 0, or βT
was set to give 80 % power based on the sample size (as-
suming correct specification of the association between
covariate and outcome). For binary outcomes we set the
event rate in the control arm to 50 %. βT was set to give
80 % power based on both the sample size and the effect
of βcov on outcome; because the effect of βcov differed ac-
cording to the scenario, this implies that βT was set to
different values depending on the type of association be-
tween covariate and outcome.
We analysed continuous outcomes using a linear

regression model, and binary outcomes using a logistic
regression model. We adjusted for the continuous
covariate X in the regression model using seven different
approaches: (a) dichotomising X at its sample median;
(b) categorising X at the 25th, 50th, and 75th sample per-
centiles; (c) including X as a continuous covariate,
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assuming a linear association; (d) using fractional poly-
nomials, with one polynomial term (FP1); (e) using frac-
tional polynomials, with two polynomial terms (FP2); (f )
using restricted cubic splines with 3 knots (knots were
placed based on Harrell’s recommended percentiles
[15]); and (g) using restricted cubic splines with 5 knots
(knots were placed based on Harrell’s recommended
percentiles [15]).
For each scenario we calculated the bias in the esti-

mated treatment effect, the type I error rate (when βT = 0)
and the power (when βT ≠ 0). For each simulation scenario
we used 5000 replications.

Re-analysis of MIST2 and APC trials
We applied the different methods of accounting for con-
tinuous covariates to the MIST2 and advanced prostate
cancer (APC) trials. MIST2 compared four treatments
for patients with pleural infection [32]; placebo, tPA,
DNase, or tPA + DNase. We focus on the treatment
comparison between tPA + DNase vs. placebo for simpli-
city. We used a logistic regression model to re-analyse
the outcome of surgery at three months. Of the 192 pa-
tients included in the analysis, 31 (16 %) experienced an
event. We adjusted for the size of the patient’s pleural ef-
fusion at baseline (continuous covariate), as well as two
binary covariates: whether the infection was hospital ac-
quired and whether the infection was purulent. All three
covariates were minimisation factors. In our re-analysis,
we handled the continuous covariate (size of the pa-
tient’s pleural effusion) in eight different ways: (a) we ex-
cluded it; (b) we dichotomised it at its sample median;
(c) we categorised it at its sample 25th, 50th, and 75th

percentiles; (d) we included it as a continuous covariate,
assuming a linear association with outcome; (e) we used
an FP1 model; (f ) we used an FP2 model; (g) we used

RCS with 3 knots; and (h) we used RCS with 5 knots.
For the fractional polynomial models, we forced the
model to include the covariate regardless of its signifi-
cance level, and for the RCS models, we placed the knots
at the percentiles recommended by Harrell.
The APC trial compared diethyl stilboestrol vs. placebo

on overall survival in patients with advanced prostate can-
cer. We used a Cox regression model to re-analyse the
outcome of overall mortality. In our re-analysis we used
the dataset supplied by Royston and Sauerbrei [13]. Of
475 patients included in the analysis, 338 (71 %) experi-
enced an event. We adjusted for three continuous covari-
ates: patient weight, tumour size, and stage grade. All
three are prognostic factors associated with mortality. We
used the same methods of analysis as for the MIST2 trial
above. We analysed each of the three continuous covari-
ates using the same method (that is, dichotomised all
three, used an FP2 model for all three, etc.).

Results
Simulation results for continuous outcomes
All methods of analysis provided unbiased estimates of
treatment effect, and correct type I error rates (range 4.7
to 5.7 %) across all scenarios.
Results for power are shown in Fig. 3. For data gener-

ated under a linear association, all methods of analysis
which kept the covariate X as continuous (linear ana-
lysis, fractional polynomials, and restricted cubic splines)
had nominal power. Conversely, dichotomisation and
categorisation led to small reductions in power.
For data generated under a non-linear, monotonic asso-

ciation, FP and splines gave the highest power. A linear
analysis led to a reduction in power of about 5.8 % com-
pared to FP2, and dichotomisation and categorisation gave
reductions of about 10.0 and 7.6 % respectively.
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For data generated under a non-linear, non-monotonic
association, FP2 and splines with 3 or 5 knots gave the
highest power. A linear analysis and dichotomisation
had the lowest power (9.3 and 9.6 % reductions respect-
ively vs. FP2), and categorisation lost 7.0 % power. The
FP1 model lost 6.4 % power compared to FP2.

Simulation results for binary outcomes
Results are shown in Figs. 4 and 5. All methods of ana-
lysis were unbiased when the treatment had no effect
(i.e. when the odds ratio = 1), and gave correct type I
error rates (range 4.6 to 5.7 %) across all scenarios.
When the treatment was effective (i.e. when the odds ra-
tio ≠ 1), dichotomisation, categorisation, a linear analysis,
and FP1 models all led to bias in certain scenarios. This
was most pronounced for data generated under a non-
linear, non-monotonic association; dichotomisation, a
linear analysis, and FP1 all led to the log(OR) being
biased downwards by around 20 %. Conversely, FP2 and
splines with 3 or 5 knots all produced unbiased esti-
mates across all scenarios. Results are shown in Fig. 4.
For data generated under a linear association, a linear

analysis, FP, and splines all gave unbiased estimates of
treatment effect and similar power. The log odds ratios
for dichotomisation and categorisation were attenuated
by 11.7 and 3.0 % respectively, leading to a reduction in
power of 5.2 and 1.6 % compared to a linear analysis.
Under a non-linear monotonic association, a linear

analysis, FP, and splines all gave unbiased estimates of
treatment effect and nominal power. Dichotomisation
and categorisation had very little attenuation in the es-
timated treatment effects, and small reductions in
power compared to FP (1.3 % dichotomisation, 0.5 %
categorisation).

Under a non-linear, non-monotonic association, FP2
and splines with 3 or 5 knots gave unbiased treatment
estimates and good power. Categorisation led to a small
attenuation of the estimated log odds ratio, leading to a
small decrease in power compared to FP2. A linear ana-
lysis and dichotomisation both led to substantially atten-
uated treatment effects, leading to large decreases in
power compared to FP2 (9.1 % linear, 9.3 % dichotomi-
sation). The FP1 model also led to a large degree of bias
in the estimated treatment effect, and subsequently a
large reduction in power (8.6 %) compared to FP2. This
is because FP1 only allows for a monotone association
between X and Y.

Results of re-analysis of MIST2 and APC trials
Results can be found in Table 1. In both trials, un-
adjusted/dichotomised/categorised analyses led to
smaller treatment effect estimates than linear/FP/spline
analyses. Treatment effect estimates were reduced by 35,
24, and 6 % for unadjusted, dichotomised, and cate-
gorised analyses respectively, compared to FP or splines
in MIST2. This attenuation in the estimated treatment
effects led to larger p-values for unadjusted, dichoto-
mised, and categorised analyses in most cases, which
sometimes led to results becoming non-significant.

Discussion
Misspecification of the association between a continuous
covariate and the outcome in RCTs can lead to substan-
tial reductions in power. This occurs due to a reduction
in the precision of the estimated treatment effect for
linear analyses (such as continuous outcomes, or a dif-
ference in proportions) and a reduction in the size of the
estimated treatment effect for non-linear models (such
as a binary or time-to-event outcome with censoring
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estimated using an odds or hazard ratio). The extent to
which results are affected is influenced by the extent of
the misspecification.
Re-analysis of the MIST2 and APC trials found that

omitting a covariate from the analysis led to larger at-
tenuation of the estimated treatment effect compared to
including the covariate, even if the association between
covariate and outcome was misspecified. This is likely
because excluding a covariate from the analysis can be
seen as a more severe form of misspecification, and
therefore resulted in larger losses in precision and attenu-
ation of treatment effects. Therefore, we recommend
adjusting for covariates even if the true association is
unknown.
Our simulation study demonstrated that analyses

which keep covariates as continuous generally perform
better than analyses that use dichotomisation or categor-
isation. The simplest method of keeping a covariate
continuous is to assume a linear association with the
outcome. A linear analysis will perform well if the asso-
ciation between covariate and outcome is approximately

linear. However, there may be large reductions in power
in the presence of departures from linearity. If non-
linearity is possible, then FP2 models or splines are both
suitable options, as they have been shown to increase
power compared to alternative methods. FP1 models
should be used with caution, as these provide very poor
results under non-linear, non-monotonic associations.
This is because FP requires all covariates to take only
positive values, and therefore the outcome is a mono-
tone function of the covariates for any FP1 model.
One issue to consider when deciding if a covariate is

likely to have a linear association with outcome is the
expected range of the covariate within the trial popula-
tion. This range will often be smaller in trials than in ob-
servational studies due to more restrictive inclusion/
exclusion criteria. Covariates with a non-linear associ-
ation across their entire range may actually have a linear
or approximately linear association across certain sub-
sets of their range. For example, imagine BMI is non-
linear across the range 16–35. Then, for any small
portion of this range (e.g. 16–20, 20–24, etc.), the
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Fig. 5 Simulation results for binary outcomes (power)

Table 1 Results from different methods of adjusting for continuous covariates in APC and MIST2 trials

APC MIST2

Analysis methods HR (95 % CI) P-value OR (95 % CI) P-value

Unadjusted 0.84 (0.68 to 1.04) 0.11 0.23 (0.05 to 1.15) 0.07

Dichotomised 0.82 (0.66 to 1.01) 0.06 0.21 (0.04 to 1.07) 0.06

Categorised 0.82 (0.66 to 1.01) 0.07 0.18 (0.03 to 0.94) 0.04

Linear 0.79 (0.64 to 0.98) 0.03 0.16 (0.03 to 0.87) 0.03

FP1 0.79 (0.64 to 0.98) 0.03 0.17 (0.03 to 0.90) 0.04

FP2 0.78 (0.63 to 0.97) 0.03 0.17 (0.03 to 0.90) 0.04

Splines (3 knots) 0.80 (0.64 to 0.99) 0.04 0.18 (0.03 to 0.96) 0.04

Splines (5 knots) 0.81 (0.65 to 1.00) 0.06 0.17 (0.03 to 0.91) 0.04
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association may be at least approximately linear. There-
fore, in a trial recruiting only overweight patients (BMI
25–29.5), a linear analysis may be appropriate.
Continuous covariates are often categorised when used

as stratification factors during randomisation. Stratifica-
tion or minimisation induces correlation between treat-
ment arms, and it is therefore necessary to account for
this correlation in the analysis to obtain valid standard
errors and type I error rates [8, 9]. In practice, this
means we must include the stratification factors in our
analysis. It is therefore of interest to know whether we
must use the (categorised) stratification factor, or
whether we can use the continuous version. Theoretic-
ally, correctly modelling the functional form of the con-
tinuous covariate in the analysis should adequately
account for the correlation induced by the stratified ran-
domisation procedure, and so this approach should lead
to valid standard errors and type I error rates, as well as
increased power. However, further research to confirm
this hypothesis would be useful.
Both fractional polynomials and restricted cubic

splines require certain decisions to be made about their
implementation (e.g. FP1 or FP2, number and placement
of knots, etc.), and in practice, we could use the trial
data to make these choices. For example, one could esti-
mate the optimal number and location of the knots.
However, when using trial data to select the model, there
is a risk of model overfitting, which can lead to poor re-
sults. We therefore suggest that model selection be kept
to a minimum, and that the form of the covariates be
pre-specified [33, 34]. In addition to pre-specifying the
general analysis approach (e.g. assuming a linear associ-
ation vs. fractional polynomials vs. restricted cubic
splines), it is necessary to pre-specify the implementa-
tion of these approaches. For fractional polynomials, this
entails pre-specifying the whether an FP1 or FP2 model
will be used. For restricted cubic splines, this entails pre-
specifying the number and location of the knots. We
also note that both fractional polynomials and RCS can
be combined with model selection algorithms which
determine which covariates should be kept in the final
model, and which covariates should be discarded (usu-
ally based on a statistical significance threshold). How-
ever, analysis methods which rely on p-values to
determine the form of the final model have been shown
to give poor results in RCTs in a variety of scenarios [30,
35–37], and so we do not recommend this approach. In-
stead, we recommend when using fractional polynomials
or splines that all covariates are included in the model
regardless of their statistical significance.

Conclusion
We recommend (1) adjusting for continuous covariates
even if their association with outcome is unknown; (2)

keeping covariates as continuous; and (3) using frac-
tional polynomials with two polynomial terms or re-
stricted cubic splines with between 3–5 knots when a
linear association is in doubt.
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