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Key Points: 

 

• P. falciparum-generated cytoadherent knobs on infected erythrocytes contain a 

spiral framework linked to the red cell cytoskeleton 

• The findings suggest a structural basis for transmission of shear forces in 

adhesion of infected cells  
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Abstract 

Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of 

infected erythrocytes, which promotes parasite survival by preventing clearance in the 

spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation 

depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are 

required for cytoadherence under flow conditions, and they contain both KAHRP and the 

parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we 

have examined the three-dimensional structure of knobs in detergent-insoluble skeletons of 

P. falciparum 3D7 schizonts. We describe a highly organised knob skeleton composed of a 

spiral structure coated by an electron dense layer underlying the knob membrane. This knob 

skeleton is connected by multiple links to the erythrocyte cytoskeleton.  We used immuno-

electron microscopy to locate KAHRP in these structures. The arrangement of membrane 

proteins in the knobs, visualised by high resolution freeze fracture scanning electron 

microscopy, is distinct from that in the surrounding erythrocyte membrane, with a structure 

at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P. falciparum 

infection contain a highly organised skeleton structure underlying a specialised region of 

membrane. We propose that the spiral and dense coat organise the cytoadherence structures 

in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and 

their extensive mechanical linkage suggest an explanation for the rigidification of the 

cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces 

experienced by adhering cells. 
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Introduction  

 

Plasmodium falciparum malaria remains one of the leading causes of child deaths globally, 

with the majority of cases occurring in sub-Saharan Africa and South-East Asia.  While 

chemopreventive and vector control initiatives led to an estimated 42% reduction in 

mortality rates between 2000-2012, the emergence of artemisinin resistance highlights the 

importance of continued efforts to understand and interfere with the biology of the parasite 1. 

 

Of the five Plasmodium species capable of infecting humans, P. falciparum and P. vivax are the 

most prevalent, with P. falciparum causing 90% of malaria-related deaths. P. falciparum-

infected erythrocytes become cytoadherent, causing erythrocyte sequestration in the 

microvasculature and avoiding clearance of infected cells by the spleen 2.  Much of the 

virulence of P. falciparum malaria has been attributed to this cytoadherence, which impedes 

blood circulation, and results in severe syndromes such as cerebral or placental malaria 2–4.  

 

The dominant ligand mediating cytoadherence is PfEMP1, a major variable erythrocyte 

surface antigen of P. falciparum which may interact with a number of different host receptors 

2,3,5. Clonal antigenic variation of PfEMP1, encoded by the var multi-gene family, has been 

proposed to be responsible for adherence to different tissues, and hence for variations in 

disease progression 6,7. PfEMP1 isoforms are recognised by antibodies that provide variant-

specific immunity to P. falciparum 3. One variant, VAR2CSA, which binds to chondroitin 

sulphate in the placenta causing pregnancy-associated malaria, has been identified as a 

vaccine target 8. PfEMP1 is presented on the outside of infected erythrocytes, where it is 

localised to the surface of membrane protrusions known as knobs 4,9–11.  These knobs appear 

as prominent bumps on the surface of infected erythrocytes, from the early trophozoite stage 
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onwards 10,12,13.  PfEMP1 is transported to knobs via Maurer’s clefts 14. Disruption of genes 

required for PfEMP1 trafficking to the membrane causes dramatic reductions in 

cytoadherence 15,16. Loss of the ability to form erythrocyte knobs has been linked with a loss 

of parasite virulence in primate infections 17, and with reduced cytoadherence in vitro 15,18,19.  

 

The formation of the PfEMP1-presenting knobs is dependent on the expression of the 

parasite-derived knob-associated histidine-rich protein (KAHRP).  Erythrocytes infected with 

KAHRP-negative P. falciparum lack knobs and show diminished PfEMP1 presentation and 

reduced adherence to CD36, ICAM-1 and CSA under flow conditions 18–20.  KAHRP is localised 

with PfEMP1 in knobs 18,21 where it has been shown by immuno-EM to be associated with an 

electron-dense (as visualised in heavy-metal stained specimens) layer of material under the 

membrane, as well as in Maurer’s clefts 22,23. KAHRP is a 59-72 kDa protein (550-657 amino 

acid residues depending on the variant) containing an N-terminal signal sequence and a 

PEXEL (Plasmodium export element) motif that mediate export into the erythrocyte, a 63-

amino-acid histidine-rich (55%) region, and two variable tandem repeat regions 24–26. 

Expression of KAHRP has been shown to increase the rigidity of infected erythrocytes, 

thereby further contributing to cytoadherence-associated virulence 27. This rigidifying effect 

on the cytoskeleton is common to a number of exported parasite proteins 15,27. Use of gene 

knock-out mutants has revealed that in addition to KAHRP, two genes, those encoding a 

PHIST domain protein (PFD1170c), and an Hsp40-like DNAJ Type IV protein (PF10_0381), are 

also important for knob formation 15.  Other parasite proteins that have been shown to 

associate with knob components, and which may thus form part of the knob structure, include 

knob-associated Hsp40 28, the PfEMP1 trafficking protein PfEMP3 16,28, the large variable 

surface antigen SURFIN 29, the 2.5 MDa Pf332 antigen 30 and the PHIST domain protein 

PFE1605w (LyMP) 31,32. PFE1605w is localised at the cell periphery 33 and has been shown to 
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be important for cytoadherence but not for knob formation or for surface expression of 

PfEMP1 31.  

 

We have examined the architecture of cytoadherent knobs in P. falciparum 3D7-infected 

erythrocytes. By isolating the erythrocyte cytoskeletons of mature schizonts, we have found a 

distinctive spiral structure with an electron-dense coat underlying the knob membrane. This 

knob skeleton is anchored into the surrounding erythrocyte cytoskeleton, which connects to 

the electron-dense coat. Freeze-fracture scanning electron microscopy (SEM) shows that the 

arrangement of membrane proteins in the knobs is quite distinct from that in the surrounding 

erythrocyte membrane, with a structure at the apex that may represent the site of adhesion. 

We propose that the knob skeleton provides a mechanical linkage between the adhesion site 

and the cytoskeleton. 

 

 

Methods 

 

P. falciparum culture 

P. falciparum 3D7 asexual blood stages were maintained in human erythrocytes in RPMI 1640 

medium containing Albumax (Thermo Fisher Scientific, Waltham, MA, U.S.A.), with 

synchronisation using standard methods  34. Human blood was obtained with full consent 

from the UK National Blood Transfusion service, and was used within 2 weeks of receipt. 

Enrichment of mature schizonts was achieved using Percoll (GE Healthcare, Little Chalfont, 

UK) as described previously 35.   

 

High pressure freezing and freeze substitution 
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Mature schizonts were pelleted by centrifugation, mixed with RPMI medium containing 

brewer’s yeast and dextran as a cryoprotectant, and high-pressure frozen in aluminium 

planchettes using an HPM010 high pressure freezer (BalTec, Reading, UK).  This material was 

freeze-substituted into HM20 resin (Polysciences, Inc., Warrington, PA, U.S.A.) containing 

0.2% uranyl acetate. 200-220 nm sections were cut using an EMUC7 ultramicrotome (Leica 

Camera AG, Wetzlar, Germany) fitted with a diamond knife, and mounted on carbon-coated 

copper grids. Grids were then coated with 10 nm protein-A gold (Sigma-Aldrich, St. Louis, MO, 

U.S.A.) as a fiducial marker for tomography. 

 

Preparation of schizont skeletons for negative-stain and cryo-tomography 

Cytoskeletons of schizonts and uninfected erythrocytes were prepared in situ on carbon-

coated copper grids as follows. Grids were glow-discharged, coated with 0.01% poly-L-lysine 

(Sigma-Aldrich) for 30 seconds, washed with water and blotted dry. Grids for cryo-

tomography were additionally coated with 10 nm colloidal gold fiducial markers (Sigma-

Aldrich). Mature schizonts or uninfected erythrocytes in phosphate-buffered saline (PBS; 

approx. 20% haematocrit) were applied to the grids, allowed to adhere for 1 minute, then 

blotted from the back and washed once with PBS. Grids carrying cells were dipped 

sequentially into lysis buffer (1 mM Tris pH 4.7, 1 mM KCl, 0.2 mM MgCl2), lysis buffer 

containing 2% Triton X-100, and then lysis buffer without detergent to wash, for 60 seconds 

in each solution, passing through the meniscus several times. Grids were then either stained 

with 2% sodium silicotungstate, pH 7.5, blotted and air-dried, or blotted from the back and 

plunge-frozen in liquid ethane using a manually operated apparatus.  

 

Immunolabelling 

Schizont and uninfected erythrocyte skeletons were prepared on grids as described above, 

then immunolabelled while still wet before staining or plunge-freezing. KAHRP was detected 
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using monoclonal antibody (mAb) 89 22 or mAb 18.2 (anti-KAHRP, obtained from the 

European Malaria Reagent Repository, donated by Dr. Jana McBride), followed by goat anti-

mouse secondary antibody doubly conjugated with 10 nm gold and Alexafluor 488 (Thermo 

Fisher Scientific).  Spectrin was detected using antibody ab11751 (Abcam, Cambridge, UK), 

and gold-conjugated secondary antibody as above.  Antibodies were diluted in blocking buffer 

(0.5% cold water fish skin gelatine (Sigma-Aldrich), 1% normal goat serum (Thermo Fisher 

Scientific), 0.05% Tween-20 in PBS). Grids were incubated for 30 minutes each in blocking 

buffer, followed by primary antibody solution, then secondary antibody solution. Grids were 

washed in PBS between steps, and in low salt buffer before negative staining as described 

above. For controls, primary antibody was omitted from the second incubation step, or 

replaced with preimmune serum.   

 

Transmission electron microscopy 

Images and tomograms of resin-embedded and negative stained skeletons were collected 

using an FEI T12 electron microscope with a tungsten filament operated at 120 kV, or an FEI 

F20 electron microscope operated at 200 kV.  A US4000 CCD camera (Gatan, Abingdon, UK) 

was used for imaging. Dual-axis tomograms were collected using a dual-tilt tomography 

holder (E.A. Fischione Instruments, Inc., Export, PA, U.S.A.).  

Cryo-tomograms were collected from vitrified specimens 100-300 nm thick using a Polara 

electron microscope operated at 300 kV (FEI Company, Hillsboro, OR, U.S.A.), equipped with a 

Quantum energy filter and a K2 direct electron detector (Gatan). Zero loss filtering was 

carried out using a 20 eV slit width. Images were collected in electron counting mode with 

dose fractionation, using 3-6-second exposures with 6-20 subframes per exposure.  Total 

exposures were 60-110 electrons per square Angstrom (e-/Å2) for cryo-tomograms and 200-

270 e-/Å2 for negative-stain dual-axis tomograms. Tomographic tilt-series collection was 

controlled using Serial EM 36.   
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Image processing 

Tomographic reconstruction and subframe alignment were carried out using IMOD 37.  5 or 10 

nm gold beads were used as fiducial markers, and some tomograms were aligned by patch 

tracking. Gold particles in tomographic reconstructions were detected automatically using 

IMOD findbeads3d, knobs were modelled using 3dmod, and the relative spatial distribution of 

gold and knobs was calculated using IMOD MTK 37. The average densities of gold beads 

calculated by MTK for individual tomograms were combined by weighting the tomogram 

average according to the number of knobs present. Gold beads in images of immunolabelled 

material were counted automatically using ImageJ. Tomograms were denoised for display 

using nonlinear anisotropic diffusion (NAD) filtering. 

 

Freeze-fracture scanning electron microscopy 

Mature schizonts were concentrated by centrifugation, high-pressure frozen as above without 

additional cryo-protectant, then fractured at -110 °C and multi-axis rotary coated at high 

vacuum with a 4 nm layer of chromium using a BAF060 freeze fracture system fitted with a 

VCT100 vacuum cryo transfer system (BalTec).  Samples were imaged under cryo-conditions 

using a specialised semi in-lens cryo-SEM (JSM-7401F, JEOL (UK) Ltd, Welwyn Garden City, 

UK) equipped with a cold-source field emission gun, beam deceleration and an energy filter.  

Images were collected using low beam landing energy (1.2 kV) at 37000 - 60000x 

magnification and a working distance of 4-5.4 nm. 

 

Database depositions 

Representative tomograms have been deposited in the Electron Microscopy Data Bank, codes 

EMD-3116, EMD-3117, EMD-3122 and EMD-3123.  
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Results  

 

Architecture of P. falciparum-induced erythrocyte knobs 

During blood stage development of the parasite, the most evident change to the erythrocyte 

cell surface is the appearance of the cytoadherent knobs 10,12,13.  In order to characterise knob 

structure, we processed synchronised late schizonts by high-pressure freezing and freeze 

substitution and examined sections of this material by electron microscopy. Knobs are visible 

as prominent protrusions on the surface of the erythrocyte membrane (Figure 1), as 

previously observed 10,18,23,38–45. A layer of electron-dense material approximately 13 nm thick 

lies under the membrane in the knobs, about 10 nm below the membrane bilayer (Figure 1).  

It thus occupies a similar position to the erythrocyte cytoskeleton relative to the membrane 46. 

The electron-dense material follows the shape of the knob in three dimensions (3D), forming 

cup-shaped structures ranging from 40-145 nm in diameter and averaging 50 nm in height 

(43 knobs examined).  

 

A spiral structure underlies knobs 

To obtain a more detailed view of the knob structure, we examined detergent-insoluble 

schizont skeletons by negative-stain electron microscopy.  Knobs are visible as dark patches 

in the erythrocyte cytoskeleton, 70-100 nm in diameter (Figure 2). When this material is 

examined by electron tomography, structural components are resolved in 3D rather than 

being projected onto a single plane. In the resulting 3D reconstructions, knobs can clearly be 

seen to contain spirals made up of a stain-excluding filament 2-3 nm wide (Video S1). Figure 3 

A-C shows slices of these spirals at different depths through the knobs. Tracing these 

structures in 3D reveals that each knob contains a spiral filament that coils into a shallow 

cone (Figure 3D,E, Video S1).  Spirals turn anti-clockwise as viewed from the cytoplasmic 
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(concave) side (Figure 3D,E, Figure S2). The spacing between turns of the filament varies from 

5-12 nm, and the gaps between turns contain a radiating structure with major radial features 

spaced approximately 4 nm apart (Figure 3A). A layer of more diffuse material, also having a 

radiating pattern, coats the upper surface of the conical frame formed by the spiral (viewed in 

different orientations in Figure 3C,F).  When viewed from the side, this coating coincides with 

the cup-shaped structure seen as an electron-dense layer in resin-embedded sections 

(compare Figure 4A,B). This structure lies between the 2-3 nm spiral filament and the 

membrane, in cases where detergent extraction was incomplete (Figure 4B). The whole 

spiral-plus-coat structure (which we will refer to together as the knob skeleton) is 20-50 nm 

in height, similar to what was seen for resin-embedded material, suggesting that the negative 

stain procedure did not cause noticeable flattening.  Knob density in the cytoskeleton was 

11.8 +/- 5.1 knobs/µm2, which is similar to that reported for P. falciparum strains subjected to 

long-term in vitro culture as in this study 47. 

 

Knobs are embedded in the cytoskeleton and have a discontinuity at their apex 

To examine the cytoskeleton in the hydrated state, we prepared frozen-hydrated schizont 

skeletons and imaged these by cryo-electron tomography (Figures 4C, 5; Video S3). 

Cytoskeleton and knobs can be seen clearly in the resulting cryo-tomograms (Figure 5A,C). It 

was possible to partially trace the path of the spirals, and to identify the coat on the outside of 

the spiral cone (Figure 5C). The coat coincides with the electron-dense layer in high-pressure 

frozen material and with the diffuse layer in negative stain (Figure 4).  In cases where knobs 

present clear side views in the resulting cryo-tomograms, there is a discontinuity at the apex 

of the knob, with a break in the residual membrane in preparations where detergent 

extraction was incomplete (Figure 4C).  This suggests a difference in membrane properties at 

this point, which could indicate the presence of specialised transmembrane components. In 

Figure 5D, a model of the 3D structure traced from the 3D reconstruction (see Video S3) is 
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superposed on a section of the density. Cytoskeletal filaments (blue) connect to the outside of 

the coat layer (magenta, Figure 5D). Points of contact between the cytoskeleton and coat layer 

(yellow spheres) are apparent over the whole surface of the coat layer, but most connections 

occur around the knob base (Figure 5E). No cytoskeletal material can be seen passing 

underneath the knobs (Video S3) in tomograms where the two apposed layers of the 

cytoskeleton, arising from the upper and lower cell surfaces, can be adequately distinguished. 

An anti-spectrin antibody, recognising the erythroid spectrin alpha chain SH3 domain, 

labelled the erythrocyte skeleton of schizonts as expected, but labelling was almost 

completely excluded from regions within 50 nm of the centres of knobs (Figure S4).  This 

suggests that spectrin, the major erythrocyte cytoskeletal building block, is excluded from the 

inside of the knobs, which were 70-100 nm in diameter. This supports the model described in 

Figure 5D,E, in which spectrin connects to the outer edges of knobs without passing 

underneath them. Importantly, outside of the knobs, there is no obvious qualitative difference 

in cytoskeleton structure between infected and uninfected erythrocyte skeletons (Figure 

5A,B).  

 

KAHRP is in the diffuse layer coating the spiral 

Previous studies have demonstrated that the material underlying knobs contains KAHRP 22,23. 

To locate KAHRP in the schizont skeletons, we used monoclonal antibodies (mAb) against 

KAHRP. Labelling was detected by negative-stain and cryo-electron tomography using a gold-

conjugated secondary antibody (Figure 6). Skeletons labelled with anti-KAHRP antibody 18.2 

(Figure 6A,B) have gold beads clustered over the surface (Figure 6C,D), separated from the 

spiral by 10-60 nm (Figure 6E). Uninfected erythrocyte skeletons showed no labelling under 

identical conditions (Figure S5). A similar pattern of labelling was seen using anti-KAHRP 

antibody 89, which recognizes a different part of the KAHRP sequence (Figure S6). The 

epitope for mAb 18.2 is located in residues 282-362 of KAHRP, while that for mAb 89 lies 
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within residues 424-539 (Figure S6) 48.  These findings are in agreement with the earlier work 

and confirm that the knob skeletons contain KAHRP.  

 

Membrane proteins are reorganised at knobs. 

To examine the distribution of proteins in the knob membrane, we used a custom-optimised 

system combining cryo-scanning electron microscopy (cryo-SEM) at  ~2 nm resolution, with 

freeze-fracture.  Freeze-fracture allows examination of the individual leaflets of the 

membrane bilayer, while this system facilitates visualisation over a fractured surface 

containing many thousands of schizonts at high magnification (Figure 7).  Knobs appear as 

pits in the E-face (the inside of the outer membrane leaflet; Figure 7A) or protrusions in the P-

face (the outside of the inner membrane leaflet; Figure 7B). Membrane proteins in the E-face 

are arranged in a mesh pattern that closely resembles the mesh of the cytoskeleton in 

dimensions and arrangement; knob protrusions show a circular clearing in this pattern with 

membrane proteins only remaining at the apex (Figure 7A).  The dimensions of individual 

globular components in the pattern of membrane proteins range between 8-25 nm, including 

the 4 nm chromium coating. Membrane proteins in the P-face are smaller (approx. 5-10 nm) 

and appear less organised than in the E-face. However, a circular zone of clearing is also 

evident around the edges of the knob protrusions, similar to what was seen previously by low 

resolution freeze-fracture SEM of the P-face (Figure 7B)19,39. These findings demonstrate that 

the knob membrane has a distinct distribution of membrane proteins from the surrounding 

erythrocyte membrane, including a discrete structure at the apex.  
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Discussion 

 

We have examined the cytoadherent knobs in P. falciparum-infected erythrocytes and have 

described a knob skeleton, containing a spiral structure, underlying the membrane 

protrusions (Figures 3,4). This structure is described schematically in Figure 7C. Armed with 

the present data, one can detect hints of the spiral structure in previously published images of 

purified knobs 49. Our use of 3D imaging of schizont skeletons facilitated the interpretation of 

these structures as conical spirals.  

 

The outer coat of the knob skeleton makes multiple connections to the surrounding 

erythrocyte cytoskeleton (Figure 5C-E; Video S3).  These mechanical linkages suggest a means 

by which the shear forces involved in cytoadhesion by the knobs under flow conditions could 

be transmitted to the surrounding cytoskeleton (e.g., as discussed by 18).   A spiral support at 

the point of attachment might function in a spring-like fashion to absorb sudden changes in 

mechanical stress. Intrinsic flexibility in the structure that would support this idea is 

suggested by the variations observed in spacing between turns of the spiral.  

 

Insertion of KAHRP-containing knobs into the cytoskeleton may also explain the rigidifying 

effect of KAHRP on the infected erythrocyte 27.  Knobs are present at high density on the 

surface of infected erythrocytes, and the numerous connections between the coat layer and 

the surrounding cytoskeleton are likely to have a significant impact on cytoskeletal 

mechanics. In clinical isolates, knob densities can reach up to four times what we observed in 

this laboratory strain 47.  These findings support the mechanism proposed in a recent 

modelling analysis for the rigidifying effect of the knobs on the erythrocyte cytoskeleton 50. 

Spectrin tetramers are capable of stretching to 194 nm in length 51, which would allow for 
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knob intercalation into the cytoskeleton mesh without further modification.  It has been 

reported that the red cell cytoskeleton is gradually dismantled as the intracellular parasite 

develops 42,52,53, and it is possible that some cytoskeletal connections are broken during knob 

formation. However, in this study, which used highly synchronised, mature schizont 

preparations, no differences in cytoskeletal structure outside of the knobs were observed 

between uninfected erythrocyte skeletons and those from mature schizonts. These findings 

are not consistent with the notion of progressive degradation of the cytoskeleton. 

 

Knobs are thought to comprise a complex of the cytoadherent ligand PfEMP1, KAHRP, other 

parasite-derived proteins and erythrocyte cytoskeleton components, such as spectrin, F-actin 

and ankyrin-R 32,54–62.  A central fragment of KAHRP containing lysine-rich repeat regions 

forms electron-dense patches under the membrane in resealed erythrocytes 48, and full-length 

KAHRP expressed in E. coli forms clusters that associate with spectrin 57.  Our 

immunolabelling (Figure 6) strengthens earlier evidence localising KAHRP to the electron-

dense layer underlying knobs 22,23.  

 

The distinctive spiral structure in the knobs (Figure 3) bears a striking resemblance to the 

structures formed by eukaryotic ESCRT-III proteins involved in ATP-driven intraluminal 

vesicle budding and membrane scission in mammalian and yeast cells 63,64, 65–67. ESCRT-III 

proteins comprise alpha-helical bundles that assemble into a membrane-associated spiral 63. 

While no homology could be detected between ESCRT-III proteins and any of the known 

components of knobs (Supporting Information S7), it is noteworthy that they both involve 

spiral structures of very similar appearance in membrane deformation.  Only low levels of 

native ESCRT-III proteins have been detected in erythrocytes 68. By comparison, knobs are 

present at high density in infected erythrocytes and also contain high concentrations of 

KAHRP 12. The P. falciparum genome encodes five homologues of eukaryotic ESCRT-III 
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proteins (PF08_0064, PFI00300w, PFL2090c, PF14_0397 and PF11_0434; Supporting 

Information S7), all of which are expressed in the blood stages. However none of these is 

known or predicted to be exported to the erythrocyte cytoplasm (Supporting Information S7). 

None of the knob-associated proteins is known to have ATPase activity, as might be expected 

for ESCRT-III complexes.  

 

The erythrocyte membrane is modified considerably during P. falciparum infection by the 

insertion of parasite-derived proteins, including PfEMP1, as well as by changes in 

phosphorylation of cytoskeleton-associated proteins 69–72. Phosphorylation of erythrocyte 

band 3 during infection has been shown to cause uncoupling of this cytoskeleton-organising 

transmembrane protein from the cytoskeleton 73. We observed a rearrangement of 

transmembrane proteins at knobs by high-resolution, freeze-fracture cryo-SEM (Figure 7A,B).  

This is consistent with a role for knobs in organising and presenting transmembrane ligands 

on the erythrocyte surface 18,19.  In the E-face, knobs form prominent clearings in a network of 

membrane proteins, which are absent from all but the knob apex.  A discontinuity was also 

observed at the apex of knobs in cryo-tomograms, consistent with a difference in the 

properties of the membrane at this point (Figure 4).  Given that PfEMP1 has been clearly 

localised to the surface of knobs 9,19, and that adhesion appears to occur at the apex of knobs 

in sections of infected cells adhering to the epithelial surface 19, it seems likely that a PfEMP1-

containing adhesive structure is located at the knob apex.  Outside of the knobs, the network 

pattern of membrane proteins seen in the E-face by freeze-fracture SEM suggests that these 

may be cytoskeleton-associated, possibly band 3 or glycophorins (although there is some 

evidence that band 3 partitions preferentially with the P-face during fracture of uninfected 

erythrocytes 74,75). Altered membrane protein distribution at knobs is less marked in the P-

face, although there are clearings around knobs similar to those observed previously by SEM 

of freeze-fracture replicas 19,39.  
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In conclusion, we have shown that erythrocyte knobs in P. falciparum infection contain a 

highly organised coated spiral structure underlying a specialised region of membrane (Figure 

7C). The application of electron tomography to schizont skeletons has revealed this 

previously undescribed knob skeletal framework. The observation of multiple connections 

between the knob skeleton and the erythrocyte cytoskeleton suggests a mechanical 

explanation for the cytoadherence-enhancing effects of knobs as well as for the reduction in 

cytoskeletal flexibility caused by knob components.  The discovery of these structures 

suggests new avenues of research to elucidate the roles of individual components of the knob 

structure in antigen presentation and adherence.  
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Figure legends 

Figure 1. Knobs in the membrane of a P. falciparum-infected erythrocyte have an 

underlying electron-dense layer. Average of 20 slices from a tomogram of a high-pressure 

frozen, freeze-substituted schizont, showing knobs in the erythrocyte membrane and 

underlying electron-dense material. cyt, erythrocyte cytoplasm; mem, erythrocyte membrane; 

TVN/MC, tubulovesicular network/Maurer’s cleft.  

 

Figure 2. Knobs are visible as dark patches in electron micrographs of detergent-

extracted schizont skeletons.  Electron micrograph showing several knobs, indicated by 

arrowheads, in a negative-stained schizont skeleton, with surrounding cytoskeletal material.  

Inset: Two-fold enlarged view of the knob at top left.  

 

Figure 3. Knobs contain spiral structures seen in sections through three dimensional 

reconstructions. A-C) Sections (averages of 3-4 slices) taken at different heights through 

knobs in a tomogram of a negative-stained schizont skeleton, showing a spiral structure. 

White arrows in A indicate some examples of radiating connections between turns; yellow 

arrows in C indicate diffuse coating material with a radiating pattern. D-E) Handedness and 

depth of knob spirals: models of two adjacent knobs from opposite sides of the skeleton, 

which have been collapsed onto one another during lysis and staining, viewed face-on (D) and 

from the side (E). F) Section through the tomogram tilted to cut through the coating layer of 

one side of a knob cone, showing coating material over at least five turns in curved layers 
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(yellow arrows). Some stain-excluding membrane material (marked in F by a dashed line; see 

Fig. 4B) remains after detergent extraction.  

 

Figure 4. The electron-dense coating layer lies between the spiral and the membrane. 

Comparison of side-view sections through knobs in tomograms of schizont material prepared 

using different methods, showing layered arrangement of spiral, coat layer and membrane; 

averages of 10 tomographic slices through the knob apex. A) High pressure-frozen, freeze-

substituted schizont showing membrane bilayer and underlying electron-dense material. B) 

Negative-stained detergent-insoluble schizont skeleton; contrast inverted to match A and C. 

The path of the spiral coil through the tomogram section is indicated by green circles. Some 

membrane remains after detergent extraction. View orthogonal to the plane of the tomogram. 

C) Schizont skeleton in vitreous ice, showing partially detergent-extracted membrane and 

underlying electron-dense material. A sharp discontinuity is present at the apex and in the 

coat layer. 

 

Figure 5. Knob skeletons make multiple connections to the erythrocyte cytoskeleton.  

A) Schizont skeleton with knob skeletons in vitreous ice, average of 50 slices from an NAD-

filtered cryo-tomogram. B) Uninfected erythrocyte skeleton, average of 30 slices. C) Enlarged 

view of boxed region in A, average of 30 slices, showing four knob skeletons and surrounding 

cytoskeleton. D) The same region shown in B, with superimposed model of knobs and 

associated material in 3D. Spiral strands are partially traced as green tubes and the coating 

layer of the knob skeletons is outlined by magenta contours. Points of connection with the 

surrounding cytoskeletal material (dark blue tubes) are marked by yellow spheres.  E) 

Orthogonal views of a model of a typical knob skeleton (top right in C,D). In the side view 

(top), the estimated location of the cell membrane prior to detergent-extraction, based on 
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Figure 4, is marked by a dashed line. The outer surface of the coat layer has been rendered as 

a mesh (magenta). 

 

Figure 6. Immuno-EM labelling of KAHRP in knob skeletons.  A). Thick section (average of 

50 slices) from a cryo-tomogram of schizont skeleton labelled with anti-KAHRP antibody 18.2 

and 10 nm gold-conjugated secondary antibody. B) The same field of view shown in A, with 70 

slices of a 3D model overlaid, describing knob spirals by the first and last turn (green 

contours), and gold beads as cyan spheres. C) Sections (30 slices each) through individual 

knobs in a cryo-tomogram of schizont skeleton labelled with mAb 18.2 and gold-conjugated 

secondary antibody, showing spiral structure with radiating pattern and gold labelling on the 

coat layer. Connected cytoskeleton is also visible. D) Model showing spirals as first and last 

turn (green contours) and gold label (cyan spheres) in a cryo-tomogram of schizont skeleton 

labelled with anti-KAHRP antibody 18.2. Dashed lines mark the boundaries in x of the volume 

shown in the side view. E) Chart showing the average density of gold beads at a given radial 

distance (in 3D) from knob spirals in four cryo-tomograms of schizont skeletons labelled with 

KAHRP antibody 18.2 and 10 nm gold-conjugated secondary antibody.   

 

Figure 7. Knob membranes have a distinct distribution of membrane proteins. Cryo-

scanning electron microscopy images of freeze-fractured schizont coated with 4 nm 

chromium, showing erythrocyte membrane proteins. The knobs are clearly recognizable as 

indentations (A) or protrusions (B). Membrane proteins are visible as small lighter-shaded 

bumps forming various patterns on the surface. A) E-face (inside of the outer membrane 

leaflet). B) P-face (outside of inner membrane leaflet).  Knobs are indicated by white 

arrowheads. C) Schematic of the knob structure, showing the spiral with coat layer underlying 

the erythrocyte membrane, and erythrocyte spectrin connecting to the outside of the coat 
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layer. Membrane proteins are present at the knob apex and in the surrounding erythrocyte 

membrane, but are otherwise sparse in the knobs. 

 

 

 
















