A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and non-proportional effects of covariates
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ABSTRACT

The excess hazard regression model is an approach developed for the analysis of cancer-registry data to estimate net survival, that is, the survival of cancer patients that would be observed if cancer was the only cause of death. Cancer registry data typically possess a hierarchical structure: individuals from the same geographical unit share common characteristics such as proximity to a large hospital which may influence access to and quality of health care, so that their survival times might be correlated. As a consequence, correct statistical inference regarding the estimation of net survival and the effect of covariates should take this hierarchical structure into account. It becomes particularly important as many studies in cancer epidemiology aim at studying the effect on the excess mortality hazard of variables, such as deprivation indexes, often available only at the ecological level rather than at the individual level. We developed here an approach to fit a flexible excess hazard model including a random effect to describe the unobserved heterogeneity existing between different clusters of individuals, and with the possibility to estimate non-linear and time-dependent effects of covariates. We demonstrated the overall good performance of the proposed approach in a simulation study that assessed the impact on parameter estimates of the number of clusters, their size and their level of unbalance. We then used this multilevel model to describe the effect of a deprivation index defined at the geographical level on the excess mortality hazard of patients diagnosed with cancer of the oral cavity.
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INTRODUCTION

The relationship between socio-economic status and cancer survival is an important public health issue and the reduction of social inequalities in cancer management constitutes a challenge for healthcare systems with universal access and which are based on equity [1-4]. The study of the impact of the socio-economic status on cancer survival is mostly based on population-based cancer registry data [4] and that usually implies that the socio-economic level of the patients is described by an ecological measure, i.e., patients are assigned the socio-economic status of their area of residence. However, patients living in the same area may share unobserved characteristics such as access to medical facilities or environmental exposures. In such a case, the hypothesis of independence of the survival times is violated and adjusting for socio-economic status is not enough: correct statistical inference requires that the hierarchical structure of the data be taken into account.
 Mixed effect models, also known as multilevel models, provide a satisfying and convenient theoretical framework to handle such hierarchical structure by introducing a random effect at the cluster (e.g., geographical area) level. Shared frailty models are survival models including random effects at the cluster level in order to model the unobserved heterogeneity between clusters. The term “shared frailty” refers to the fact that individuals from the same cluster share a common frailty towards the disease, thereby explaining the correlation of their survival times; introduced in the late seventies, they have been since then the objects of several developments [5-8]. In particular, the frailtypack R package offers the possibility to fit various kind of multilevel survival models (semi-parametric and parametric frailty models, two-level frailty models, proportional hazard models with two correlated random effects) [9,10]. Recently, Crowther et al. described an approach to fit flexible parametric survival models taking into account one or several normally distributed random effects [11].
However, these models have been developed for overall survival while the main survival indicator of interest when comparing populations is net survival, that is, the hypothetical survival that patients would experience could they die only from their cancer [12,13]. In the context of routine population-based studies, net survival is estimated within the relative survival setting, i.e., by comparing the all-cause hazard of death experienced by the patients to the general population which the patients come from. Modelling the excess hazard is one of the approaches developed to estimate net survival [14-19] and it has been shown to provide unbiased estimates of net survival as long as time-dependent and non-linear effects of relevant covariates are modelled [12]. The excess hazard approach rests on the assumption that the total hazard of death for cancer patients can be decomposed into a cancer-specific hazard and a hazard due to other causes of death, the latter being generally estimated from general population life tables. 
In a review of studies examining the relationship between social inequalities and cancer, Woods et al. [4] described the statistical methodology used in each study: although most of them had reported results in terms of disease-specific –either net or relative– survival using population-based cancer registry data, none had taken the hierarchical structure of the data through the use of a random effect model, perhaps because of  the unavailability of specific software programmes. In this article, our objective was thus to fulfill these requirements by developing an approach to fit an excess hazard regression model allowing the flexible and non-proportional modelling of covariates and including a random effect.
The paper is organised as follows: in Section 2, we introduce the excess mortality hazard approach, the proposed excess hazard model including the frailty parameter and the likelihood-based approach to estimate the parameters. In Section 3, we summarise the results of an extensive simulation study conducted in order to evaluate the accuracy of the estimators and the robustness of our approach in case of misspecification of the distribution of the random effect. In Section 4, using French population-based cancer registry data, we apply our model to study the relationship between survival and socio-economic status measured by a continuous deprivation index defined at the geographical level in patients diagnosed with cancer of the oral cavity.


METHODS

Excess hazard model
The excess hazard approach is based on a decomposition of the total hazard, , of the event of interest (e.g., death) at time  as the sum of a disease- (e.g., cancer) specific mortality hazard (also referred to as the excess hazard), , and a mortality hazard specific of other causes of death, . This decomposition is based on the assumption that the times of death from cancer and from other causes are independent conditionally on a set of explanatory covariates [12]. In the context of population-based data,  is usually approximated by the population (or expected) hazard, , estimated for a vector of demographic characteristics,  (such as age, sex, place of residence and calendar year) using population life tables, usually obtained from national statistics institutes. This approximation is licit as long as the mortality hazard from the cancer under study in the general population is reasonably low [20].

			(1)
where  is the age at diagnosis (so that  represents the age at death or at censoring) and  a vector of prognostic covariates.
Following Remontet et al. [17], we defined the excess hazard model as follows: i) the logarithm of the baseline excess hazard, , was modelled by a B-spline function of time; ii) non-linearity of the effect of covariates was allowed by the introduction of adequate B-spline functions of the covariates and iii) non-proportionality was modelled by introducing interaction terms between the covariate and a B-spline function of time (in this work, we used the same B-spline as the one used to model the logarithm of the baseline hazard).
Formula (2) illustrates the case in which we model the effect of three covariates:  with a linear proportional effect on the logarithm excess hazard,  as a continuous variable with a non-linear proportional effect, and  with a non-proportional (time-dependent) effect:

			(2)

In the procedure we developed, the degree of the B-splines for ,  and , as well as the number and the position of the interior knots, must be specified by the user. Several authors have provided detailed discussions concerning the number and location of spline knots in the context of flexible survival models [21-23]. A common choice for the position of the knots is to use percentiles of the distribution of the uncensored survival times. It is also possible, in particular for the baseline hazard, to choose the knots based on previous knowledge. For example, in our experience with French cancer registry data, we have noticed that, for most cancers, the logarithm of the baseline hazard could be adequately modelled by a cubic B-spline with knots at 1 and 5 years of follow-up [17,24,25]. This is thought to reflect the natural history of the disease with the knot at one year taking care of the upsurge in mortality observed soon after the diagnosis and the knot at five years taking care of potential non-monotonic variations in the hazard in the long-term follow-up. Because the choice of the appropriate functional form must also satisfy parcimony criteria, models of increasing complexity should be compared using, for example, the Akaike Information Criterion (AIC). However, as long as enough parameters are included in the model in order to provide a flexible modelling of the baseline and of the effects of covariates [23], we think that the choice of the method used to decide on the placement of the knots (percentiles vs. prior knowledge) is of limited importance. In a recently published paper, we compared, for five cancer localisations, six models using splines differing by the number and position of knots and found that there was generally little difference in the corresponding survival estimates [26]. 

Multilevel excess hazard model
First of all, let us define some notations. For each individual  from cluster (e.g. geographical unit) , let  denote the observed time-to-event and  be an indicator variable taking the value 1 in case of an event and 0 in case of censoring. The multilevel excess hazard model was defined as:

			(3)

where  denotes a random effect at the cluster level. Equivalently, one might define the quantity , which is known as the shared frailty. According to the assumed distribution of the shared frailty, it is more convenient to use the parameterization in terms of  or in terms of . Several works on shared frailty models have used a Gamma distribution for modelling the frailty parameter because in that case, the likelihood has a closed-form expression [6,27]. In the context of excess hazard models, this simplification is no more possible because of the additive decomposition of the total hazard into the excess and population hazards (see formula (1)). Indeed, as detailed below, estimation of the likelihood requires in this case the use of a numerical integration (also named quadrature) procedure. Though excess hazard models with a Gamma distributed frailty can be fitted by using such quadrature procedures, the choice of this specific distribution cannot be advocated on the basis of simplification of the model estimation: other distributions also amenable to estimation via numerical integration might be used instead. In this work, we assumed a normal distribution of the random effect w, with mean 0 and standard deviation , which corresponds to a log-normally distributed shared frailty.

Likelihood function
The likelihood for a single observation  from cluster  conditional on the value of the random effect is:

			(4)

where all the parameters associated with the baseline hazard and the covariates effects have been regrouped in a single vector named  and:

			(5)

where  and  are the cumulative excess (respectively, population) hazards defined by the general formula .
In practice, the last term of the exponential in formula (5) is omitted from the estimation procedure because it does not depend on the parameters to be estimated. The conditional likelihood for cluster  is:

		(6)

Then, the marginal likelihood for cluster  is obtained by integrating the conditional likelihood over the distribution of the random effect:

			(7)

The model parameters  can then be estimated by maximizing the full log-likelihood:

			(8)

Estimation procedure
Adaptive Gauss-Hermite quadrature
The above-described full log-likehood (8) cannot be evaluated analytically because of the integral appearing in the expression of the cluster-specific marginal likelihoods (7) which cannot be written in closed-form. The Gauss-Hermite quadrature allows us to compute an approximation of these marginal likelihoods by computing a weighted sum of the cluster-specific conditional likelihood functions evaluated at specific points (called quadrature nodes). For cluster k, we have:

	(9)

where the nodes  and weights  are computed from the zeros of the Q-th order Hermite polynomial.
What is important to notice is that these nodes and weights do not depend on the conditional likelihood function . This means that the positions of the nodes might not cover adequately the region of maximal variation of   resulting in i) a poor approximation of the integral and ii) the necessity of using a large number of nodes to try to improve on that approximation.
The idea of the adaptive Gauss-Hermite quadrature [28,29] is to transform the integrand in order to obtain a new quadrature formula in which the nodes and corresponding weights depend on the integrand. In particular, the nodes are rescaled so that they cover the region where the integrand varies most, that is, around its mode. This transformation is based on the Laplace method for integrals approximation and, actually, a one point adaptive Gauss-Hermite quadrature corresponds to the standard Laplace approximation for integrals of positive functions [30].
The adaptive Gauss-Hermite quadrature results in a better approximation of the integral with a small number of quadrature points [29,31] at the cost of extra computational time because the transformation of the quadrature nodes and weights requires the evaluation of the first and second derivatives of the logarithm of the integrand for each cluster.

Computational considerations
The above-described model was implemented in the R software environment and was partly based on C code. Gauss-Legendre quadrature was used to compute the cumulative excess hazard when the logarithm of the baseline hazard was modelled by a quadratic or cubic B-spline. More precisely, the follow-up time for each observation was divided in subintervals defined by the interior knots of the B-spline and the cumulative hazard was estimated by performing Gauss-Legendre quadrature on each of these subintervals and adding the obtained results. Gauss-Hermite and Gauss-Legendre quadrature nodes and weights were obtained with the R package statmod. The maximization of the log-likelihood was performed using the R nlm function based on the Dennis-Schnabel non-linear unconstrained minimizer [32].

SIMULATION STUDY

We performed a simulation study to evaluate the performance of the proposed approach in terms of its ability to correctly estimate the baseline hazard as well as the fixed effects of covariates acting at the individual level (e.g., sex and age) or at the cluster level (e.g., deprivation index) under various settings. More specifically, we were first interested in assessing the influence of the number of clusters and of the number of individuals by cluster, in balanced (scenarios A) and unbalanced (scenarios B) designs. Then, restricting our attention to unbalanced designs, which are those typically observed in practice on real data, we studied the ability of our approach to estimate non-proportional effects of covariates (scenarios C). Finally, we checked the robustness of our approach in case of misspecification of the distribution of the random effect (scenarios D). The simulated scenarios are summarised in Table I.

Data generation and simulations design
For each scenario, we simulated 1000 datasets with a sample size set to 1000 individuals but with varying numbers of clusters, thus defining four different conditions: 10 clusters of 100 individuals, 20 clusters of 50 individuals, 50 clusters of 20 individuals, and 100 clusters of 10 individuals. Each individual was assigned a vector consisting of two covariates defined at the individual level (i.e., level-1 of the hierarchical structure), namely age and sex, as well as one covariate representing a deprivation index (DI) defined at the cluster level (i.e., level-2 of the hierarchical structure). Age was simulated as a continuous variable by first selecting an age class according to predefined probabilities (0.25 for age class [30,65), 0.35 for age class [65,75), and 0.4 for age class [75,85)) and then sampling from a class-specific uniform distribution. Sex was simulated as a binary covariate drawn from a Bernoulli distribution with probability 0.5. The level-2 covariate (DI) was simulated as a continuous variable drawn from a normal distribution with mean 0 and standard deviation 1.5. In scenarios with unbalanced cluster sizes, we used the procedure described in Appendix A to generate unbalanced cluster sizes (with increasing degrees of unbalance for scenario B). 
In addition to the simulations described above, we assessed the performance of our model on data closely resembling what could typically be observed in real situations: we simulated datasets consisting of 800 clusters of unbalanced sizes, with 10 observations by clusters on average.

For individual j in cluster i, the excess hazard at time  used to simulate time to death from cancer was defined according to the following equation:
	(10)
where  was simulated using a Weibull distribution with  representing respectively the scale and shape parameter: . These baseline hazard parameters were set to  and , except in scenario C where a sex-specific hazard was used (with  for men, and  for women) in order to create a time-dependent effect of sex.

The values taken by the covariate parameters were as follows:  per one year increment,  and  per one unit increment. The random effect  was drawn from a normal distribution with mean 0 and standard deviation equal to , , except in scenario D; in this scenario, the random effect  was drawn from a normal distribution with standard deviation  equal to 0.5 but with mean -1 for the first half of the clusters, and with mean 1 for the other half. It can be shown using simple algebra that the standard deviation of the resulting distribution is equal to .

For each individual, two times were generated using the Inverse Transform Method [33]: , the time to death from cancer based on the excess hazard (10), and , the time to death from other causes based on a piecewise exponential hazard obtained from general population life tables detailed by age and sex. Finally, the censoring time  was set to 15 years. The observed follow-up time for each individual was then defined as  and an indicator variable  was created to record the individual's survival status at , i.e.,  in the case of a censored observation and  for death from any cause.

Analysis of simulated data
In scenarios A, B and D, the simulated data were analysed using the multilevel excess hazard model described above using either a Weibull baseline hazard (i.e., the same functional form as the one used to generate the data) or a cubic B-spline with a knot at one year for the logarithm of the baseline hazard (50 points of Gauss-Legendre quadrature were used to compute the cumulative hazard). We assumed proportional effects of Age, Sex and DI, and a normal random effect at the cluster level. In scenario C, in order to account for the time-dependent effect of sex, the simulated data were analysed with cubic B-splines for both the baseline hazard and the time-dependent effect of sex, both with one knot at one year, and still with proportional effects of covariates Age and DI, and a normal random effect at the cluster level. When fitting the mixed effects model, calculation of the cluster-specific marginal likelihoods was based on adaptive Gauss-Hermite quadrature with 10 quadrature points. All the analyses were duplicated using the same model but without the random effect term (i.e., using a purely fixed effects model) in order to illustrate the impact of ignoring the hierarchical structure of the data on statistical inference. For the initial values of the fixed effects model, we used the default values provided by our function, that is; the parameters associated with the effect of covariates were set to 0; the parameters associated with the baseline hazard were set to 0.1 for the Weibull hazard and to -1 for the hazard described by the exponential of a B-spline function. When fitting the multilevel excess hazard model, the initial values used in the optimisation process were the rounded values of the parameter estimates obtained from the corresponding fixed effects model with the initial value for the standard deviation of the random effect set to 0.5.

To assess the performance of the proposed approach, we calculated for each parameter of the model the following quantities: i) the bias defined as the difference between the average of the 1000 estimated values and the simulated (true) value, ii) the percentage  bias was obtained by dividing the bias by the true value and multiplying the result by 100, iii) the empirical coverage probability (CP), defined as the proportion of estimated 95% confidence intervals that included the true value of the parameter, and iv) the root mean square error (RMSE) defined as the square root of the average of the squared differences between the 1000 estimated values and the true value. In terms of graphical results, we plotted the mean of the 1000 spline-based baseline hazard estimates obtained with our model and compared it with the corresponding true baseline hazard. In scenario C, we also compared the mean of the 1000 time-dependent effect estimates with the true time-dependent effect. Finally, we plotted the distribution of the 1000 estimated parameters of i) the covariate DI and ii) the standard deviation of the random effect.

Results
In scenario A, with clusters of equal sizes, the estimates of the fixed effects defined at the individual level (i.e., age and sex) were unbiased and had a CP close to the nominal value of 95%, whatever the number and size of clusters and the level of heterogeneity defined by the standard deviation of the simulated random effect (Table II; Tables S1 and S2 in Supplementary Material). Moreover, these results did not depend on the functional form that was assumed for the baseline hazard (Weibull or exponential of a cubic B-spline) in the model (Table II; Tables S1 and S2 in Supplementary Material). When the number of clusters was small (i.e., 10 or 20), we observed a bias in i) the estimation of the fixed effect of the cluster-level covariate DI (percentage bias around +47.5% and -16.5% for 10 and 20 clusters, respectively, whatever the baseline hazard) and ii) for the standard deviation of the random effect (percentage bias around -13.5% and -6.2% for 10 and 20 clusters, respectively, whatever the baseline hazard). We also observed that the CP was lower than the nominal value of 95%. With 50 clusters or more, estimates obtained were unbiased and the CPs close to 95%, except for the cluster-level covariate effect for which, surprisingly, a bias comparable to that obtained with 20 clusters was observed with 100 clusters.
When these performances were compared with those using the fixed effects model, we observed that inference using the mixed effects model was far better than inference based on the fixed effects model for covariates defined at the individual level and at the cluster level; with the fixed effects model the CP for the parameter of the covariate defined at the cluster level was less than 81%, even with 100 clusters. In terms of accuracy, for covariates defined at the individual level, the RMSEs were lower with the mixed effects model compared to the fixed effects model, but for the cluster-level covariate, they were of similar magnitude whatever the model used. As expected, the poor performances of the fixed effects model were even worse when the standard deviation of the simulated random effect was greater (Table S2 in Supplementary Material). 
In scenario B (clusters of unbalanced sizes), the estimates of the fixed effects defined at the individual level were unbiased and had a CP close to 95%, whatever the number, average size and level of unbalance of the clusters (Table III). Using a B-spline to model the baseline hazard instead of a Weibull hazard (as simulated) did not alter the performance of the model (Table III and Figure 1; Table S3 in Supplementary Material). As in scenario A, the performance of the model in terms of bias and CPs for the estimation of the effects of the cluster-level covariate and the standard deviation of the random effect were not as good with 10 or 20 clusters as they were with 50 or more clusters. The RMSEs of the fixed effect estimates were almost the same whatever the level of unbalance of the clusters, while a slight increase in RMSEs was observed for the standard deviation of the random effect when the level of unbalance increased. Moreover, for the cluster-level covariate and the standard deviation of the random effect, the RMSEs substantially decreased when the number of clusters increased.
The plots of the distribution of the parameter estimates for the cluster-level covariate DI and the standard deviation  of the random effect showed a small bias with 10 or 20 clusters but also the high variability of such estimates compared to the situation with more clusters (Figure 2). For the situation with 800 clusters and 10 patients by clusters on average, our approach showed very good performance whatever the level of unbalance (Table III). However, we observed in this situation that ignoring the hierarchical structure of the data leads to biased estimates of parameters associated to level-1 and level-2 covariates, and also very low CPs (less than 10% for the level-1 covariate parameters and less than 80% for the level-2 covariate parameters) whatever the level of unbalance and the baseline hazard function (Tables S4 and S5 in Supplementary Material).
In scenario C (time-dependent effect of sex), we found similar results concerning the proportional fixed effect defined at the individual level, the covariate defined at the cluster level and the standard deviation of the random effect (Table IV). We also observed similar decreasing trends in RMSEs when the number of clusters increased. The non-proportional effect of sex was correctly modelled using a B-spline function for the baseline hazard, whatever the number of clusters (Figure 3).
In scenario D (random effect simulated using a mixture of two normal distributions), we observed very good perfomance of our approach concerning the fixed effect defined at the individual level. The B-spline functions used for the baseline hazard correctly estimated the simulated baseline hazard. However, for the covariate defined at the cluster level, we observed a substantial bias and the CPs were either lower (with 10 clusters) or higher (with 20 or more clusters) than the nominal value of 95%. The bias for the standard deviation of the random effect was generally low but the CPs were higher than the nominal value of 95% with 20 or more clusters (Table V). 

Computational considerations
When fitting the mixed effect model with the vector of standard initial values provided by our function, we observed convergence problems. Indeed, when B-splines were used to model the logarithm of the baseline hazard, in particular when the number of observations by cluster was low (scenarios with 10 or 20 observations by cluster), the percentage of convergence dramatically decreased. Consequently, to simplify the simulation procedure, we decided to use as initial values of the mixed effects model the rounded parameter estimates obtained from the corresponding fixed effects model. Over the 1000 simulated datasets in each scenario, convergence was always 100% except for one scenario where it was 99.9%. Time until convergence of our approach was very good, as in the more complicated scenarios (scenario C) with 100 clusters and 10 patients (on average) by cluster, convergence was reached in less than 70 seconds for half of the 1000 simulated datasets.

ILLUSTRATION

Data source and analytical methods
We analysed survival data obtained from two population-based cancer registries in France, the Calvados cancer registry and the Manche cancer registry for patients diagnosed with a cancer of the oral cavity. The objective of this work was to study the effect of a deprivation index, the EDI [34], on the excess mortality hazard. This index is defined at the residential area level and is considered as a proxy for the socio-economic status of the patients. The residential area considered is the IRIS (“Ilots Regroupes pour des Indicateurs Statistiques”) which represents the smallest geographical census unit available in France and should contains at most 2000 inhabitants. After excluding 31 patients because of no information on the EDI,  we analysed 2461 patients diagnosed between 1997 and 2004 and followed up to the 31st of December 2007. The patients alive after 5 years were censored. In this dataset, 329 IRIS contained one patient, 337 IRIS contained from 2 to 5 patients, 100 IRIS from 6 to 10 patients and 31 IRIS contained more than 11 patients, with a maximum of 21 patients. The EDI, defined as a continuous variable, varied between -3.45 for the most affluent patient to 8.98 for the most deprived patient. Looking at the net survival by groups of patients defined by quintiles of deprivation, we estimated the 5-year net survival [12] for the most affluent group at 41.4% (95% CI [35.9; 47.7]), and at 28.4% ([24.7; 32.7]) for the most deprived group.
The strategy of analysis was to fit the multilevel excess mortality hazard model with covariates age, sex, year of diagnosis and the EDI, with a random effect associated to the geographical level, assuming a normal distribution with mean 0 and standard deviation . Calculations were based on adaptive Gauss-Hermite quadrature with 10 quadrature points. Five models were fitted assuming linear and proportional effects for the covariates sex and year of diagnosis and either i) linear and proportional effects for age and EDI (Model 1), ii) a non-linear proportional effect for age and a linear proportional effect for EDI (Model 2), iii) a non-linear and non-proportional effect for age and a linear proportional effect for EDI (Model 3), iv) a non-linear and non-proportional effect for age and a non-linear proportional effect for EDI (Model 4), and v) non-linear and non-proportional effects for age and EDI (Model 5). The logarithm of the baseline excess hazard was modelled with a quadratic B-spline with a knot at 1 year; the non linear effects of age and EDI were modelled with quadratic B-splines with one knot at 70 years old for age and at 0 for EDI. The final model was selected using the Akaike Information Criterion (AIC).

Results
Parameter estimates (except for non-linear and non-proportional effects) and AIC values of the five fitted models are summarised in Table VI. Among the five fitted models, the model with a non-linear and non-proportional effect for age and a non-linear but proportional effect for EDI was retained using the AIC criterion. The estimated hazard ratio for covariates sex and year of diagnosis were equal to 1.41 (95% Confidence Interval (CI): [1.22; 1.64]) and 1.09 (95% CI: [1.07; 1.12]), respectively. The standard deviation of the random effect was estimated equal to 0.06 (with a standard error of 0.15). This rather low variability between clusters after modelling the time-dependent effect of age and non-linear effects of age and EDI suggested that these variables might have accounted for a substantial part of the total between cluster variability. Indeed, the standard deviation of the random effect without covariate adjustment was estimated equal to 0.15 (with a standard error of 0.08). The time-dependent effect of age at diagnosis showed that older patients were exposed to a higher excess mortality than younger ones just after diagnosis (mainly due to post-surgical mortality) but that this effect was reversed after 5 years. The non-linear effect of age seemed not very pronounced while the non-linear effect of the EDI showed that patients with an EDI equal to -2 had a HR equal to 0.85 while patients with an EDI equal to 2 had a HR of 1.2. Interestingly, we observed that the effect of the EDI seemed to plateau for values greater than 2 indicating that beyond a certain level of deprivation (namely an EDI of 2 or more) the impact of socio-economic status on survival from cancer was almost constant (Figure 4).


DISCUSSION

In the present work, we proposed a general approach to fit an excess hazard model with non-linear and time-dependent effects of covariates which takes into account the hierarchical structure of the data by including a normally distributed random effect. A simulation study demonstrated the overall good performance of the proposed approach.
More specifically, for the fixed effects of covariates defined at the individual level, the bias was close to zero and the coverage probability close to 95%, whatever the number of clusters, their size, the level of heterogeneity between clusters and the level of unbalance in cluster sizes. Similar bias and coverage probability were obtained for the estimates of the fixed effects of covariate defined at the cluster level and for the standard deviation of the random effect, as long as the number of clusters was sufficient, i.e. higher or equal to 50. We also confirmed that i) ignoring the hierarchical structure of the data led to incorrect inference, ii) using a flexible function to model the baseline hazard had no impact on the estimation of the effect of covariates, and iii) our approach was able to describe accurately time-dependent effects of covariates. 
A few alternative excess hazard models with random effects have been proposed. Assuming that the cancer-specific mortality hazard and the all-cause mortality hazard for an individual are influenced by the same unobserved characteristics, Zahl [35] proposed including a ‘shared’ (or two correlated) frailty parameter in an excess hazard model. Kuss et al. [36] described an approach to fit a shared frailty excess hazard model assuming a stepwise baseline hazard function; in this approach, the Esteve model [14] was rewritten as a Poisson model with a specific offset [37], which allowed the parameters of the model to be easily estimated using the general-purpose nonlinear mixed model estimation procedure NLMIXED from the SAS statistical package. More recently, we proposed a similar approach to study the heterogeneity of excess hazards for two cancer sites [38]: parameter estimation did not use the Poisson approach but was instead based on the direct maximisation of the likelihood of the Esteve model. The latter method could be extended to include non-proportional effects of covariates by using interaction terms between the covariates and the follow-up time intervals. However, doing so would lead to a substantial increase in the number of parameters to be estimated. The use of flexible functions to describe the baseline (or the cumulative) hazard and the non-proportional effect of covariates [17,18] is thus preferable because it allows the modelling of smooth and realistic hazard shapes while insuring a relative parcimony in the parameterisation of the model. It should nevertheless be noted that the use of flexible functions can lead to computational difficulties. In particular, when the logarithm of the baseline hazard is modelled by spline functions, the computation of the likelihood requires the evaluation of the cumulative hazard by numerical integration; in the present work, this evaluation was performed by Gauss-Legendre quadrature. Alternatively, the hazard could be modelled with M-splines: the cumulative hazard would then easily be obtained through the associated I-splines [39]. Finally, although not in the context of the excess hazard model, Crowther et al. [11] developed an approach similar to the one presented in this article. Indeed, they proposed a flexible parametric survival model (in which the logarithm of the cumulative hazard was described by B-spline functions) allowing for non-linear and non-proportional effect of covariates and including one or several normally distributed random effects. The cluster-specific marginal likelihoods were also obtained by adaptive Gauss-Hermite quadrature.
Generally speaking, the computation of the likelihood of mixed models is complicated by the fact that integration is required to obtain the cluster-specific marginal likelihood. In this work, the random effect was assumed to be normally distributed as commonly done in the context of mixed effects models because of the possibility to use well-described numerical integration techniques. Moreover, as suggested by one reviewer, this choice can be justified heuristically by the following argument: because it enters additively in the linear predictor describing the logarithm of the baseline excess hazard, the random effect can be interpreted as the sum of a large number of unobserved features acting at the cluster level. As such, by the central limit theorem, this random effect can be assumed to be normally distributed.  However, the true distribution of the random effect might be far from normal. Several works [40-42] have investigated the effect of such distribution misspecification on the estimation of the parameters in linear and generalized linear mixed models. In particular, McCulloch and Neuhaus [40] have provided a thorough overview of the subject and concluded that parameter estimation by maximum likelihood was generally robust to misspecification of the random effect distribution, at least for effects defined at the individual level, with the possible exception of the intercept of the model. Scenarios D in our simulation study assessed at least partially the robustness of our approach in case of such misspecification. Our results were in agreement with the above conclusions, i.e. individual-level effect estimates were almost unbiased except for the intercept. Besides, there existed a substantial bias in the estimation of the effect of the covariate defined at the cluster level (deprivation index). However, this bias decreased with the number of clusters so that it should not represent a problem with real data with a sufficient number of clusters. The hypothesis of a normally distributed random effect might be alleviated by allowing for different possible distributions of the random effect in the model specification. The probability integral transform could for example be used to modify the adaptive Gauss-Hermite quadrature algorithm [43]. Alternatively, we could use approaches such as nonparametric maximum likelihood estimation, where the distribution of the random effect is specified by a set of points with associated masses [44,45]. It is interesting to note that this procedure is similar to Gauss quadrature except that in that case, the position of the nodes and their associated weights are also parameters to be estimated.  
From a computational point of view, we used adaptive Gauss-Hermite quadrature to approximate the cluster-specific marginal likelihoods. Likelihood approximation based on adaptive Gauss-Hermite quadrature has been shown largely superior to non-adaptive quadrature [29,46-48]. We also noticed in preliminary works that non-adaptive quadrature led to poor approximation, with sometimes convergence issues, even when using a large number of quadrature points. As noted in the Methods section, the use of adaptive Gauss-Hermite quadrature implies extra computational burden over standard Gauss-Hermite quadrature because of the necessity to estimate for each cluster the first and second derivatives of the logarithm of the integrand appearing in formula (7) at each iteration of the optimisation procedure [49]. However, this extra time is generally offset by the fact that much less quadrature points are required to obtain a good approximation of the integral (from our experience, five points might be sufficient in most cases). Besides, it should be possible to somewhat alleviate the computational burden by requiring that this adaptation of the quadrature points and weights be performed only every few iterations as mentioned in Tuerlinckx et al. [50]. However, further work is needed in order to implement this solution in a satisfactory manner.
Because the main parts of our function were written in compiled code, the estimation procedure was found to be quite fast as illustrated in the simulations, especially when using the Weibull distribution to model the baseline hazard. However, this work represents only the first step in the development of more general models that should be able to handle multiple random effects. Indeed, a single random effect might not be sufficient to handle the complexity of cancer registry data. For one thing, one might want to consider multiple nested levels (e.g., at the geographical level, cantons are nested in Departements). One might also want to consider random effects associated with several covariates included in the excess hazard model. This extension constitutes a major computational challenge because it implies the evaluation of multiple integrals. The use of adaptive quadrature rapidly becomes intractable because the number of function evalutation grows exponentially with the number of random effects. Efficient cubature (quadrature in multiple dimensions) formulas for multiple Gaussian integrals have been developed by Genz et al. [51]. The use of sparse grids, by restricting function evaluations to a well-chosen set of points of the n-dimensional domain (where n is the number of random effects) without sacrificing too much accuracy, might also provide an interesting alternative [52]. Monte Carlo integration, especially using importance sampling – which represents the probabilistic counterpart of adaptive Gauss-Hermite quadrature –, is also more efficient than quadrature for handling high dimensional integrals, but it poses the usual problems of simulation-based integration techniques regarding the criterion for ascertaining convergence to the true value of the integral [50].
In this work, model estimation was based on maximisation of the likelihood. This is one of the standard methods for estimating parameters of mixed effects models. However, it is known to underestimate the variance of the random effects, in particular when the number of clusters is low compared to the number of fixed effects [45]: this downward bias was observed in our simulations and tended to fade as the number of cluster increased. We should also mention that maximum likelihood estimation of mixed effect models can be sensitive to the choice of initial values, especially because of the possible existence of local maxima of the likelihood. There is no entirely satisfying solution to this problem but we might cite some of the commonly used strategies. One of them is to fit the model several times with different initial parameter values: this is especially usefull when the EM algorithm is used because it is known to be highly sensitive to initial values [53]. Some authors have developed specific algorithms to determine a vector of adequate initial values at the start of the optimisation process [54]. Finally, one of the most common method is to use as initial values the parameters estimates derived from a previous model (by a process of “model updating” going from simple to more complex models). This is the approach we used in the simulations where the initial parameters of the mixed effects model were the rounded parameter estimates from the corresponding fixed effects model.
In the context of random effect models, which can be formalised as incomplete data problems, the Expectation-Maximisation (EM) algorithm is also commonly used because of its ease of implementation [45]. However, the EM algorithm is known to be potentially slow to converge. Another shortcoming is the fact that the covariance matrix of the parameters cannot be obtained directly and requires further calculations [55]. Consequently, we opted in this work for a maximisation of the likelihood performed via a Newton-like algorithm [32].
Finally, it should be noted that random effect survival models might not be the only way to analyse hierarchical time-to-event data: O’Quigley and Stare [56] showed in the context of proportional hazard models that when the number of clusters is low, that is, a situation in which a random effect model is typically less indicated, and the number of observations by cluster is not too small (i.e., five or more), a stratified model could be used without sacrificing too much efficiency. However, random effect models still allow for substantial inferential gain in the case of a large number of small clusters [56]. 
[bookmark: _GoBack]From a practical point of view, the proposed model makes an important contribution to the analysis of the effect of ecological covariates such as the socio-economic status and cancer survival by allowing us to describe their non-linear and non-proportional effects while taking into account the hierarchical structure of the data, thus enabling correct statistical inference. Although we focused here on a modelling of the baseline hazard and of the time-dependent effect of covariates using B-splines, it should be stressed that our approach can, in principle, accomodate a wide variety of functions such as fractional polynomials or restricted splines. An R package for multilevel excess hazard model estimation is currently being developed in order to make this approach available to public health scientists, and a working version of the function can be downloaded at the following address: http://csg.lshtm.ac.uk/tools-analysis/.
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Table I. Details of the parameter values used to simulate each scenario. Values in bold indicate parameters that differ from those set in scenario A. Scenario A: simulations with balanced cluster sizes; Scenario B: simulations with unbalanced cluster sizes; Scenario C: simulations with a time-dependent effect; Scenario D: simulations with a miss-specified random effect distribution.

	Parameters of simulation
	Scenario

	
	A
	B
	C
	D 

	Design
	
	
	
	

	(Number of clusters, Cluster size)a
	(10,100); (20,50); (50,20); (100,10)
	(10,100); (20,50); (50,20); (100,10); (800,10)
	(10,100); (20,50); (50,20); (100,10)
	(10,100); (20,50); (50,20); (100,10)

	Unbalanced Design? (if yes, level)
	No
	Yes (low, medium, high)
	Yes (low)
	Yes (low)

	Age
	25% from U[30 ;65]b, 
35% from U[65, 75], 
40% from U[75, 85]
	25% from U[30 ;65], 
35% from U[65, 75], 
40% from U[75, 85]
	25% from U[30 ;65], 
35% from U[65, 75], 
40% from U[75, 85]
	25% from U[30 ;65], 
35% from U[65, 75],  
40% from U[75, 85]

	Sex
	P(sex=Men)=0.5
	P(sex=Men)=0.5
	P(sex=Men)=0.5
	P(sex=Men)=0.5

	Deprivation Index
	Normal(0,=1.5)
	Normal(0,=1.5)
	Normal(0,=1.5)
	Normal(0,=1.5)

	
	
	
	
	

	Model
	
	
	
	

	
Baseline excess hazard (Weibull) 
	
	
	Men: = 0.7,= 0.25
Women: = 0.8, = 0.18
	

	
Coefficent of age ()
	0.05
	0.05
	0.05
	0.05

	
Coefficient of sexe ()
	1
	1
	Not Applicable
	1

	
Coefficient of deprivation index ()
	0.02
	0.02
	0.02
	0.02

	Random effect distribution 
	Normal(0,) with 
	Normal(0,=0.5)
	Normal(0,=0.5)
	Mixture with 50% Normal(-1,=0.5) and
50% Normal(1,=0.5)



aMore precisely, the second number represents the cluster size in Scenario A, and the mean cluster size in Scenarios B to D (see Methods section); bU[x,y]: Uniform distribution with support [x,y].


Table II. Results of the simulations for Scenario A in the case of a random effect drawn from a normal distribution with standard deviation  equal to 0.5. Three models were estimated: a multilevel excess hazard model using a Weibull baseline hazard (Weibull mixed); a multilevel excess hazard model using a cubic B-spline with 1 knot fixed at 1 year for the baseline hazard (Spline mixed); and a fixed-effect excess hazard model using a Weibull baseline hazard (Weibull fixed). In these 3 models, the effects of age, sex and DI were modelled as linear and proportional. 

	Simulation condition
	
Parameters (True value)
	
	Weibull mixed
	
	Spline mixed
	
	
	Weibull fixed

	
	
	
	Bias
	Percentage Bias
	CPa
	RMSEb
	
	Bias
	Percentage Bias
	CPa
	RMSEb
	
	Bias
	Percentage Bias
	CPa
	RMSEb

	Number of
clusters: 10

Cluster 
size: 100
	
 (0.25)
	
	0.0019
	0.8
	90.2
	0.045
	
	NA
	NA
	NA
	NA
	
	0.0209
	8.4
	53.8
	0.051

	
	
 (0.7)
	
	-0.0014
	-0.2
	93.8
	0.023
	
	NA
	NA
	NA
	NA
	
	-0.0454
	-6.5
	45.9
	0.054

	
	
 (0.05)
	
	-0.0002
	-0.5
	93.8
	0.004
	
	-0.0002
	-0.5
	94.5
	0.004
	
	-0.0038
	-7.6
	76.5
	0.005

	
	
 (1)
	
	0.0053
	0.5
	93.9
	0.085
	
	0.006
	0.6
	94.3
	0.085
	
	-0.074
	-7.4
	82.2
	0.119

	
	
 (0.02)
	
	0.0095
	47.6
	88.1
	0.157
	
	0.0095
	47.4
	87.9
	0.158
	
	0.0072
	36.2
	40.2
	0.147

	
	
 (0.5)
	
	-0.0673
	-13.5
	78
	0.146
	
	-0.0668
	-13.4
	77.6
	0.146
	
	NA
	NA
	NA
	NA

	Number of
clusters: 20

Cluster 
size: 50
	
 (0.25)
	
	-0.0005
	-0.2
	92.9
	0.033
	
	NA
	NA
	NA
	NA
	
	0.0212
	8.5
	63
	0.04

	
	
 (0.7)
	
	-0.0004
	-0.1
	94.8
	0.022
	
	NA
	NA
	NA
	NA
	
	-0.0506
	-7.2
	33.3
	0.056

	
	
 (0.05)
	
	0
	0
	94.7
	0.004
	
	0
	-0.1
	95.4
	0.004
	
	-0.0042
	-8.4
	73.9
	0.006

	
	
 (1)
	
	0.0073
	0.7
	95.7
	0.082
	
	0.0073
	0.7
	96.2
	0.083
	
	-0.0825
	-8.2
	80.7
	0.119

	
	
 (0.02)
	
	-0.0033
	-16.4
	92.5
	0.08
	
	-0.0033
	-16.6
	92.4
	0.08
	
	-0.0063
	-31.4
	52.4
	0.074

	
	
 (0.5)
	
	-0.0311
	-6.2
	87.7
	0.096
	
	-0.0307
	-6.1
	88.2
	0.096
	
	NA
	NA
	NA
	NA

	
Number of
clusters: 50

Cluster 
size: 20
	
 (0.25)
	
	-0.0021
	-0.8
	93.2
	0.026
	
	NA
	NA
	NA
	NA
	
	0.021
	8.4
	72.3
	0.034

	
	
 (0.7)
	
	-0.0011
	-0.2
	95.5
	0.023
	
	NA
	NA
	NA
	NA
	
	-0.0537
	-7.7
	29.3
	0.058

	
	
 (0.05)
	
	-0.0002
	-0.3
	95.6
	0.004
	
	-0.0002
	-0.4
	94.4
	0.004
	
	-0.0044
	-8.9
	73.2
	0.006

	
	
 (1)
	
	0.012
	1.2
	95.1
	0.085
	
	0.0122
	1.2
	95.6
	0.086
	
	-0.0845
	-8.5
	81.3
	0.12

	
	
 (0.02)
	
	0.0007
	3.6
	94.7
	0.069
	
	0.0007
	3.6
	94.7
	0.069
	
	-0.0008
	-4.2
	70
	0.063

	
	
 (0.5)
	
	-0.013
	-2.6
	92.6
	0.073
	
	-0.0124
	-2.5
	92.3
	0.074
	
	NA
	NA
	NA
	NA

	Number of
clusters: 100

Cluster 
size: 10
	
 (0.25)
	
	-0.0018
	-0.7
	94.7
	0.022
	
	NA
	NA
	NA
	NA
	
	0.0218
	8.7
	77.1
	0.031

	
	
 (0.7)
	
	-0.0005
	-0.1
	96.1
	0.023
	
	NA
	NA
	NA
	NA
	
	-0.0547
	-7.8
	25.6
	0.058

	
	
 (0.05)
	
	0.0001
	0.2
	94.8
	0.004
	
	0.0001
	0.2
	94.8
	0.004
	
	-0.0043
	-8.7
	73.7
	0.005

	
	
 (1)
	
	0.008
	0.8
	95.1
	0.086
	
	0.0089
	0.9
	95.4
	0.087
	
	-0.0896
	-9
	78.9
	0.122

	
	
 (0.02)
	
	-0.0033
	-16.5
	94.3
	0.045
	
	-0.0033
	-16.5
	94.7
	0.045
	
	-0.0049
	-24.5
	80.3
	0.041

	
	
 (0.5)
	
	-0.0038
	-0.8
	95.3
	0.064
	
	-0.0027
	-0.5
	94.9
	0.065
	
	NA
	NA
	NA
	NA



aEmpirical coverage probability; bRoot mean square error; NA: Not Applicable.

Table III. Results of the simulations for Scenario B with a random effect at the cluster level drawn from a normal distribution with a standard deviation of 0.5 and different levels of unbalance in the cluster sizes. Parameter estimates were obtained with the multilevel excess hazard model using a cubic B-spline with 1 knot fixed at 1 year for the baseline hazard function and the effects of age, sex and DI modelled as linear and proportional.

	Simulation condition
	
Parameters (True value)
	
	Low Unbalance Design
	
	Medium Unbalance Design
	
	
	High Unbalance Design

	
	
	
	Bias
	Percentage Bias
	CPa
	RMSEb
	
	Bias
	Percentage Bias
	CPa
	RMSEb
	
	Bias
	Percentage Bias
	CPa
	RMSEb

	Number of clusters: 10

Mean cluster size: 100
	
 (0.05)
	
	-0.0003
	-0.5
	95.3
	0.004
	
	-0.0003
	-0.5
	95.7
	0.004
	
	-0.0003
	-0.6
	95.8
	0.004

	
	
 (1)
	
	0.007
	0.7
	94.8
	0.085
	
	0.007
	0.7
	94.6
	0.085
	
	0.0073
	0.7
	94.4
	0.085

	
	
 (0.02)
	
	-0.0063
	-31.3
	87.8
	0.123
	
	-0.006
	-29.8
	87.8
	0.123
	
	-0.0061
	-30.6
	85.9
	0.125

	
	
 (0.5)
	
	-0.0671
	-13.4
	78.7
	0.143
	
	-0.0694
	-13.9
	79.1
	0.148
	
	-0.0802
	-16
	76.9
	0.164

	Number of clusters: 20 

Mean cluster size: 50 
	
 (0.05)
	
	-0.0003
	-0.6
	95.4
	0.004
	
	-0.0002
	-0.5
	95.8
	0.004
	
	-0.0003
	-0.7
	95.9
	0.004

	
	
 (1)
	
	0.0037
	0.4
	94.6
	0.086
	
	0.0049
	0.5
	95.7
	0.084
	
	0.007
	0.7
	95
	0.085

	
	
 (0.02)
	
	0.005
	24.9
	92.1
	0.07
	
	0.0048
	23.8
	92.6
	0.07
	
	0.0073
	36.5
	92.9
	0.097

	
	
 (0.5)
	
	-0.0307
	-6.1
	89.1
	0.095
	
	-0.0322
	-6.4
	87.7
	0.099
	
	-0.0358
	-7.2
	87.5
	0.106

	Number of clusters: 50

Mean cluster size: 20
	
 (0.05)
	
	-0.0003
	-0.6
	95.7
	0.004
	
	-0.0002
	-0.4
	95.2
	0.004
	
	-0.0002
	-0.4
	95.1
	0.004

	
	
 (1)
	
	0.0099
	1
	95
	0.088
	
	0.0107
	1.1
	94.6
	0.089
	
	0.0082
	0.8
	93.8
	0.09

	
	
 (0.02)
	
	0.0005
	2.5
	94.2
	0.055
	
	0.0009
	4.3
	94.8
	0.056
	
	0.0003
	1.3
	94.1
	0.058

	
	
 (0.5)
	
	-0.0112
	-2.2
	93.8
	0.073
	
	-0.0127
	-2.5
	93.2
	0.074
	
	-0.0167
	-3.3
	90.8
	0.081

	Number of clusters: 100 

Mean cluster size: 10
	
 (0.05)
	
	-0.0003
	-0.6
	95.7
	0.004
	
	-0.0003
	-0.6
	95.6
	0.004
	
	-0.0003
	-0.6
	94.9
	0.004

	
	
 (1)
	
	0.0093
	0.9
	94.6
	0.091
	
	0.0098
	1
	94.7
	0.091
	
	0.0106
	1.1
	95.5
	0.09

	
	
 (0.02)
	
	-0.0004
	-2.1
	94.4
	0.044
	
	-0.0014
	-6.8
	94.8
	0.043
	
	-0.0003
	-1.7
	95.6
	0.045

	
	
 (0.5)
	
	-0.0055
	-1.1
	93.8
	0.068
	
	-0.0065
	-1.3
	93.5
	0.07
	
	-0.0071
	-1.4
	92.7
	0.071

	Number of clusters: 800

Mean cluster size: 10 
	
 (0.05)
	
	-0.0003
	-0.7
	93
	0.001
	
	-0.0003
	-0.6
	95
	0.001
	
	-0.0003
	-0.7
	92.5
	0.001

	
	
 (1)
	
	0.0076
	0.8
	94.6
	0.032
	
	0.0077
	0.8
	93
	0.033
	
	0.0078
	0.8
	92.7
	0.033

	
	
 (0.02)
	
	0.0002
	1.2
	94.6
	0.015
	
	0.0003
	1.7
	96.5
	0.015
	
	0
	-0.1
	95.3
	0.016

	
	
 (0.5)
	
	0.0036
	0.7
	94.8
	0.023
	
	0.0028
	0.6
	95
	0.023
	
	0.0024
	0.5
	95.3
	0.023



aEmpirical coverage probability; bRoot mean square error.
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Table IV. Results of the simulations for Scenario C with a random effect at the cluster level drawn from a normal distribution with a standard deviation of 0.5 and a low level of unbalance in the cluster sizes. Parameter estimates were obtained with the multilevel excess hazard model using a cubic B-spline with 1 knot fixed at 1 year for the baseline hazard function (Spline mixed) and the effects of age, sex and DI modelled as linear and proportional.

	Simulation condition
	
Parameters (True values)
	
	Spline mixed

	
	
	
	Bias
	Percentage Bias
	CPa
	RMSEb

	Number of clusters: 10

Mean cluster size: 100
	
 (0.05)
	
	-0.0003
	-0.7
	93.9
	0.004

	
	
 (0.02)
	
	0.0015
	7.3
	87.3
	0.096

	
	
 (0.5)
	
	-0.0701
	-14
	79.7
	0.146

	Number of clusters: 20

Mean cluster size: 50
	
 (0.05)
	
	-0.0006
	-1.1
	95.1
	0.004

	
	
 (0.02)
	
	0.0015
	7.7
	92.9
	0.1

	
	
 (0.5)
	
	-0.0278
	-5.6
	89.5
	0.105

	Number of clusters: 50

Mean cluster size: 20
	
 (0.05)
	
	-0.0005
	-1
	94.2
	0.005

	
	
 (0.02)
	
	0.0014
	7.2
	94.6
	0.063

	
	
 (0.5)
	
	-0.0083
	-1.7
	94.8
	0.079

	Number of clusters: 100

Mean cluster size: 10
	
 (0.05)
	
	-0.0004
	-0.8
	93.9
	0.005

	
	
 (0.02)
	
	0.0011
	5.3
	95.4
	0.049

	
	
 (0.5)
	
	-0.0048
	-1
	94.9
	0.077



aEmpirical coverage probability; bRoot mean square error.

Table V. Results of the simulations for Scenario D with a random effect at the cluster level drawn from a mixture of two normal distributions and a low level of unbalance in the cluster sizes. Parameter estimates were obtained with the multilevel excess hazard model using a cubic B-spline with 1 knot fixed at 1 year for the baseline hazard function (Spline mixed) and the effects of age, sex and DI modelled as linear and proportional.

	Simulation condition
	
Parameters (True value)
	
	Spline mixed

	
	
	
	Bias
	Percentage Bias
	CPa
	RMSEb

	Number of clusters: 10

Mean cluster size: 100
	
 (0.05)
	
	-0.0004
	-0.8
	94.6
	0.004

	
	
 (1)
	
	0.0109
	1.1
	96
	0.088

	
	
 (0.02)
	
	0.3173
	1586.4
	85.9
	0.339

	
	
 (1.12)
	
	-0.0955
	-8.5
	94
	0.196

	Number of clusters: 20

Mean cluster size: 50
	
 (0.05)
	
	-0.0001
	-0.2
	95
	0.004

	
	
 (1)
	
	0.0085
	0.8
	94.5
	0.09

	
	
 (0.02)
	
	0.1275
	637.6
	97.6
	0.151

	
	
 (1.12)
	
	0.0002
	0
	98.6
	0.139

	Number of clusters: 50

Mean cluster size: 20
	
 (0.05)
	
	-0.0003
	-0.5
	94.8
	0.004

	
	
 (1)
	
	0.0082
	0.8
	96.5
	0.088

	
	
 (0.02)
	
	0.0216
	107.9
	99.9
	0.056

	
	
 (1.12)
	
	0.0476
	4.2
	99.2
	0.111

	Number of clusters: 100

Mean cluster size: 10
	
 (0.05)
	
	-0.0004
	-0.7
	95
	0.004

	
	
 (1)
	
	0.0193
	1.9
	95.4
	0.097

	
	
 (0.02)
	
	-0.0771
	-385.6
	96.4
	0.089

	
	
 (1.12)
	
	0.0457
	4.1
	98.7
	0.095



aEmpirical coverage probability; bRoot mean square error.
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Table VI. Parameter estimates and corresponding Akaike Information Criterion (AIC) obtained using the five models described in the Illustration section. The acronym NLIN stands for non-linear effect and NPH for non-proportional hazard, i.e., time-dependent effect.

	
	Parameter estimates (Standard Errors)

	
	Model 1 (AIC = 7754.048)
	Model 2 (AIC = 7754.473)
	Model 3 (AIC = 7715.413)
	Model 4 (AIC = 7709.038)
	Model 5 (AIC = 7712.898)

	
	
	
	
	
	

	Covariates
	
	
	
	
	

	Sex (ref=women)
	0.37 (0.075)
	0.36 (0.076)
	0.35 (0.076)
	0.34 (0.076)
	0.34 (0.076)

	Year of diagnosis
	0.09 (0.011)
	0.09 (0.011)
	0.08 (0.011)
	0.09 (0.011)
	0.09 (0.011)

	Age at diagnosis
	0.01 (0.002)
	NLIN
	NLIN-NPH
	NLIN-NPH
	NLIN-NPH

	EDI
	0.04 (0.013)
	0.04 (0.013)
	0.04 (0.013)
	NLIN
	NLIN-NPH

	Standard deviation 
	0.09 (0.108)
	0.11 (0.097)
	0.10 (0.099)
	0.06 (0.15)
	0.07 (0.143)




APPENDIX A

In order to generate clusters of unequal size, we used the rmultinom R function which generate multinomially distributed random number vectors. More specifically, suppose we want to generate N=20 clusters for a total sample size of 1000 individuals. For one sample (in the study, we generated 1000 samples for each scenario), the vector of cluster sizes can be obtained by the command:
vector.sizes <- rmultinom(1,1000,prob)
where prob is the vector of multinomial probabilities of size N. For example, by specifying prob=rep(1,20) (i.e., a vector of twenty ones), we generate a random number vector drawn from a multinomial distribution with equal probability of cluster membership (the vector is internally normalized so that it sums to one).
In order to vary the magnitude of the unbalance between clusters, we used the following empirical procedure:
· Generate a random vector of numbers  drawn from a uniform distribution with support [0,1],
· Create the new vector  by elevating each component of  to a positive power a < 1,
· Generate the random vector of cluster sizes vector.sizes using the rmultinom function with the vector  obtained in the previous step as the vector of multinomial probabilities.
This procedure is based on the fact that  when  for 0 < x <1. For example, if we choose a = 0, then  = (1,...,1) and we generate cluster sizes from a multinomial distribution with equal probability of cluster membership. For a = 1, the multinomial probabilities correspond directly to the vector  of numbers generated from the uniform distribution. For 0 < a < 1, we obtain a vector of probabilities which are all the more similar (in the sense of converging towards the same common value of 1/N) that a is closer to 0.
This procedure was used to generate clusters of unbalanced sizes in Scenario B of our simulation study with the parameter a set to 0.25 (low level of unbalance), 0.5 (medium level of unbalance) and 1 (high level of unbalance). For datasets of 1000 individuals and 50 clusters, the variance of the generated cluster sizes was 53.3 (sizes ranging from 4 to 42) for a=0.25, 83.2 (sizes ranging from 1 to 47) for a=0.5, and 142.2 (sizes ranging from 1 to 51) for a=1.



LEGENDS TO THE FIGURES
Figure 1. Simulated and estimated baseline hazard functions in scenario B with i) a low level of unbalance (left panels) and ii) a high level of unbalance (right panels) in the cluster sizes, for various combinations of numbers of clusters and mean cluster sizes. In each panel, the red curve represents the simulated baseline function, the gray curves represent the 1000 sample-specific cubic spline estimates, and the dashed curve represents the mean of these 1000 estimates.

Figure 2. Empirical distribution of the 1000 parameter estimates of i) the standard deviation of the random effect (left panels) and ii) the effect of the cluster-level covariate  (right panels) in scenario B (unbalanced cluster sizes). In each panel, the vertical dashed lines represents the simulated values.

Figure 3. Simulated and estimated time-dependent hazard ratio of sex in scenario D for various combinations of numbers of clusters and mean cluster sizes. In each panel, the bold curve represents the simulated baseline hazard, the gray curves represent the 1000 sample-specific cubic spline estimates, and the dashed curve represents the mean of these 1000 estimates.

Figure 4. Estimated non-linear hazard ratio for the European Deprivation Index (EDI) for women diagnosed with cancer of the oral cavity aged 70 years and diagnosed in 2000. The range of the EDI is limited to the 2.5th and the 97.5th percentiles of the observed EDI.
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