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Abstract

Background

Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malay-

sia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-

H) transmission is occurring naturally. We sought evidence of drug selection pressure from

the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission.

Methods

The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. know-
lesimalaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association

with clinical and epidemiological factors. Homology modelling using the pvdhfr template

was used to assess the effect of pkdhfrmutations on the pyrimethamine binding pocket.

Results

Fourteen non-synonymous mutations were detected, with the most common being at codon

T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-
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type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections
were with pkdhfrmutants; 145 (32%) patients had single mutants and 14 (3%) had double-

mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr geno-
types were found, with the double mutant 108N+59R being fixed and the triple mutants

108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respec-

tively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes.
There was no association between pkdhfrmutations and hyperparasitaemia or malaria

severity, both hypothesized to be indicators of H-H transmission. The orthologous loci asso-

ciated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology

modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimeth-

amine binding, however, there were no mutations at these sites among the 449 P. knowlesi
isolates.

Conclusion

Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this

reflected selective antifolate drug pressure in humans.

Introduction
Zoonotic transmission of P. knowlesi from its simian hosts to humans has likely been occurring
since the human population first expanded in Southeast Asia around 40,000 years ago[1,2].
Despite microscopy misdiagnosis of P. knowlesi with other human Plasmodium species[3,4],
accurate molecular detection has validated recent reports of an increasing incidence of P.
knowlesimalaria cases in Eastern Malaysia[5–7], and the continued presence of low P. knowlesi
endemicity in other countries in Southeast Asia[8–14]. The large geographical distribution of
P. knowlesi is constrained only by the range of its natural macque hosts and Leucosphyrus
group vector[15].

Human-to-human (H-H) transmission may also have been present since humans were first
infected, with studies conducted in the 1960s demonstrating that Anopheles balabacensis (the
most common malaria vector in Sabah, Malaysia[16]) can transmit P. knowlesi competently
between human hosts[17]. Despite this, evidence to date suggests that P. knowlesi transmission
remains primarily zoonotic. P. knowlesi circumsporozoite protein (CSP) gene and mitochon-
drial genome sequence data from studies in the Malaysian state of Sarawak[1], Peninsular
Malaysia[18], Singapore[19] and Thailand[10] have found no evidence of divergence between
the infections in human versus macaque hosts. In addition, ongoing P. knowlesi transmission
has not been reported in areas where the long-tailed or pig tailed macaque hosts[20] are not
present, consistent with recent modelling indicating a very low likelihood of sustained H-H
transmission together with a low human reproductive rate (ROH = 1.04)[21].

However, with an increasing incidence of knowlesi malaria in Malaysia[6], along with evi-
dence of peri-domestic transmission[22], it is possible that H-H transmission is occurring to at
least some degree. Molecular markers, such as monitoring for effects of selective antimalarial
drug pressure on parasite populations, may provide a novel indicator, and would allow evalua-
tion of spatio-temporal trends as seen in mapping of antimalarial drug-resistant genotypes in
other areas [23,24]. Resistance to antifolate medications such as pyrimethamine arises readily
in P. falciparum[25,26] and P. vivax[27–29] and has been well documented throughout
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Southeast Asia, including Malaysia[30,31]. In Malaysia, proguanil was deployed from the late
1940s, and resistance documented almost immediately. Pyrimethamine resistance was docu-
mented from the mid-1970s onwards[32], although sulfadoxine-pyrimethamine (SP) contin-
ued to be used as a first-line medication for the treatment and prophylaxis of P. falciparum for
over 30 years until artemisinin-combination therapy (ACT) was introduced after 2009. The
use of single dose pre-referral SP for falciparum malaria continues in remote areas of Sabah
and Sarawak in Eastern Malaysia. As P. knowlesi is commonly misdiagnosed as P. falciparum
due to morphological similarities in the early ring stages[3,7], and as co-infections of P. know-
lesi with P. falciparum or P. vivax do occur[33], it is highly likely P. knowlesi parasite popula-
tions in humans would have been exposed to SP in Malaysia. Additional antifolate drug
exposure from medications such as trimethoprim, used commonly for non-malarial infections,
has demonstrated pyrimethamine cross-resistance in P. falciparum[34].

Pyrimethamine acts on Plasmodium parasites by inhibiting the dihydrofolate-reductase
(dhfr) enzyme involved in the folate biosynthesis pathway. Non-synonymous point mutations
in the dhfr gene affecting drug-enzyme binding confer resistance to treatment [25]. In P. falcip-
arum dhfr (pfdhfr) this is manifest firstly with the acquisition of the S108N mutation, followed
by increasing resistance associated with the addition of mutations located at residues 51, 59
and 164[35]. For P. vivax dhfr (pvdhfr) orthologous mutations to pfdhfr are located at codons
50, 58, 117, and 173 respectively [36] although these may not confer the same degree of func-
tional resistance to pyrimethamine[37]. Sequencing of pkdhfr to date has only been reported
from clinical isolates in the Andaman and Nicobar Islands in India, which have a very low P.
knowlesi endemicity predominantly consisting of mixed infections with either P. falciparum or
P. vivax [38]. Analysis revealed discordant mutations between Plasmodium species with only
wild type pkdhfr reported together with multiple mutations of pfdhfr or pvdhfr, consistent with
zoonotic-only transmission of P. knowlesi [38].

To assess selection pressure provided by antifolates as a possible surrogate marker of natu-
rally occurring H-H transmission we undertook P. knowlesi dhfr sequencing in 449 human
malaria cases in Sabah, Malaysia. As only human hosts would be expected to have SP drug
exposure, the presence of similar functional pkdhfrmutation genotypes in spatio-temporal
clusters would support the likelihood of H-H transmission. Sustained transmission of P. know-
lesi genotypes with dhfrmutations would suggest that competent transmission from humans
back to the monkey host reservoir is occurring naturally, and hence increase the possibility of
H-H transmission. In addition it was hypothesised that clinical correlates of human adapted P.
knowlesi parasites would be associated with pkdhfrmutations. Early neurosyphillis studies
demonstrated repeated blood passage of P. knowlesi through humans resulted in higher para-
site counts and risk of severe disease[39,40]. This is consistent with P. knowlesi adapting to
invade a wider age range of human RBCs over time in an in vitro culture system[41], with
hyperparasitaemia a known independent predictor of severe knowlesi malaria[42]. P. knowlesi
invasion gene variants Pknbpxa and Pknbpxb have also been associated with increased risk of
hyperparasitaemia and manifestations of severe disease[43]. A study also described an admix-
ture of two distinct parasite sub-populations arising from the separate long-tailed and pig-
tailed macaque hosts, including in samples from Sabah, with increased hybridisation between
these two sub-populations potentially associated with parasite adaptation for humans[44].
Evaluating H-H transmission remains problematic but is important in the context of malaria
elimination goals in South-East Asia, particularly due to the inability to manage the simian res-
ervoir of P. knowlesi with conventional public health measures.
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Methods

Study sites and patient enrolment
The study was conducted at Queen Elizabeth Hospital (QEH), Kudat District Hospital (KDH)
and Kota Marudu District Hospital (KMDH). QEH is an adult tertiary-referral hospital located
in Sabah’s capital city Kota Kinabalu, and serves as a referral hospital for the West Coast and
Kudat Division of Sabah, comprising 6 district hospitals (including KDH and KMDH) with a
catchment population of 1.14 million. Patients with severe malaria are generally referred from
district hospitals to QEH. KDH and KMDH are located in adjacent districts in Kudat Division,
northeast Sabah, with a combined catchment area of 3200 square kilometres and a population
of 150,000. Details of the three study sites and referral practices have been described elsewhere
[42,45].

Patients at QEH were enrolled from September 2010 –June 2014 alongside a prospective
study involving consecutive non-pregnant patients�12 years old who were admitted with
PCR-confirmed malaria, were within 18 hours of commencing malaria treatment, had no
major co-morbidities or concurrent illness, and had not been previously enrolled[46]. For the
current study, patients with a PCR-confirmed P. knowlesimonoinfection were included, in
addition to 48 randomly selected patients with a P. falciparummonoinfection. At KDH and
KMDH non-pregnant patients�1 year old admitted with PCR-confirmed knowlesi malaria
were enrolled from December 2012 –June 2014 as part of separate prospective studies
described in detail elsewhere[45,47].

Ethics statement
This study was approved by the human research ethics committees of the Malaysian Ministry
of Health (NMRR-10-754-6684), Menzies School of Health Research, Australia (HREC 2010–
1431), and the London School of Hygiene and Tropical Medicine, U.K. (#6244). Written
informed consent was provided by all patients, or if under the age of 18 years then by a parent
or guardian.

Study procedures
Baseline epidemiological and clinical information were recorded on standardised forms. Severe
knowlesi malaria was defined according to modified WHO 2010 criteria for severe falciparum
malaria, as previously described[46]. Pre-treatment blood slides were obtained on enrolment
and read by an experienced research microscopist, with parasite counts per microlitre reported
[48].

PCR amplification and sequencing of pkdhfr and pfdhfr
DNA was extracted from 100 μL of packed red blood cell pellets using the QIAamp1 DNA
Blood Kit (Qiagen, Australia) according to the manufacturer’s instructions. Plasmodium spe-
cies were confirmed as described previously[49,50]. A nested PCR approach using the same
assay and cycling conditions for both primary and nested PCR was used to amplify pfdhfr and
pkdhfr (i.e., 95°C for 3 min, followed by 25 cycles of 95°C for 30 sec, 52°C for 90 sec, and 72°C
for 90 sec). The primary PCR was performed in a 50 μL reaction buffer volume, the nested
PCR in a 100 μ L reaction buffer volume containing: 200 μM each deoxyribonucleotide triphos-
phate (dNTP; Bioline, Australia), 3 mMMgCl2, (Qiagen, Australia), 0.05U/ μL Taq polymerase
(Qiagen, Australia), and 200 nM each primer pair (Life Technologies, Australia): a) pfdhfr pri-
mary reaction: pfdhfr-p-fw [5’-TTTATGATGGAACAAGTCTGC-3’] and pfdhfr-p-rev [5’-
taaatgataaaatccaatgttgtat-3’]; b) pfdhfr nested reaction: pfdhfr-n-fw [5’-acaagtctgcgacgttttc
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gatatttatg-3’] and pkdhfr-n-rev [5’-agtatatacatcgctaacaga-3’]; c) pkdhfr primary reaction:
pkdhfr-p-fw [5’-TTATGGAACAAGTTTCCGACG-3’] and pkdhfr-p-rev [5’-TAAATCA
CAAAGTCCAGAGTGGTGCCC-3’]; d) pkdhfr nested reaction: pkdhfr-n-fw [5’-TTT
CCGACGTTTTCGATATTTACGC-3’] and pkdhfr-n-rev [5’-GTTGTACACCTCGCT
GACCGA-3’]. The primary PCR was run using 2.5 μL DNA; 5 μL primary PCR was used in
the nested PCR reaction. DNA sequencing of the nested PCR amplicons was performed by
Macrogen (Seoul, Korea) [S1 File]. Sequences were analysed using Chromas Pro software
(Technolysium Ltd., Australia) and BioEdit Sequence Alignment Editor[51] against the refer-
ence P. knowlesi genome[52]. Polyclonal infections, as represented by double peaks in the elec-
tropherogram, were observed in 7 infections (1x 34R/L 1x 52L/V, 1x 91P/A, 2x 91P/T, and 2x
149A/V) and categorized as mutant alleles[35].

DNA sequence diversity and neutrality tests
DnaSP (version 5.10.01) was used to calculate the total number of polymorphic sites, singletons
and haplotypes in the pkdhfr and pfdhfr fragments. Tajima’s neutrality test (D test) was also
implemented with DnaSP software[53]. The nucleotide diversity at synonymous (dS), non-syn-
onymous (dN), and all nucleotide sites (π) was calculated using the Nei-Gojobori method[54]
with Jukes-Cantor correction[55] as implemented in the MEGA software (version 6.06). The
standard error was determined by 1,000 bootstrap replications, and the rates of synonymous
versus non-synonymous substitutions were compared using the Z-test of selection (MEGA
6.06).

3D pkdhfr protein modelling
Pkdhfr amino acid sequence was subjected to Basic Local Alignment Search (BLAST)[56], and
further alignment was performed using ClustalW[57]. The sequence with maximum identity
of 82.5%, pvdhfr, (PDB ID: 2BL9) was used as a template for homology modeling using SWISS
MODEL server in http://swissmodel.expasy.org[58–60]. The constructed model was validated
by PROCHECK[61]. The effects of both non-synonymous orthologous and nearby pkdhfr
point mutations found in the current study on the pyrimethamine drug binding pocket were
then evaluated by Autodock Vina[62].

Mapping of geographic distribution of pkdhfr genotypes
All patients with knowlesi malaria enrolled at district sites had their household and central vil-
lage locations determined using a hand-held global positioning system (GPS; GarminTM;
model 62sc) by local research fieldworkers. Patients enrolled at QEH had the central point of
their village located and GPS coordinates recorded using Google Earth (version 7.1.2; Landsat
images, July 2013), with assistance and corroboration via government public health and 2010
census maps, local fieldworkers, and input from patients where necessary. Final mapping of
pkdhfr genotypes at village locations was performed using Quantum GIS software (version
2.4.0, www.qgis.org).

Spatial and temporal clustering
Analysis of spatial, temporal and combined space-time clustering of pkdhfr genotypes was per-
formed with SaTScanTM software (version 9.2, http://satscan.org/), as previously described
[60,63]. Data was inputted in a 0/1 event Bernoulli model with a case file including the number
of patients with the specific pkdhfr genotype of interest at each village location and date, and a
control file with the number, location and date of all other pkdhfr genotypes (the background
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distribution population). This software then uses the Kulldorf spatial[64], temporal or retro-
spective space-time scan statistic[65] to assess whether the specified pkdhfr genotypes are ran-
domly distributed in space and/or time. Both large and small clusters are detected, with up to
50% of the study population allowed in a potential cluster within a maximum 30km radius.
The time period for the temporal and space-time analysis was defined as 30 days, based on the
average time of parasite maturation in the An. leucosphyrus vector (10 days)[66], the human
pre-patent period (9–12 days)[17], and median fever duration before presentation (5 days)
[46].

Statistical analysis
Data were analysed using StataTM (version 12) software. Continuous variables were compared
using Student t test or Mann-Whitney test depending on distribution, and proportions were
compared using Chi squared or Fisher’s exact test. The Cuzick’s test for trend was used to
assess the change in proportion of pkdhfrmutations over time, with enrolments at QEH (Sep-
tember 2010 –June 2014) divided into 5 x 9-month time-periods and enrolments at the district
hospitals (December 2012 –June 2014) divided into 3 x 6-month time-periods.

Results

Study population
From September 2010 –June 2014, 504 patients with PCR-confirmed P. knowlesimonoinfec-
tion were enrolled at the 3 study sites, with pkdhfr sequence data available from 449 (89%)
patients. Of those with pkdhfr sequence data, 263 (59%) patients were enrolled at QEH and 186
(41%) were enrolled at KDH/KMDH. Baseline demographics are summarised in Table 1.
Overall, 78% of patients were male. Median age was 44 years at QEH adult hospital (range 14–
94 years) and 30 years at KDH/KMDH (range 1–78 years). At KDH/KMDH, 40 (18%) children
<12 years old were enrolled, with sequencing of the pkdhfr gene performed on 29 of these
patients. From all study sites there were 190 (42%) farmers or plantation workers. Nearly all
patients (96%) reported some forest or plantation exposure during the preceding 6 weeks, and
55% reported having seen a monkey during this time. Thirteen patients enrolled into the study
at KDH/KMDH were subsequently transferred to QEH because of severe malaria. Sequencing
of the pkdhfr gene was performed on all of these patients.

Pkdhfrmutations
The 651 bp fragment (spanning codon 1–217 of the pkdhfr gene) was sequenced successfully
for 449/504 (89%) P. knowlesi samples. Seventeen non-synonymous mutations were detected,
including 16 monomorphic and 1 polymorphic (T91P/A) mutation, with 145 (32%) patients
having one or more mutations (Table 2). Among these, the most common were R34L and
T91P, being detected in 45 (10.0%) and 46 (10.2%) patients, respectively. V149A was detected
in 21 (4.7%) patients, and A44T, V52L, T91A, E119V and P129Q were each detected in 6
(1.3%) patients. Among patients with mutations detected, 131 (90%) had a single pkdhfrmuta-
tion and 14 (10%) had two mutations, with the most common double mutations being
R34L-V149A, and T91A-P129Q, both seen in 4 (0.9%) patients, and T91P-D157Y, seen in 3
(0.7%) patients (Table 3). There were no significant differences in the most common muta-
tions detected between patients enrolled at QEH compared to those enrolled at KDH or
KMDH.
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Pfdhfrmutations
The 613 bp fragment (spanning codon 1–204 of the pfdhfr gene) was successfully sequenced
for 47/48 (98%) randomly selected P. falciparum positive samples from patients enrolled at
QEH. Four non-synonymous, monomorphic mutations, known to be associated with pyri-
methamine resistance (i.e., S108N, C59R, N51I, and I164L) were detected: Whereas the
double mutant 108N+59R was fixed in the P. falciparum population, the triple mutants

Table 1. Baseline features of patients with pkdhfr sequenced. Data are N (%) unless otherwise indi-
cated. No significant differences (p<0.05) were seen between those with pkdhfr mutations and wild type.

Patient characteristic Pkdhfr mutations Pkdhfr wild-type

n (%) unless otherwise indicated (n = 145) (n = 304)

Male sex 113 (78) 232 (76)

Age, years

Median (IQR) 36 (21–52) 41 (26–53)

Range 2–83 1–94

Site of enrolment

QEH 81 (56) 182 (60)

KDH and KMH 64 (44) 122 (40)

Occupation

Farmer 31 (21) 66 (22)

Plantation worker 33 (23) 60 (20)

Other 81 (56) 178 (59)

Previous malaria (self-reported) 75 (51) 135 (44)

Reported forest/plantation exposure in past 6 weeks # 138 (95) 292 (96)

Seen a monkey in past 4 weeks 78 (54) 167 (55)

Parasite count (parasites/μl)

Median (IQR) 4680 (1363–28069) 3751 (688–16810)

Severe malaria 30 (21) 57 (19)

Patient characteristic Pkdhfr mutations Pkdhfr wild-type

n (%) unless otherwise indicated (n = 145) (n = 304)

Male sex 113 (78) 232 (76)

Age, years

Median (IQR) 36 (21–52) 41 (26–53)

Range 2–83 1–94

Site of enrolment

QEH 81 (56) 182 (60)

KDH and KMH 64 (44) 122 (40)

Occupation

Farmer 31 (21) 66 (22)

Plantation worker 33 (23) 60 (20)

Other 81 (56) 178 (59)

Previous malaria (self-reported) 75 (51) 135 (44)

Reported forest/plantation exposure in past 6 weeks # 138 (95) 292 (96)

Seen a monkey in past 4 weeks 78 (54) 167 (55)

Parasite count (parasites/μl)

Median (IQR) 4680 (1363–28069) 3751 (688–16810)

Severe malaria 30 (21) 57 (19)

# Includes living within 20 minutes’ walk of forest/plantation, or having spent >4 hours in a forest/plantation

doi:10.1371/journal.pone.0149519.t001
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108N+59R+51I and 108N+59R+164L were detected in 2/47 (4%) and 4/47 (8%) of P. falcipa-
rum infections, respectively.

DNA sequence diversity and tests of neutrality
After excluding sequences with missing data, a total of 446 pkdhfr sequences and 45 pfdhfr
sequences were available for analysis of sequence diversity. High levels of diversity were
observed across the pkdhfr fragment, with 113 sites displaying evidence of single nucleotide
variation within Sabah (Table 4). A total of 188 haplotypes were observed. The overall haplo-
type diversity (Hd) and nucleotide diversity (π) was estimated to be 0.983 and 0.006. The

Table 2. Pkdhfrmutations among patients enrolled at Queen Elizabeth Hospital, and Kudat and Kota Marudu District Hospitals with knowlesi
malaria.

No. (%) of isolates from QEH† No. (%) of isolates from Kudat/KM Total

Amino acid position Allelic variants (n = 263) (n = 186) (n = 449)

24 D (wild type) 262 (99.6) 186 (100) 448 (99.8)

Y (mutant) 1 (0.4) 0 1 (0.2)

29 E (wild type) 262 (99.6) 186 (100) 448 (99.8)

K (mutant) 1 (0.4) 0 1 (0.2)

34 R (wild type) 232 (88.2) 172 (92.5) 404 (90.0)

L (mutant)* 31 (11.8) 14 (7.5) 45 (10.0)

44 A (wild type) 262 (99.6) 181 (97.3) 443 (98.7)

T (mutant) 1 (0.4) 5 (2.7) 6 (1.3)

52 V (wild type) 259 (98.5) 184 (98.9) 443 (98.7)

L (mutant) 4 (1.5) 2 (1.1) 6 (1.3)

77 E (wild type) 262 (99.6) 185 (99.5) 373 (99.4)

G (mutant) 1 (0.4) 1 (0.5) 2 (0.6)

91 T (wild type) 239 (90.9) 157 (84.4) 396 (88.2)

P (mutant)* 21 (8.0) 25 (13.4) 46 (10.2)

A (mutant) 3 (1.1) 3 (1.6) 6 (2.4)

P/A (mutant) 0 (0) 1 (0.5) 1 (0.2)

92 H (wild type) 259 (98.5) 185 (99.5) 444 (98.9)

Q (mutant) 4 (1.5) 1 (0.5) 5 (1.1)

108 Q (wild type) 262 (99.6) 186 (100) 448 (99.8)

H (mutant) 1 (0.4) 0 1 (0.2)

119 E (wild type) 257 (97.7) 186 (100) 443 (98.7)

V (mutant) 6 (2.3) 0 6 (1.3)

129 P (wild type) 259 (98.5) 184 (98.9) 443 (98.7)

Q (mutant) 4 (1.5) 2 (1.1) 6 (1.3)

149 V (wild type) 256 (97.3) 172 (92.5) 428 (95.3)

A (mutant)* 7 (2.7) 14 (7.5) 21 (4.7)

157 D (wild type) 260 (98.9) 184 (98.9) 444 (98.9)

Y (mutant) 2 (0.8) 2 (1.1) 4 (0.9)

N (mutant) 1 (0.4) 0 1 (0.2)

160 L (wild type) 263 (100) 185 (99.5) 448 (99.8)

F (mutant) 0 (0) 1 (0.5) 1 (0.2)

*The most common mutations (prevalence >4%)
†Excludes the 13 patients enrolled into the study at KDH/KMDH and subsequently transferred to QEH.

doi:10.1371/journal.pone.0149519.t002
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pairwise nucleotide diversity was significantly higher at synonymous (dS = 0.018) versus non-
synonymous (dN = 0.003) sites (p = 0.007). The Tajima’s D value for the pkdhfr region was
-2.24 (p<0.001), reflecting an excess of low frequency polymorphism relative to expectation.

In marked contrast to pkdhfr, only 2 pfdhfr sites displayed evidence of polymorphism within
Sabah (108N and 59R were fixed in the population), both representing non-synonymous vari-
ants (dN = 0.001 and dS = 0). A total of 3 haplotypes were observed, with accordingly low hap-
lotype diversity (Hd = 0.244). Tajima’s D value was -0.820 but the result was not significant,
likely reflecting the limited informative variation.

Table 3. Pkdhfr genotypes among patients enrolled at QEH, Kudat District Hospital and Kota Marudu
District Hospital.

Genotype Frequency Percent

Wild Type* 304 67.71

T91P 42 9.35

R34L 40 8.91

V149A 17 3.79

A44T 6 1.34

E119V 6 1.34

H92Q 5 1.11

V52L 5 1.11

R34L, V149A 4 0.89

T91A, P129Q 4 0.89

T91P, D157Y* 3 0.67

E77G 2 0.45

T91A 2 0.45

T91P/A 1 0.22

D157Y* 1 0.22

D24Y 1 0.22

E29K 1 0.22

L160F 1 0.22

P129Q 1 0.22

R34L, D157N* 1 0.22

T91P, P129Q 1 0.22

V52L, Q108H 1 0.22

Total 449 100.00

*Indicate genotypes for which corresponding protein structures were not modelled

doi:10.1371/journal.pone.0149519.t003

Table 4. DNA sequence diversity in pkdhfr and pfdhfr.

Sequence Residues S1 H2 Hd3 (s.d) π4(s.e) dN 5 (s.e) dS6 (s.e) dN/dS Tajima's D

pkdhfr 1–649 113 188 0.983 (0.002) 0.006 (0.001) 0.003 (0.001) 0.018 (0.006) 0.167 -2.24 (P<0.001)

pfdhfr 1–613 2 3 0.244 (0.081) 0 0.001 (0) 0 - -0.82 (P>0.05)

1 Number of polymorphic sites.
2 Number of haplotypes (standard deviation).
3 Haplotype diversity (standard error).
4 Nucleotide diversity across synonymous and non-synonymous sites (standard error).
5 Nucleotide diversity at non-synonymous sites (standard error).
6 Nucleotide diversity at synonymous sites (standard error).

doi:10.1371/journal.pone.0149519.t004
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Pkdhfrmutations, parasitemia and risk of severe malaria
There was no association between the presence of any pkdhfrmutation and higher parasitae-
mia or risk of severe disease, including specifically for the most common mutations R34L,
T91P or V149A. This included no relationship between those with pkdhfrmutations and severe
malaria at either QEH (5/16 [31%] vs. 30/111 [27%], p = 0.72), or the district sites (7.5% vs.
11.3%, p = 0.557).

Changes in proportion of pkdhfrmutations over time
For patients admitted to QEH the study duration (18th September 2010 – 20th June 2014) was
divided into 5 x 9-month time-periods, with mutations detected in 26/92 (28%), 19/68 (28%),
17/44 (39%), 12/44 (27%) and 10/28 (36%) patients, respectively, during these times (p = 0.49).
There was also no increase over time in the proportion of patients with the 2 most common
mutations, R34L and T91P.

Geographic distribution of pkdhfr genotypes
Of all patients with pkdhfr sequencing (n = 449), 429 (96%) were successfully geo-located,
including 138 (95%) patients with pkdhfrmutations and 291 (96%) with pkdhfr wild-type (Fig
1). The largest total number of patients mapped with both pkdhfrmutations (n = 64) and wild-
type (n = 129) were from Kudat District. However, the highest proportion of pkdhfrmutations
at a district level occurred in Pitas (10/13; 76%), followed by Ranau (6/8; 75%), and Penampang
(11/15; 73%). Three districts did not record any pkdhfrmutations, however, these districts all
had�7 patients with pkdhfr sequencing performed.

Spatial and temporal clustering analysis
Of patients with pkdhfrmutations, a non-randomly distributed spatial cluster was detected
among a subset of those with the R34L mutation (n = 9 [25%]; RR 8.94; p = 0.00051) (Fig 1
and Table 5). In addition, all patients mapped with an E119V mutation were found in a single
cluster (n = 5 [100%]; RR>100; p = 0.0017) geographically overlapping with that of the R34L
cluster (Fig 2). None of the other pkdhfrmutations were detected in statistically significant spa-
tial clusters, including the most common mutation, T91P (most likely cluster; RR 4.23;
p = 0.296), or the pkdhfr wild-type as an independent group (most likely cluster; RR 1.51;
p = 0.058).

Cases with a pkdhfr E119V mutation were the only group which demonstrated statistically
significant clustering on temporal analysis (p = 0.009), with no significant temporal association
seen for the two most common pkdhfrmutations T91P and R34L, or the wild-type. Clusters in
both the pkdhfr R34L and E119V cases also appeared non-randomly distributed in the com-
bined space-time analysis, with p values of 0.0075 and<0.0001, respectively.

Epidemiology of pkdhfr E119V mutation cluster
Five patients with the E119V mutation were located within a 29.7 km radius, although all were
from different villages. Median age was 49 years (IQR 25–29) and 3 were female (Table 6). All
five patients presented within a 37-day period from January to February 2014, with two females
presenting on the same day. Two patients had severe malaria, while the median parasite count
for all patients was 5,034/μL (IQR 774–5384). All patients reported recent forest and/or planta-
tion exposure.
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Fig 1. Relative distribution of pkdhfr genotypes from a tertiary and district referral hospitals in Sabah (with district administrative borders). *Image
attached separately. a) All mutations. b) Wild-type. c) T91Pmutations. d) R34L mutations.

doi:10.1371/journal.pone.0149519.g001

Table 5. Spatial and temporal analysis–pkdhfr E119V and R34Lmutation clusters.

Mutation E119V R34L

Cluster type Spatial Space-time Temporal Spatial Space-time Temporal

Locations included 32 32 All 12 19 All

Radius 29.71 km 29.71 km 16.65km 19.97 km

Time frame 7/2/2013–3/3/2014 3/1/2014–3/3/2014 20/3/2011–12/5/2012 27/4/2011–16/11/2012

Total number of cases 41 6 36 16 10 139

Cases with pkdhfr mutations 5 5 4 9 8 19

Expected number of mutations 0.48 0.07 0.42 1.31 1.08 13.28

Observed / expected 10.46 71.50 9.53 6.89 7.39 1.43

Relative risk >100 >100 43.67 8.94 9.44 1.98

Log likelihood ratio 12.0283 24.5275 7.7004 13.2176 13.9163 2.1781

P-value 0.0017 0.000007 0.009 0.00051 0.0075 0.9800

doi:10.1371/journal.pone.0149519.t005
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Fig 2. Baseline map containing inset with pkdhfr E119Vmutation spatial cluster. *Image attached separately.

doi:10.1371/journal.pone.0149519.g002

Table 6. Patient details for pkdhfr E119V spatial cluster.

Case Date
enrolled

Fever
duration

Address Age Sex Occupation Travel
details

Lives within 20mins walk
of forest and/or plantation

Recent overnight stay in
forest and/or plantation

1 19/02/
2013

7 Babagon 49 M Farmer Nil Yes Yes

2 22/01/
2014

14 Pekan
Nabalu

60 F Fruit seller Nil Yes No

3 22/01/
2014

7 Nadau 25 F Nil Nil Yes No

4 14/02/
2014

5 Togudon 22 M Farmer Nil No Yes

5 28/02/
2014

3 Tinuhan 59 F Housewife /
rubber tapper

Nil Yes Yes

doi:10.1371/journal.pone.0149519.t006
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Epidemiology of patients within the pkdhfr R34L mutation cluster
Nine patients with the R34L mutation were located within a 27.4 km radius. Median age was
55 years (IQR 51–68 years), five were male, and all were of either the closely related Dusun or
Kadazan ethnicity. One patient had severe disease, with parasitaemia of 693,061/μL. Five
reported a previous history of malaria. None were found to be family members, and it is not
known if any of these patients had been exposed to one another. Two patients presented to the
hospital 34 days apart between June and July 2011, while another three presented within a
44-day period between March and April 2012. All but one reported recent plantation and/or
forest exposure.

Effect of pkdhfrmutations on pyrimethamine binding
The 3D structures of 19 pkdhfr amino acid sequences derived from patients with a P. knowlesi
monoinfection were constructed using the SWISS MODEL server. Autodock vina was used to
assess the effect of mutations on pyrimethamine binding. This encompassed both pkdhfr wild-
type and all single monomorphic mutations (with the exception of D157Y), and also all geno-
types with multiple mutations (with the exception of R34L-D157N). The results of molecular
docking analysis indicated that five residues are in direct contact with the inhibitor pyrimeth-
amine: I13, D53, S120 and I173. None of the mutations detected in this study were involved in
inhibitor interactions and therefore, had no modelled effect on pyrimethamine binding (Fig 3).

Discussion
This study demonstrated a high rate of pkdhfrmutations in human knowlesi malaria, including
a number of common mutations such as located at R34L, which along with E119V were associ-
ated with clusters of cases at adjacent villages. Clinical correlates hypothesized to be more likely
with P. knowlesi H-H transmitted infections such as a higher likelihood of hyperparasitaemia

Fig 3. 3D structural model of the pkdhfr 91Pmutation andmolecular docking of pyrimethamine in the active site. *Image panel attached separately.
a) 3D structural model of pkdhfrwith pyrimethamine bound at the active site. Mutations found in this study were shown as ball and stick coloured yellow.
Equivalent residues of pkdhfr known to be related to pyrimethamine resistance in pfdhfrwere presented as stick coloured dark pink and pyrimethamine
shown as stick coloured magenta. b) Modelled pkdhfr binding site interaction with pyrimethamine. Pyrimethamine molecule was presented as stick and
amino acid residues of pkdhfr were presented as line with carbon, nitrogen, oxygen and chloride colored as dark grey, blue, red and green, respectively.
Hydrogen bonds are shown as green dashed line. c) 2D ligand interaction diagram of modelled pyrimethamine binding with all surrounding residues in active
site of pkdhfr showing only contact with Ile13, Asp53, Ile 173 and Thr194. Hydrogen bonds are shown as dashed line. Figure was generated by Discovery
Studio Visualizer–Accelrys.

doi:10.1371/journal.pone.0149519.g003
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and severe disease were not related to pkdhfrmutations[39,40]. The non-synonomous pkdhfr
mutations described in this study do not provide evidence of H-H transmission, with homol-
ogy modelling demonstrating that they are very unlikely to affect pyrimethamine binding and
hence, are not likely to be a result of selective antifolate drug pressure.

Antifolate resistance can be selected readily in experimental malarias including simian P.
knowlesi [67]. The utility of antifolate-resistance associated mutations as a marker of H-H
transmission in this study requires both sufficient SP drug exposure in humans to select for
resistant P. knowlesi parasite populations, and sustained transmission from humans to other
human or monkey hosts. In the past P. knowlesi was often misdiagnosed as P.malariae[3,7],
and therefore would have been nominally treated with chloroquine rather than SP according to
longstanding Malaysian Ministry of Health guidelines. However, before the current pre-elimi-
nation malaria setting in Sabah where hospital admission is mandatory for all malaria cases,
fever was frequently treated empirically with single dose SP by public health officials in the
community for presumed non-severe malaria. The accumulation of dhfrmutations associated
with SP-resistance in P. falciparum over 30 years of SP usage is well documented in Sabah
[31,68,69]. With P. knowlesi endemic during the same period and commonly misdiagnosed as
P. falciparum[3], the parasites infecting humans would have been exposed to some degree of
within-host SP selection pressure [5,6]. For this to be selected at a population level would have
required onward transmission.

One third of P. knowlesi isolates in this study had pkdhfr single point mutations, and 3%
had double mutations. There were no triple mutants. The proportions of multiple mutants are
less than predicted from a Poisson distribution arguing against stepwise selection. In contrast,
in P.falciparummultiple pfdhfrmutations associated with antifolate resistance were found in
this study, as previously described in Sabah, indicative of stepwise selection [31,68,69]. In P.fal-
ciparum, the primary pfdhfrmutation acquired in this progression is S108N, and in P. vivax,
which is more closely related to P.knowlesi it is S117N. However, modelling showed residues
involved in pyrimethamine binding in pkdhfr were located at I13, D53, S120, and I173, none of
which were found in their mutant form in this study.

In this study, two P. knowlesi genotypes appeared to have non-random spatial distributions.
This is consistent with a previous study demonstrating a higher level of genetic relatedness of
P. knowlesi populations, as measured by the degree of multi-locus allelic frequencies (FST indi-
ces) from samples collected at different sites within Borneo, with decreasing geographical dis-
tance [44]. H-H transmission in these clusters appears unlikely but cannot be definitively
excluded. Although the timing of hospital presentation for subsets of individuals in each cluster
was consistent with potential exposure to a preceding human case with patent parasitaemia,
the presence or duration of subpatent parasitaemia prior to this and hence the infectious period
is not fully known. Finer scale clustering with H-H transmission would also be expected,
including family or household members from the same village without significant travel his-
tory. Nearly all individuals in identified clusters also had forest and/or monkey exposure, and
other potentially relevant geo-spatial variables were not controlled for in this analysis, while
the relatively small number of samples in this study also limits their interpretation. The use of
P. knowlesi spatio-temporal clusters alone to evaluate H-H transmission is constrained by the
inability to discern whether a human was bitten by a human-fed mosquito, or if a cluster of
humans were bitten by mosquitoes which had fed on the same monkey or monkey group.
Assessing the possibility of individual level P. knowlesiH-H transmission using mutations
associated with drug selection pressure, or other potentially better suited methods such as
microsatellite markers or mitochondrial sequences, is also complicated by drug-exposed para-
site populations in humans conceivably being transferred back to monkey hosts [17]. In this
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context comparative analysis of whether the same P. knowlesi dhfr mutations are present in
nearby macaque hosts would also be useful but was not logistically feasible in this study.

The low level of nucleotide diversity and absence of putatively neutral synonymous varia-
tion in the pfhdfr region in Sabah is consistent with purifying selection acting upon a gene
whose product has an important functional role, allowing little room for variation with the
exception of the known pyrimethamine resistance conferring variants observed. In marked
contrast, extensive haplotype and nucleotide diversity was observed in the pkdhfr region, with
significantly higher diversity in synonymous versus non-synonymous sites. These patterns
infer that the variation observed in pkdhfrmight reflect neutral, stochastic processes, particu-
larly within the monkey hosts where polyclonal infections are usual and transmission is intense
[44]. Tajima’s D test also confirmed a significant excess of low frequency variants relative to
expectation under neutral evolution consistent with other reports[44,70], potentially reflecting
a recent population expansion, but not necessarily excluding purifying selection. A more com-
prehensive understanding of the genetic diversity across the P. knowlesi genome is needed for
effective interpretation of the trends observed in pkdhfr. In addition, further analysis of the pat-
terns of variation in dhfr in a broader range of human and simian Plasmodium species from
settings with varying epidemiology and history of pyrimethamine use are required to elucidate
the selective forces on dhfr in different Plasmodium spp.

Conclusion
Despite an increasing incidence of P. knowlesimalaria in Sabah, Malaysia, the non-synono-
mous pkdhrmutations reported in this study do not appear to have been selected by repeated
pyrimethamine exposure associated with competent onward transmission from humans, and
hence cannot confirm H-H transmission. Despite these findings, low or unsustained H-H
transmission cannot be excluded. In addition to establishing the transmission competency of
naturally acquired P. knowlesi from human hosts, monitoring for spatio-temporal clusters of
identical multi-locus genotypes and more detailed genome-wide studies may provide useful
information on the likelihood of H-H transmission occurring.
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