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Supplementary Materials and Methods 
 

1. Population size changes 
Population sizes for children aged 5–18, and adults 19–55 in each metropolitan area 

in 2000 and 2010 are taken from the 2000 and 2010 Census. The daily change in 
population is then calculated, and population estimates for each day in the study are 
interpolated. This maintains an approximately correct size and adult:child ratio 
throughout the study period. Since long-term immune protection does not occur in the 
SIRS model, there is no need for demographic turnover. Adjustments to population sizes 
are made in the susceptible class. 
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Figure S1 shows the population size changes for children 5–18 and adults 19–55 
over the 7 years of the study period in the model for each metropolitan area. The 
metropolitan areas have a total population range of 385,000–5,282,000 (in 2002). 7 of the 
metropolitan areas grew in population over the course of the study period, and 1 
decreased. Of note, the absolute total (including 0–5 year olds, and 55+) is larger than the 
value given here. 

 
Figure S2 shows the proportion of 5–18 year olds in the modelled population, and 

changes through time. Some metropolitan areas have increasing proportion of children, 
others decreasing, with variation in proportion from 0.42 to 0.29. The proportion of 
children affects the dynamics of infections in the transmission model. 

 
 

 
Fig. S1. Demographic change during study period. 
Number of adults (blue) aged 19-55, and children (red) aged 5-18 in each metropolitan 
area in the modelled population through the study period. 
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Fig. S2. Change in proportion of children. 
Proportion of 5–18 year olds in the modelled population through time. 

 

2. Air quality data 
Particulate matter data are taken from the CDC Wonder database, which provides 

daily values for PM2.5 for each county from 2003–2011. We use the maximum value of 
PM2.5 (µg/m3) from the counties that comprise each metropolitan area. The data were 
downloaded on September 24th 2013. 

 
Ozone data are taken from the US Environmental Protection Agency (EPA) AIRS 

database, which provides a daily ozone measurement for each metropolitan area in Texas, 
for most days of the study period in Air Quality Index (AQI) values. There are 57 
missing values in all 8 cities over the 7-year time period. Missing values are excluded. 
These data were downloaded on January 21st 2013.  
 

3. Temperature data 
Temperature data are taken from the CDC Wonder database, which provides air 

temperature values for each county from 1979–2011. The minimum temperature is the 
minimum daily value (in Celsius) from the counties that comprise the metropolitan area. 
The data were downloaded on September 24th 2013. 

 
Minimum temperature is centered, so that the mean minimum temperature during 

the entire study period is 0 for each metropolitan area. Negative temperature values are 
therefore lower than the mean temperature, and thus a negative coefficient with a 
negative temperature increases the hospitalization rate. These data are shown in Fig. S3. 
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Fig. S3. Temperature during the study period. 
Blue line marks the daily centred temperature on each day of the study period for each 
metropolitan area. 
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4. School calendar entered 
There are over 1200 school districts in Texas, and separate fee-paying institutions 

may also set their own calendar. We used the school calendar for the largest independent 
School District (ISD) in each metropolitan area, excepting McAllen-Edinburg-Mission, 
where calendars for Edinburg ISD were not available. The second largest is a comparably 
sized district, Pharr-San Juan-Alamo ISD, and was used in its place. Table S1 shows for 
each metropolitan area, which school district calendar is used. There is one substitution, 
of one academic year in the calendar used for McAllen-Edinburg-Mission, where 2004-
2005 is substituted with the calendar for McAllen ISD due to an error with the archived 
file received from Pharr-San Juan-Alamo ISD.  

 
We gratefully acknowledge staff members at Austin ISD, Corpus Christi ISD, 

Dallas ISD, Houston ISD and Pharr-San Juan-Alamo ISD for providing historic school 
calendars. 
 
 
Metro	
  
Code	
  

Metropolitan	
  area	
  name	
   ISD	
   #	
  schools	
  
(2011)	
  

Approx	
  #	
  
children	
  (2011)	
  

12420	
   Austin-­‐Round	
  Rock	
   Austin	
   124	
   86697	
  
13140	
   Beaumont-­‐Port	
  Arthur	
   Beaumont	
  	
   40	
   19551	
  
18580	
   Corpus	
  Christi	
   Corpus	
  Christi	
   62	
   38196	
  
19100	
   Dallas-­‐Fort	
  Worth-­‐Arlington	
   Dallas	
   236	
   157111	
  
21340	
   El	
  Paso	
   El	
  Paso	
   106	
   63378	
  
26420	
   Houston-­‐Sugar	
  Land-­‐Baytown	
   Houston	
   309	
   202703	
  
32580	
   McAllen-­‐Edinburg-­‐Mission	
   Pharr-­‐San	
  Juan-­‐Alamo	
   44	
   31329	
  
41700	
   San	
  Antonio	
   Northside	
   110	
   92335	
  

Table S1. School calendar information. 
Summary information for locations and school calendars used in the study. The 
metropolitan reference code, name of the metropolitan area, Independent School District 
used for determining the school calendar in that metropolitan area, and the number of 
schools and approximate number of children in that ISD in 2011 are given. 
 

5. Hospitalization Data 
Hospitalization data for the 8 metropolitan regions by day of week are given in Fig 

S4 for children and Fig S5 for adults. These figures show the hospitalization rate due to 
asthma on each day of the study, stratified by day of the week, and the overlaid boxplots 
give the mean and interquartile range for the rate stratified by day of the week. It is 
important to note the large variation in observed hospitalization rates on every day of the 
week. 
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Fig S4. Daily hospitalization rate in children for each day of the study, stratified by 
day of the week.  
Red points show the hospitalization rate for each day of the study, and boxplots show the 
mean and interquartile range of the data. In children there is a tendency for higher 
hospitalization rates at the start of the school week, but there is a large amount of 
variation in the data. 
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Fig S5. Daily hospitalization rate in adults for each day of the study, stratified by 
day of the week. 
Red points show the hospitalization rate for each day of the study, and boxplots show the 
mean and interquartile range of the data. In adults there is a tendency for higher 
hospitalization rates at the start of the week, and lower on the weekends, but there is a 
large amount of variation in the data. 

 

6. Extended information on the SIRS model 
For each metropolitan area we use our age-stratified SIRS model to generate city-

specific common cold prevalence: 
 

𝑑𝑆!
𝑑𝑡 = −𝛽!,!𝑆! + 𝜔𝑅! 
𝑑𝐼!
𝑑𝑡 = 𝛽!,!𝑆! − 𝛾𝐼! 
𝑑𝑅!
𝑑𝑡 = 𝛾𝐼! − 𝜔𝑅! 

where, i = children or adults, and where, 

𝛽!,! = 𝛽!𝛼!"𝜎!",!
𝐼!,!
𝑁!

!

!!!

 

and βi,t is the transmissibility of i, αij is the scaling of transmissibility between i and 
j, and, Ij,t is the number of infected people in age group j at time t, Nj is the population of 
age group j, and σij,t is the effect of school vacation, as: 
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𝜎!",! =

1, 𝑖𝑓  𝑖  𝑜𝑟  𝑗  𝑖𝑠  𝑎𝑛  𝑎𝑑𝑢𝑙𝑡                    
          

𝑜𝑟 1, 𝑖𝑓  𝑡 = 𝑠𝑐ℎ𝑜𝑜𝑙  𝑖𝑛  𝑠𝑒𝑠𝑠𝑖𝑜𝑛              
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

 

  
β0, αAA, αAC, σij,t, γ and ω are estimated.  

7. Statistical Model 
We adopt a Bayesian approach and fit our model via Markov Chain Monte carlo 

(MCMC).  To fix notation, we use i to index group (adults or children), j to index 
metropolitan area, and t to index days.  Let 𝑦!"# denote the observed number of 
hospitalizations in group i, area j, day t; and let 𝑛!"# denote the corresponding population 
size.  Let 𝑥!"#(𝜃!) denote the common cold prevalence in group i, area j, day t, as a 
function of the six SIRS model parameter vector.  (We denote this vector generically by 
𝜃!.)  This function is not known in closed form, but can be evaluated for fixed 𝜃! by 
numerically solving the SIRS system of differential equations described above.  Finally, 
let 𝑧!"# denote the vector of other covariates (given in Table 1 in the main text), but 
briefly: metropolitan area, day of week, time trend, influenza hospitalizations per million 
(smoothed), minimum temperature (centered), ozone (air quality index), and PM 2.5 
(µg/m3).   

Our model assumes that the observed number of asthma-related hospitalizations 
follows a binomial sampling model whose parameter depends on the prevalence of colds 
in addition to the other covariates: 

𝑦!"#  ~  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛!"# ,𝑝!"#)   
 

𝑝!"# = 𝛼 + 𝛽𝑥!"# 𝜃! + 𝛾 ∙ 𝑧!"# 
where 𝛼 and 𝛽 are scalar parameters, and where  𝛾 ∙ 𝑧!"# is the vector inner product (dot 
product) between the non-SIRS covariates and the parameter vector 𝛾.  We denote the 
non-SIRS model parameters (𝛼,𝛽, 𝛾) generically by 𝜃!. 

Notice that the link function between parameters and the probability of a 
hospitalization is linear, which is nonstandard for the binomial model but justified by Gay 
et al. (1) the canonical link function would inappropriately imply that expected asthma 
hospitalizations scale highly nonlinearly with colds.  Our binomial model is in fact nearly 
identical to Gay et al.’s Poisson model with a linear link: the Poisson distribution can be 
motivated as an approximation to the binomial distribution in the limit of a large sample 
size and a small probability (both of which hold for our data). 

To fit the above model, we base our MCMC on the strategy described in Chapter 16, 
page 410 of (2) (3rd edition). These authors recommend that, when fitting Bayesian 
generalized linear models, it is computationally convenient to use a Laplace 
approximation to the likelihood function.  The central limit theorem (or more specifically, 
the Bernstein-von Mises theorem) implies that such an approximation will be quite good 
when the sample size is large, which is certainly true in our case.  Moreover, this 
approximation is especially helpful when running a partially collapsed MCMC like ours, 
in which some parameters are explicitly integrated out; see the discussion in the “MCMC 
Sampling” section below. 
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In our case, a Laplace approximation leads to a conditionally heteroscedastic 
Gaussian likelihood where the data are the observed hospitalization rates (which we 
express for convenience as average hospitalizations per 10,000 people), and the 
weights/inverse variances are proportional to the size of the metropolitan area.  We adopt 
this approach in our MCMC, using the Laplace approximation to the binomial likelihood 
in the manner described in full detail by Gelman et al. (2). 
 

8. MCMC Sampling  
The parameters of our model fall into two blocks: (1) the six parameters of the SIRS 

model itself, which we have denoted as θ1; and (2) the parameters associated with all 
other covariates in the regression model, such as day-of-week effects, influenza effects, 
and so forth, which we have denoted as θ2.  A standard MCMC updating scheme would 
update each parameter in turn, given all the other parameters.  We found that this 
approach mixed too slowly, given the number of parameters in our model.  Therefore, we 
used a collapsed block-sampling scheme to explore the posterior distribution, which we 
now briefly describe. 

 
The collapsed sampler involves four sub-steps for each step of the Markov chain: 
a) propose new values θ1

* for the Block 1 parameters. 
b) Evaluate the marginal likelihood for the proposed value of θ1

*, explicitly 
integrating out the parameters θ2 in Block 2. Because we are using a Laplace 
approximation to the log likelihood in the manner described above, this integral is easily 
computed in closed form (see below). 

c) Use this marginal likelihood to calculate the Metropolis-Hastings acceptance 
probability, and accept or reject the proposed draw as appropriate to generate the updated 
value for θ1. 

d) Finally, sample new values for θ2, given the updated values for θ1. 
 
Substep b, in which θ2 is explicitly integrated out in order to assess the likelihood of 

the new point, is the key step that allows large gains in efficiency compared with the 
ordinary updating scheme.  This is often referred to as a partially collapsed MCMC 
sampler, and inherits all the usual properties of MCMC. For a general description of the 
methodology and a discussion of the gains in convergence rate associated with collapsed 
samplers, see (3). 

 
The ability to use the partially collapsed sampler depends crucially on the ability to 

carry out the integral in step (b) in closed form, thus providing strong computational 
motivation for the use of the Laplace approximation to the binomial likelihood. 
Specifically, we calculate the marginal likelihood from the Laplace approximation using 
the conditional maximum likelihood estimate and Fisher information matrix for θ2, given 
the proposed values of θ1.  This result is reviewed in (4) and in most textbooks on 
Bayesian inference.  As described above, in our case, the Laplace approximation is 
excellent, given that the total number of daily observations is in the tens of thousands, 
while the number of parameters is in the dozens or fewer.  The Laplace method is far 
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cheaper computationally than computing the required integrals by a numerical method.  
Without the use of this step, MCMC runtimes become prohibitively long. 

 
This procedure does not limit the predicted number of hospitalizations to be 

nonnegative. Doing so would lead to nuisance parameters.  Consequently, the fitted 
model very occasionally generates predictions that are slightly negative in the summer 
period. We therefore modify the final prediction to be the maximum of the model-based 
forecast and zero. 

 
We ran this scheme with single parameter updates for θ1 in step a, for 16,000 

iterations, 4,000 of which are used as burn in. From this we generated the covariance 
matrix of θ1. We use this to propose θ1

* for all 6 parameters concurrently from 
multivariate normal distribution. This MCMC chain was run for 50,000 iterations, with 
4,000 iterations burn in. The parameter estimates and covariance matrix for the best 
fitting model are given in Tables S2 and S3. Posterior means from the single component 
and block-updated chains were extremely similar, but mixing was greatly improved by 
block updating with multivariate jumps.  
 
	
  	
   	
  	
  

Child	
  
Mean	
  

Lower	
  	
  
CI	
  

Upper	
  
	
  CI	
  

Adult	
  
Mean	
  

Lower	
  	
  
CI	
  

Upper	
  	
  
CI	
  

Global	
  Baseline	
   	
  	
   -­‐0.61	
   -­‐0.84	
   -­‐0.40	
   0.95	
   0.76	
   1.10	
  
Local	
  Baseline	
   Austin-­‐Round	
  Rock	
   ref	
   ref	
   ref	
   ref	
   ref	
   ref	
  	
  

	
   Beaumont-­‐Port	
  Arthur	
   0.45	
   0.21	
   0.69	
   0.99	
   0.86	
   1.12	
  
	
  	
   Corpus	
  Christi	
   2.74	
   2.51	
   2.98	
   0.79	
   0.66	
   0.92	
  

	
  	
   Dallas-­‐Fort	
  Worth-­‐
Arlington	
  

1.15	
   1.03	
   1.27	
   0.40	
   0.33	
   0.46	
  

	
  	
   El	
  Paso	
   1.52	
   1.34	
   1.70	
   -­‐0.03	
   -­‐0.13	
   0.07	
  

	
  	
  
Houston-­‐Sugar	
  Land-­‐
Baytown	
   0.21	
   0.09	
   0.34	
   0.10	
   0.04	
   0.17	
  

	
  	
   McAllen-­‐Edinburg-­‐
Mission	
  

1.27	
   1.09	
   1.45	
   -­‐0.14	
   -­‐0.25	
   -­‐0.03	
  

	
  	
   San	
  Antonio	
   1.68	
   1.54	
   1.82	
   0.28	
   0.20	
   0.35	
  
SIRS	
  Cases	
   4	
  day	
   0.020	
   0.018	
   0.022	
   0.020	
   0.013	
   0.032	
  
Time	
   day	
   -­‐0.00001	
   -­‐0.00005	
   0.00003	
   -­‐0.00013	
   -­‐0.00015	
   -­‐0.00011	
  

Influenza	
  
State	
  level	
  
hospitalizations	
  per	
  
million	
  

0.11	
   0.05	
   0.16	
   0.31	
   0.28	
   0.34	
  

Low	
  
Temperature	
  

Average	
  minimum	
  
temperature	
  (centred)	
  

-­‐0.025	
   -­‐0.029	
   -­‐0.021	
   -­‐0.020	
   -­‐0.022	
   -­‐0.017	
  

Day	
  of	
  week	
   Monday	
   0.91	
   0.79	
   1.02	
   0.46	
   0.39	
   0.52	
  
	
  	
   Tuesday	
   0.51	
   0.39	
   0.62	
   0.30	
   0.23	
   0.36	
  
	
  	
   Wednesday	
   0.23	
   0.11	
   0.35	
   0.20	
   0.13	
   0.27	
  
	
  	
   Thursday	
   0.07	
   -­‐0.05	
   0.19	
   0.14	
   0.07	
   0.20	
  
	
  	
   Friday	
   ref	
  

	
   	
   	
   	
   	
  	
  
	
  	
   Saturday	
   -­‐0.47	
   -­‐0.58	
   -­‐0.35	
   -­‐0.31	
   -­‐0.37	
   -­‐0.24	
  
	
  	
   Sunday	
   0.01	
   -­‐0.11	
   0.12	
   -­‐0.22	
   -­‐0.28	
   -­‐0.15	
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Table S2. Posterior mean and 95% credible intervals of the exacerbation model. 
Posterior mean and 95% credible intervals for the coefficients of the best fitting model. 
Italics indicate credible intervals that exclude zero. “ref” indicates that that variable was 
used as reference for the others in its class, and therefore its value is zero. 
 
 
	
   β0	
   αAC	
   αAA	
   σ	
  	
   ω	
   γ	
  	
  
β0	
   0.0012	
   -­‐0.0010	
   0.0020	
   -­‐0.0007	
   0.0003	
   0.0027	
  
αAC	
   -­‐0.0010	
   0.0851	
   -­‐0.0003	
   0.0034	
   0.0004	
   -­‐0.0001	
  
αAA	
   0.0020	
   -­‐0.0003	
   0.0197	
   -­‐0.0038	
   0.0016	
   0.0073	
  
σ	
   -­‐0.0007	
   0.0034	
   -­‐0.0038	
   0.0058	
   -­‐0.0007	
   -­‐0.0046	
  
ω	
   0.0003	
   0.0004	
   0.0016	
   -­‐0.0007	
   0.0019	
   0.0015	
  
γ	
  	
   0.0027	
   -­‐0.0001	
   0.0073	
   -­‐0.0046	
   0.0015	
   0.0083	
  

Table S3. Variance-covariance matrix of single component update chains. 
12,000 iterations after a burn in of 4,000. 
 
	
  

9. MCMC Convergence 
Chains were assessed for convergence visually, and by starting multiple chains from 

different areas of parameter space, to determine that they all reach the same stationary 
distribution. Posterior distributions appear unimodal and are approximately normally 
distributed. 
 

10. Model Comparison 
Table S4 shows Deviance Information criterion (DIC) scores and the components in 

each model. The table does not show models without varying metropolitan baseline, day 
of week, time trend, or influenza variable, although these models were tested. Their DIC 
values were much lower, and therefore they were excluded. 

 
While the best model by DIC is model 138 at -196443.1, models 129, 130 and 137 

all lie within 4 DIC points of this value. A difference of approximately 5 is required to 
distinguish models by this model, and so we choose the model with fewest parameters – 
model 129 – as the best fitting model. These models are very similar, with 129 and 130 
differing from 137 and 138 by the choice of influenza variable; in the former, the state 
level influenza hospitalization rate in adults and children is used, and in the latter, the 
metropolitan-specific influenza hospitalization rate.  

 
 
DIC	
   Mo

del	
  
Nu
m	
  

SIRS	
   Metro	
  
baseline	
  

Day	
  of	
  
week	
  

time	
  
increment	
  

Influenza	
   Low	
  
Temp	
  

PM	
  
2.5	
  

Lag	
  
days	
  	
  

Ozone	
   Lag	
  
days	
  

-­‐196074.10	
   125	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
-­‐196086.19	
   126	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   	
  	
   Y	
   0	
   	
  	
   	
  	
  
-­‐195685.43	
   127	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   	
  	
   	
  	
   	
  	
   Y	
   0	
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-­‐195690.20	
   128	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   	
  	
   Y	
   0	
   Y	
   0	
  
-­‐196439.12	
   129	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   	
  	
   	
  	
   	
  	
   	
  	
  
-­‐196442.27	
   130	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   Y	
   0	
   	
  	
   	
  	
  
-­‐195997.62	
   131	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   	
  	
   	
  	
   Y	
   0	
  
-­‐196004.21	
   132	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   Y	
   0	
   Y	
   0	
  
-­‐196045.32	
   133	
   Y	
   Y	
   Y	
   Y	
   metro	
  level	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
-­‐196061.51	
   134	
   Y	
   Y	
   Y	
   Y	
   metro	
  level	
   	
  	
   Y	
   0	
   	
  	
   	
  	
  
-­‐195676.77	
   135	
   Y	
   Y	
   Y	
   Y	
   metro	
  level	
   	
  	
   	
  	
   	
  	
   Y	
   0	
  
-­‐195681.40	
   136	
   Y	
   Y	
   Y	
   Y	
   metro	
  level	
   	
  	
   Y	
   0	
   Y	
   0	
  
-­‐196441.94	
   137	
   Y	
   Y	
   Y	
   Y	
   metro	
  level	
   Y	
   	
  	
   	
  	
   	
  	
   	
  	
  
-­‐196443.16	
   138	
   Y	
   Y	
   Y	
   Y	
   metro	
  level	
   Y	
   Y	
   0	
   	
  	
   	
  	
  
-­‐196006.61	
   139	
   Y	
   Y	
   Y	
   Y	
   metro	
  level	
   Y	
   	
  	
   	
  	
   Y	
   0	
  
-­‐196011.66	
   140	
   Y	
   Y	
   Y	
   Y	
   metro	
  level	
   Y	
   Y	
   0	
   Y	
   0	
  
-­‐195487.17	
   141	
   Y	
   Y	
   Y	
   Y	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
-­‐195525.10	
   142	
   Y	
   Y	
   Y	
   Y	
   	
  	
   	
  	
   Y	
   0	
   	
  	
   	
  	
  
-­‐195188.71	
   143	
   Y	
   Y	
   Y	
   Y	
   	
  	
   	
  	
   	
  	
   	
  	
   Y	
   0	
  
-­‐195196.89	
   144	
   Y	
   Y	
   Y	
   Y	
   	
  	
   	
  	
   Y	
   0	
   Y	
   0	
  
-­‐196032.81	
   145	
   Y	
   Y	
   Y	
   Y	
   	
  	
   Y	
   	
  	
   	
  	
   	
  	
   	
  	
  
-­‐196035.24	
   146	
   Y	
   Y	
   Y	
   Y	
   	
  	
   Y	
   Y	
   0	
   	
  	
   	
  	
  
-­‐195623.87	
   147	
   Y	
   Y	
   Y	
   Y	
   	
  	
   Y	
   	
  	
   	
  	
   Y	
   0	
  
-­‐195625.58	
   148	
   Y	
   Y	
   Y	
   Y	
   	
  	
   Y	
   Y	
   0	
   Y	
   0	
  
-­‐196368.79	
   200	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   Y	
   0,	
  1	
   	
  	
   	
  	
  
-­‐196291.07	
   201	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   Y	
   0,	
  1,	
  2	
   	
  	
   	
  	
  
-­‐196365.83	
   202	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   Y	
   1	
   	
  	
   	
  	
  
-­‐196288.98	
   203	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   Y	
   1,2	
   	
  	
   	
  	
  
-­‐195944.45	
   204	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   	
  	
   	
  	
   Y	
   0,	
  1	
  
-­‐195878.13	
   205	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   	
  	
   	
  	
   Y	
   0,	
  1,	
  

2	
  -­‐195991.17	
   206	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   	
  	
   	
  	
   Y	
   1	
  
-­‐195924.35	
   207	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   	
  	
   	
  	
   Y	
   1,2	
  
-­‐195916.81	
   208	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   Y	
   1	
   Y	
   1	
  
-­‐195775.61	
   209	
   Y	
   Y	
   Y	
   Y	
   state	
  level	
   Y	
   Y	
   1,	
  2	
   Y	
   1,	
  2	
  

Table S4. Model comparison. 
Table shows the DIC value for each model compared, where the other columns specify 
the model name and components of the model. A “Y” value indicates that the component 
is included, and other notes indicate information about the variable. 

 
 

11. Comparison without colds in the model 
To test how well we can fit the temporal pattern of asthma hospitalizations without 

using a dynamic transmission model, we compare the best fitting model described in the 
main paper with one without the SIRS component. The variables included are shown in 
Table S5 below, where the difference is marked with a star. By likelihood ratio test, the 
SIRS model fits better (p<.01). 

Fig. S6 shows the posterior mean model prediction in red and the data in grey. This 
is a summary figure for number of asthma hospitalizations per day in children in all 
metropolitan areas, although the model is fitted to individual metropolitan areas. Panel a 
is the best fitting model from the main paper with the model lacking the SIRS component 
in b. Fig. S6 clearly demonstrates that the temporal pattern of hospitalizations in children 
has a markedly different pattern by that generated without the SIRS transmission model. 

Fig. S7 shows the same comparison for adults. Although the fit in the lower panel is 
not so obviously poor as for children, there are local patterns captured better by the model 
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with the dynamic SIRS model. By likelihood ratio test, the model with SIRS is preferred 
(p<.01). 
 
Data Difference 
Common Cold * 
Influenza 
prevalence  

 

Day of week  
Time trend  
Local Intercept  
Low Temperature  
Table S5. Component comparison of model without SIRS common cold variable. 
Table shows the components compared in this section, where the * indicates the 
difference between these 2 models. 
 
 

Fig. S6. Comparison of fit with and without common cold model (children). 
The red line shows the posterior mean number of cases per day in children in all 
metropolitan areas. Grey line is the daily asthma hospitalizations in children aged 5-18 
for the 8 metropolitan areas in the study. (a) best fitting model from the main text, with 
dynamic SIRS transmission model, (b) linear model with the SIRS model removed.  
 

A 

B 
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Fig. S7. Comparison of fit with and without common cold model (adults). 
The red line shows the posterior mean number of cases per day in adults in all 
metropolitan areas in the fitted model. Grey line is the daily asthma hospitalizations in 
adults aged 19-55 for the 8 metropolitan areas in the study. (a) best fitting model from the 
main text, with dynamic SIRS transmission model, (b) linear model with the SIRS model 
removed. 

12. With 0/1 holiday, linear model 
To test whether being at school is a driver for asthma exacerbation, rather than 

school being a place for the transmission of common cold viruses, we formulate a linear 
model where children have an indicator variable for being in school (the “school 
indicator model”), in place of the SIRS model. The components of the model are shown 
in Table S6. The rationale for this test is that children may be allergic to something in the 
school, such as chalk dust (5) the school buildings (6–8) which puts them at increased 
risk of exacerbation. 

 
The results of fitting the school indicator model are shown in Fig. S8a, and 

compared with the best fitting model presented in the main text, and also shown in Fig. 
S8b. Compared with a model with no school variable (i.e. Fig. S6b), the school indicator 
model improves the appearance of fit. However, the complex pattern of summer troughs, 
September peaks, and school-vacation effects is clearly better captured by the complete 
model. The complete model is preferred by likelihood ratio test (p<0.01, log likelihood 
value of indicator model: -194796, posterior mean log likelihood of complete model: -
196449).  
 
Data Children Adults 
Local Baseline * * 
Day of week * * 
Time trend * * 
Influenza prevalence * * 
Low Temperature * * 
0/1 for out/in school *  
Table S6. Component Comparison of indicator model. 

A 

B 
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The components of the child and adult model tested against the best fitting model from 
the main paper. * marks that that variable is present in the model. 
 
 

 
Fig. S8. Comparison of indicator model with full model (children). 
Posterior mean model fit for children the model which has an indicator variable for 
school calendar (a), or the school calendar-driven SIRS model from the main text, (b). 
The model fit is the fitted number of cases in all 8 metropolitan areas, although the 
models are fitted to each metropolitan area separately. Red shows the posterior mean 
model fit, and grey the data. 
 

13. Best fitting model city-level results 
Figures in this section show the 7-day rolling mean number of asthma 

hospitalizations from 100 simulations in adults and children. We sampled 20 parameter 
sets from the joint posterior distribution, and calculated the predicted daily asthma 
hospitalization rate from the model. For each of those 20, we simulated 5 time series of 
incident cases using a non-homogenous Poisson simulation package, NHPoisson v2.1, in 
R (9).  

 
Fig. S9 and Fig. S10 show these 100 simulations for children and adults 

respectively, for each of the 8 metropolitan areas, with the true number of cases marked 
in black. These figures show good agreement between simulated number of cases and 
true data. The simulated cases in children have excellent concordance in the summer, 
return to school, and behavior around major holidays. The anomalously large peaks 
visible in children in Dallas-Fort Worth-Arlington (Metro Area 19100) and El Paso 
(Metro Area 21340) in 2006 are more obvious in the individual city plots. It is interesting 
that there is not a matching increase in asthma hospitalizations in adults in those time 
periods.   
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Fig. S9. Fit to each metropolitan area (children). 
The black line shows the 7-day rolling mean number of hospitalizations in children in each metropolitan 
area. The red lines are 5 non-homogeneous Poisson simulations from each of 20 parameter sets sampled 
from the joint posterior distribution of the SIRS model.  The red lines are semi-transparent, so darker colour 
represents areas where more simulated values lie. 
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Fig. S10. Fit to each metropolitan areas (adults). 
The black line shows the 7-day rolling mean number of hospitalizations in adults in each metropolitan area. 
The red lines are 5 non-homogeneous Poisson simulations from each of 20 parameter sets sampled from the 
joint posterior distribution of the SIRS model.  The red lines are semi-transparent, so darker colour 
represents areas where more simulated values lie. 
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14. Daily residuals for each city 
The daily residuals from the posterior mean SIRS parameters for children and adults 

are shown in Fig. S11 and Fig. S12 respectively.  The figures show that the residuals are 
approximately normally distributed, and more so for larger metropolitan areas. Those 
with smaller asthma hospitalization rates appear with “banded” residuals because the low 
hospitalization rate results in the appearance of discrete hospitalization events. 
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Fig. S11. Residuals of the model (children). 
Daily residuals for best fitting model, at posterior mean of SIRS parameters. Values for 
children. 
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Fig. S12.  Residuals of the model (adults). 
Daily residuals for best fitting model, at posterior mean of SIRS parameters. Values for 
adults. 
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15. Monthly residuals for each city 
To assess whether there is temporal variation in goodness of fit of the model, we 

check the monthly residuals. Fig. S13 and Fig. S14 show the monthly residuals for the 
posterior mean fitted model, for the best fitting model in the analysis for children and 
adults respectively. There is no striking temporal variation in residuals, e.g. all cities 
having low values in the summer, or winter. 

 

Fig. S13. Monthly residuals (children). 
Residuals for each month of the study for the posterior mean model fit, of the best fitting 
model presented in the main paper. Plot shows results for children. 
 
 

Fig. S14. Monthly residuals (adults). 
Residuals for each month of the study for the posterior mean model fit, of the best fitting 
model presented in the main paper. Plot shows results for adults. 
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16. Calculation of the average number of colds per person 
Average number of colds is calculated by dividing the cumulative number of 

infections in adults and children per year by the mid-year population of each metropolitan 
area. Due to uncertainty in the parameter estimates for the SIRS model, there is some 
uncertainty in the exact value. The values generated by the posterior mean of the SIRS 
estimates are shown in the main paper, and in Fig. S15, the average number of colds per 
person per year for each metropolitan area is shown for 20 parameter sets sampled from 
the joint posterior distribution. The red points are children, and the blue points are adults. 
As in the main paper, the red and blue windows represent the range of common cold 
infections per person from the UK NHS website on general information on the common 
cold (10). The change through time is the result of changing fraction of children in the 
population. 

 

Fig. S15. Average number of colds per person per year in each metropolitan area. 



 
 

23 
 

Average number of colds per person per year for each metropolitan area is shown for 20 
parameter sets sampled from the joint posterior distribution. Red is number of colds per 
year in children, and blue in adults. The red and blue shaded windows represent the range 
of common cold infections per person from the UK NHS website on general information 
on the common cold. 
 

17. Change in school start date during study period 
In 2007 a regulation went into effect preventing Texas schools opening before the 

4th Monday in August  (11). Fig. S16a shows the 7-day rolling sum of asthma 
hospitalizations in children in Texas aged 5–17 for years before 2007 (red) and after 2007 
(blue).  The September peak of asthma hospitalizations shifts after this regulation, 
indicating that return-to-school, and not just time of year is critical for generating the 
September peak. Our model easily accommodates this change in school start date, 
because there is a mechanistic connection between return to school and resurgence of 
asthma exacerbations. One simulation from the posterior mean SIRS parameters is shown 
in Fig. S16b. 
 
 

 
Fig. S16. Change in school start date in data and model. 
7-day rolling sum of hospitalizations (principal code 493) for all areas of Texas. Red 
lines are years before the regulation went into effect, and blue lines are years after. (A) 
Observed number of hospitalizations. (B) One model realization showing predicted 
number of daily hospitalizations. 
	
  

A 

B 
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18. Model fits by day of the week 
To visualize the combined impacts of different factors on asthma exacerbation rate, 

we show the fitted hospitalization rate and the contribution from each variable, for two 
example weeks: one randomly chosen week while school is in session (Figs S17a and 
S18a) and another randomly chosen week during a school closure period (Figs S18b & 
S18b). We only present these results for Dallas-Fort-Worth-Arlington, but all 
metropolitan areas show similar patterns. The results for children and adults are given in 
Figs 17 and 18, respectively.  

While school is in session, the fitted hospitalization rate for children attributable to 
the common cold (red bar) is higher later in the week, because transmission between 
children is higher while in school (Fig S17a). To account for the several day window 
between infection and asthma exacerbation, we aggregated common cold prevalence over 
4-day intervals. Therefore, the contribution from common cold prevalence rises gradually 
as prevalence increases during the school-week, and remains high on the weekend, 
despite the lower transmission among children on the weekend. The black points are the 
total fitted hospitalization rate, which is the sum of all bars on each day.  

By comparison, when schools are closed in July, the overall hospitalization rate is 
much lower (Fig S17b), demonstrating the influence of school-based interactions on 
common cold prevalence. In addition, the day-of-the-week differences have a more 
pronounced effect on overall hospitalization rates, because of the lower impact of 
common cold prevalence relative to during school sessions.  

In contrast, the adult hospitalization rate is more influenced by the baseline rate and 
the metropolitan baseline rate (combined into darkest bar) (Fig S18). Given the reduced 
impact of other covariates, the overall hospitalization rate is lower in October for adults 
than for children (Fig S18a), and the difference in hospitalization rates between the 
school-open week (Fig 18a) and the school-closed week (Fig 18b) is reduced in adults 
relative to the same difference between children.  
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Figure S17. Fitted hospitalization rate and contribution to the fitted rate from each 
variable. Rate shown per 100,000 children, for two example weeks, in Dallas-Fort 
Worth-Arlington.  
A) Week beginning 27th October 2003, while school is in session, B) Week beginning 
28th July 2003, during summer school closure. Black dots indicate the fitted 
hospitalization rate (and 95% credible interval) for each day of the study. Barplots show 
the contribution of each variable in the model to the fitted rate of hospitalization.  
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Figure S18. Fitted hospitalization rate and contribution to the fitted rate from each 
variable. Rate shown per 100,000 adults, for two example weeks, in Dallas-Fort 
Worth-Arlington.  
A) Week beginning 27th October 2003, while school is in session B) Week beginning 28th 
July 2003, during summer school closure. Black dots indicate the fitted hospitalization 
rate (and 95% credible interval) for each day of the study. Barplots show the contribution 
of each variable in the model to the fitted rate of hospitalization. 	
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