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Abstract
Background: Guanine-rich nucleic acid sequences are capable of folding into an intramolecular
four-stranded structure called a G-quadruplex. When found in gene promoter regions, G-
quadruplexes can downregulate gene expression, possibly by blocking the transcriptional
machinery. Here we have used a genome-wide bioinformatic approach to identify Putative G-
Quadruplex Sequences (PQS) in the Plasmodium falciparum genome, along with biophysical
techniques to examine the physiological stability of P. falciparum PQS in vitro.

Results: We identified 63 PQS in the non-telomeric regions of the P. falciparum clone 3D7.
Interestingly, 16 of these PQS occurred in the upstream region of a subset of the P. falciparum var
genes (group B var genes). The var gene family encodes PfEMP1, the parasite's major variant antigen
and adhesin expressed at the surface of infected erythrocytes, that plays a key role in malaria
pathogenesis and immune evasion. The ability of the PQS found in the upstream regions of group
B var genes (UpsB-Q) to form stable G-quadruplex structures in vitro was confirmed using 1H NMR,
circular dichroism, UV spectroscopy, and thermal denaturation experiments. Moreover, the
synthetic compound BOQ1 that shows a higher affinity for DNA forming quadruplex rather than
duplex structures was found to bind with high affinity to the UpsB-Q.

Conclusion: This is the first demonstration of non-telomeric PQS in the genome of P. falciparum
that form stable G-quadruplexes under physiological conditions in vitro. These results allow the
generation of a novel hypothesis that the G-quadruplex sequences in the upstream regions of var
genes have the potential to play a role in the transcriptional control of this major virulence-
associated multi-gene family.
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Background
Plasmodium falciparum is responsible for the majority of
malaria cases worldwide and is the cause of an estimated
300–500 million infections and 1–2 million deaths per
year [1]. The parasite invades circulating red blood cells
and causes them to adhere to microvascular endothelial
cells and sequester in blood microvessels, leading to vas-
cular obstruction. The only proteins known to be respon-
sible for this cytoadherence are members of the P.
falciparum erythrocyte membrane protein one (PfEMP1)
family (reviewed in [2]). These highly polymorphic para-
site-derived erythrocyte surface proteins are encoded by a
repertoire of 50 to 60 var genes. Crucially, each parasite
expresses only one var gene at a time, with transcription
sometimes being switched to a different var gene in subse-
quent generations, so allowing antigenic variation and
immune evasion [2].

Despite their extreme sequence variability in the coding
regions, var genes can be divided into 3 major groups (A,
B and C) according to the presence of one of three con-
served 5' upstream (Ups) sequences (UpsA, UpsB and
UpsC) [3]. Their chromosomal position further subdi-
vides them into centromeric (C) or telomeric (T) locations
[4]. Var gene groups have functional and clinical signifi-
cance. For example, group B and C var genes are known to
bind to the endothelial receptor CD36 [2], whereas group
A var genes have been linked to the most severe clinical
forms of malaria [5,6].

The mechanisms regulating var gene transcription are not
well understood and are currently the subject of intensive
investigations. Var gene expression is thought to be regu-
lated at the level of transcription initiation [7]. Many
mechanisms have been suggested as being involved in the
silencing of non-transcribed var genes including var
intron sequences [8] and SPE and CPE motifs located in
UpsB and UpsC sequences respectively [9,10]. The his-
tone deacetylase PfSir2 is thought to be required for chro-
matin silencing in the subtelomeric regions [11], and
histone methylation in the 5' Ups region has been shown
to regulate transcription of the var2csa gene [12]. Finally,
a var-specific subnuclear expression site has been pro-
posed recently [13]. How these pieces of evidence fit
together is still unclear, and other mechanisms may be
discovered before the full picture of var gene transcrip-
tional control is obtained.

DNA usually maintains a double helix structure, however,
recent evidence shows that in guanine-rich regions, DNA
can adopt a more complex structure called a G-quadru-
plex [14] (Figure 1). G-quadruplexes are composed by the
stacking of guanine tetrads, each one being stabilized by 8
Hoogsteen Hydrogen bonds (Figure 1A). Consequently,
sequences containing four groups of three guanines are

theoretically able to fold into a G-quadruplex containing
three guanine tetrads (Figure 1B). Although there are also
a few examples of G-quadruplexes formed from two gua-
nine tetrads [15], these are much less stable and thus less
likely to occur in vivo [16]. Hence, as in previous genome-
wide analyses of potential G-quadruplex-forming
sequences [17,18], we chose to investigate here sequences
containing at least three tracks of four guanines.

G-quadruplexes are also stabilized by interactions with
cations located between the tetrads, at the center of the
structure. Potassium and sodium are the most commonly
described G-quadruplex stabilizing cations, although
ammonium and strontium can also assume this function
[19-22]. It was previously reported that there are about
376,000 potential G-quadruplex structures in the human
genome [17,18], and about 40% of human genes contain
a putative G-quadruplex in their promoter [23]. Initial
reports indicate a possible role for G-quadruplex
sequences in the regulation of telomere length [24,25]
and the transcriptional regulation of several genes such as
c-MYC, c-kit, or KRAS [23,26-32]. For example, in the case
of the c-MYC proto-oncogene, a single nucleotide muta-
tion that destabilizes the G-quadruplex structure in the
promoter region leads to a three-fold increase in basal
transcription levels, suggesting that the G-quadruplex acts
as a transcriptional repressor element [27]. Furthermore,
a small ligand that binds to and stabilizes the G-quadru-
plex structure was shown to suppress further c-MYC tran-
scriptional activity [27].

Given the increasing evidence for the importance of G-
quadruplex sequences in gene regulation, we decided to
investigate whether G-quadruplexes could be discovered
in the genome of P. falciparum, and in particular to deter-
mine whether there are any G-quadruplex sequences in
the upstream regions of var genes that have the potential
to play a role in the transcriptional control of this major
virulence-associated multi-gene family. In addition, the
ability of potential G-quadruplex sequences from P. falci-
parum to form stable G-quadruplex structures under phys-
iological conditions was examined using biophysical
techniques.

Results and discussion
Identification of putative G-quadruplex forming sequences 
in the P. falciparum genome
The genome of P. falciparum clone 3D7 was searched for
Putative Quadruplex Sequences (PQS) using QGRS-Map-
per [33] on both the positive and negative strands. We set
up the QGRS-mapper software to identify all PQS with
four repeats of at least three guanines interrupted by loops
of a maximum length of 11 nucleotides. As expected, most
PQS were found in the telomeres (828 out of 891) due to
their repetitive sequence: GGGTT(T/C)A (see Additional
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file 1). These telomeric G-quadruplexes of P. falciparum
have recently been described by De Cian et al [34]. Here
we focused on the non-telomeric PQS because of their
potential role in gene transcriptional regulation. We iden-
tified 63 non-telomeric PQS (listed in full in Additional
file 2). This is an average of one PQS per 380 kb, which is
a much lower ratio than that seen in the human genome
(1 PQS per ~8 kb) [17]. This was expected due to the
extreme AT-richness (80.6%) of the P. falciparum genome
[35]. 37 of the 63 PQS are in intergenic regions, and of the
26 PQS within genes, 9 are on the coding strand and 17
on the non-coding strand.

PQS in the upstreamB region of var genes
Most importantly, 16 out of the 63 PQS were found in the
upstreamB regions of var genes, 1612 to 1707 bp
upstream of the initiation codon (Table 1 and Additional
file 2). These 16 PQS contain only three distinct sequences
that thus represent three slightly different putative G-
quadruplexes that we named UpsB-Q-1, UpsB-Q-2 and
UpsB-Q-3 in order of their frequency (sequences shown in
Table 2). As the var gene repertoire varies from one clone
to another, we also searched for PQS in the upstream

regions of var genes in P. falciparum clone HB3 (available
from the Broad Institute website, http://
www.broad.mit.edu). Using the same parameters, we
found 11 PQS in the upstream B region of var genes in
HB3 (Table 1). Interestingly, UpsB-Q-1 was also the most
common PQS (7 out of 11) in parasite clone HB3. One
PQS was found in HB3 but not in 3D7 (named UpsB-Q-
4, Table 1 and 2). These four types of PQS do not exist in
any other sequenced organism to date (BLAST analysis,
data not shown).

Evidence of G-quadruplex formation by PQS in the 
upstream B region of var genes
In order to confirm the formation of G-quadruplexes by
these sequences, two of them (UpsB-Q-1 and 2) were ana-
lyzed by 1H NMR in the presence of ammonium or potas-
sium ions. Using this technique, it is well established that
the presence of imino protons with a chemical shift
between 10 and 12 ppm is characteristic of the formation
of G-quadruplexes [36-38]. Spectra recorded on the pre-
sumably unstructured oligonucleotides in water did not
show signals beyond 9 ppm, indicating that imino pro-
tons are in fast exchange with bulk water. The spectra

(A) Chemical structure of a Guanine tetradFigure 1
(A) Chemical structure of a Guanine tetrad. (B) Schematic representations of a G-quadruplex formed by the folding of a 
G-rich strand.
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recorded after the addition of 150 mM cation are pre-
sented in Figure 2 and show clearly the presence of imino
protons for the four samples. Most importantly, for UpsB-
Q1 in ammonium and potassium, 11 imino peaks are
clearly distinguished. In potassium, the peak at 11.93
ppm was resolved in two different peaks at 37°C (data not
shown), indicating the formation of a single stable struc-
ture containing three quartets. In ammonium, the inten-
sity of the peak at 11.55 ppm could also indicate a
superposition of two different peaks. On the UpsB-Q-2
spectra, the imino peaks are less well resolved, indicating
some structural polymorphism. Moreover, in both PQS
sequences, peaks were observed at higher chemical shift,
indicating the possible presence of additional structures
like AT-rich hairpins on these G-quadruplexes. These
NMR data show that UpsB-Q1 and UpsB-Q-2 do form sta-
ble G-quadruplex structures in the presence of physiolog-
ical concentrations of potassium ions.

The four types of PQS found in the upstream B regions of
var genes were also examined by circular dichroism (CD),

which provides information about the orientation of
strands within a G-quadruplex, because the CD signal
changes with the syn/anti orientation about the glycosylic
bonds. In parallel G-quadruplexes, the CD spectrum typi-
cally exhibits a positive peak around 260 nm and a nega-
tive peak around 240 nm, whereas in antiparallel G-
quadruplexes, the CD spectrum displays a negative peak
around 260 nm and a positive peak at 295 nm [39-41].
Results of CD for each UpsB-Q are showed in Figure 3. For
UpsB-Q-2, 3 and 4 in potassium and ammonium, a min-
imum around 243 nm and a maximum around 295 nm
were observed, while for UpsB-Q-1 in potassium the min-
imum was around 250 nm. These kinds of spectra are gen-
erally attributed to hybrid conformations (containing a
mixture of both parallel and antiparallel strand orienta-
tions). In sodium, the four sequences seem to adopt an
antiparallel conformation, since a minimum near 260 nm
and a maximum at 290 – 295 nm are observed. However,
a shoulder was observed in the three cationic conditions
at 270–275 nm for UpsB-Q-2, 3 and 4 but not for UpsB-
Q-1. The absence of a shoulder in the case of UpsB-Q-1
could therefore indicate a different conformation of this
G-quadruplex. Furthermore, the depth of the minimum
observed for UpsB-Q-1 was systematically bigger than for
the three other sequences. Together with NMR, this result
suggests that the single structure adopted by UpsB-Q-1,
the most frequent PQS in the UpsB regions, is different
(probably closer to an antiparallel form) and that a few
base mutations in UpsB-Q-1 (3 bases for UpsB-Q-2, 2

Table 1: Predicted G-quadruplex sequences in the upstream regions of Group B var genes from P. falciparum clones 3D7 and HB3

P. falciparum clone 3D7 P. falciparum clone HB3

Gene ID1 var group2 PQS3 Gene ID4 var group2 PQS3

PF07_0139 BT Q-1 var14 BT Q-1
PF08_0142 BT Q-1 var12 BT Q-1
PF11_0007 BT Q-1 var13 BT Q-1
PF13_0364 BT Q-1 var20 BT Q-1
PFA0765c BT Q-1 var10 BT Q-1
PFB1055c BT Q-1 var48ψ BT Q-1
PFC0005w BT Q-1 var49ψ BT Q-1
PFC1120c BT Q-1 var16 BT Q-3
PFF1595c BT Q-1 var15 BT Q-3
PFI0005w BT Q-1 var8 BT Q-3

MAL7P1.212 BT Q-1 var19 BC Q-4
MAL8P1.220 BT Q-1
PF10_0406 BT Q-2
PFD1245c BT Q-2
PFL0935c BC Q-2
PFA0005w BT Q-3

1 According to PlasmoDB 5.4 http://plasmodb.org.
2 Var group: B(T/C) = var gene with an upstream region B located in telomeric (T) or centromeric (C) region. ψ = pseudogene. [4]
3 PQS: putative quadruplex sequence. The PQS in the upstream B (UpsB) regions were named UpsB-Q-1, UpsB-Q-2 and UpsB-Q-3 in order of 
their frequency. A 4th PQS found only in HB3 was named UpsB-Q-4.
4 According to Kraemer et al [4]

Table 2: Sequence of the PQS from the var gene upstream B 
regions of P. falciparum

Name Sequence

UpsB-Q-1 CAGGGTTAAGGGTATAACTTTAGGGGTTAGGGTT
UpsB-Q-2 TAGGGTTAAGGGTATAACGTTAAGGGTTAGGGTT
UpsB-Q-3 CAGGGTTAAGGGTATACATTTAGGGGTTAGGGTT
UpsB-Q-4 CAGGGTTTAGGGTATAACTTTAGGGGTTAGGGTT
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bases for UpsB-Q-3 and a single base for UpsB-Q-4) are
sufficient to induce structural polymorphism.

Finally, thermal difference spectra (TDS) were recorded
[42]. Similarly to CD, this technique differentiates
between the various potential structures adopted by DNA.
It was shown previously by Mergny et al [42] that G-quad-
ruplexes exhibit two positive peaks at 243 and 273 nm

and one negative peak at 295 nm, while other DNA struc-
tures show different combinations of maxima and
minima (see [42] for details of maxima and minima char-
acterizing other DNA structures). The spectra obtained for
the PQS from the var gene upstream B regions match
expectations for G-quadruplex structures (Figure 4). There
is a negative peak at 295 nm for all sequences in the three
cations. Positive peaks were observed at 246 (only in

1H NMR spectra of UpsB-Q-1 in potassium (A) and ammonium (C) and of UpsB-Q-2 in potassium (B) and ammonium (D) (cat-ion concentration 150 mM)Figure 2
1H NMR spectra of UpsB-Q-1 in potassium (A) and ammonium (C) and of UpsB-Q-2 in potassium (B) and 
ammonium (D) (cation concentration 150 mM). These spectra were acquired at 25°C. *: this peak was resolved in two 
peaks at 37°C. **: due to its intensity, this peak most likely corresponds to the superposition of two peaks.

Circular dichroism spectra of putative G-quadruplex sequences (PQS) from the upstream B regions of var genes in 150 mM potassium, sodium and ammonium cationFigure 3
Circular dichroism spectra of putative G-quadruplex sequences (PQS) from the upstream B regions of var 
genes in 150 mM potassium, sodium and ammonium cation. UpsB-Q-1 (blue), UpsB-Q-2 (red), UpsB-Q-3 (pink) and 
UpsB-Q-4 (green). Characteristic signatures of hybrid G-quadruplexes (i.e. containing a mixture of parallel and antiparallel 
strand orientations) are observed in potassium and ammonium. In sodium, G-quadruplexes are predominantly antiparallel.
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potassium), 256 (except in ammonium) and 267 nm.
These values are in good agreement with previously
described results [42] and thus confirm the ability of these
sequences to form G-quadruplexes. There is a small wave-
length shift for positive peaks, which may be because of
the presence of a long loop (10 bases) in the PQS of the
var gene upstream regions (all the G-quadruplexes previ-
ously tested contained no more than four bases in their
loops).

The stoichiometries of the G-quadruplexes formed by the
UpsB-Q were also examined to determine whether these
structures are likely to form intra-molecular bonds (uni-
molecular structures) or inter-molecular bonds (multimo-
lecular structures) [43]. Mass spectrometry showed only
monomeric DNA (Additional file 3), indicating that the
UpsB-Q form intra-molecular G quadruplex structures
(inter-molecular structures would have been indicated by
the presence of multimers by mass spectrometry).

Stability of G-quadruplexes formed by PQS in the 
upstreamB region of var genes
When the UV absorbance is monitored at 295 nm [44],
thermal denaturation experiments allow determination of
the Tm of G-quadruplexes, i.e. the temperature at which
the half of the signal is lost and thus indicate the relative
stability of structures adopted by the oligonucleotides.
Because G-quadruplexes with long loops are usually less
stable that those with small loops [43,45,46], it was nec-
essary to check if the UpsB-Q are able to form G-quadru-
plexes that are stable under physiological conditions
(37°C and [K+] ≈ 150 mM). These results are shown in
Figure 4 and the Tm's are listed in Table 3. In potassium,
the four PQS sequences from the var gene upstream B
regions have a Tm about 50°C, and the transition curves
(Figure 5) show that, at 37°C, the proportion of folded G-
quadruplexes is higher than 85% for the four sequences,
confirming their potential to form G-quadruplexes in liv-

ing cells. As expected, Tm's observed in sodium and
ammonium are lower than in potassium. This is generally
attributed to the weaker stabilization capacity of these two
cations, due to their smaller ionic radius [47-49]. The Tm
ranking K+ > Na+ > NH4

+ is also characteristic of antiparal-
lel G-quadruplexes (parallel G-quadruplexes have Tm
ranking K+ > NH4

+ > Na+) [43].

Interactions of UpsB-Q G-quadruplexes with a ligand
In addition to the potential transcriptional repressor activ-
ity of G-quadruplex sequences themselves [27], it has
been shown previously that G-quadruplex ligands can fur-
ther suppress transcription of genes containing potential
G-quadruplexes in their promoters, by impeding the
binding of proteins needed for initiation of transcrip-
tional activity on DNA [50,51]. Moreover, these mole-
cules are also able to interfere with telomere structure and
to indirectly induce their shortening [52-55]. These mole-
cules are thus promising weapons in the fight against can-
cer, since this disease needs both a high expression of
oncogenes and stable telomere length to develop and sur-
vive [56-62]. With the discovery of G-quadruplex forming
sequences in the genome of P. falciparum, it can be
hypothesized that these ligands may also have the poten-
tial to affect parasite gene expression by stabilizing G-
quadruplexes located in gene promoter regions.

It was thus decided to evaluate the equilibrium dissocia-
tion constant of each UpsB-Q with the G-quadruplex lig-
and BOQ1 (Figure 6A). BOQ1 is a synthetic compound
that exhibits a good selectivity for G-quadruplex versus
duplex DNA [63,64]. A relatively high association con-
stant with the UpsB-Q sequences would therefore provide
additional evidence for the presence of G-quadruplex
structures. Binding constants were determined by electro-
spray mass spectrometry. A typical spectrum of a G-quad-
ruplex-ligand mixture is shown in Figure 6B. The peaks
correspond to the free DNA sequence, and to 1:1 com-

Thermal denaturation spectra of PQS from the upstream B regions of var genes in potassium, sodium and ammonium (cation concentration 150 mM)Figure 4
Thermal denaturation spectra of PQS from the upstream B regions of var genes in potassium, sodium and 
ammonium (cation concentration 150 mM). UpsB-Q-1 (green), UpsB-Q-2 (blue), UpsB-Q-3 (red) and UpsB-Q-4 (pink).
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plexes (1 ligand per DNA sequence), with charge states of
6-, 7- and 8-. The binding of a second ligand molecule was
not observed, revealing that a single binding site is
present.

The equilibrium dissociation constants of all UpsB-Q
with BOQ 1 were deduced from the relative intensity of
peaks of free DNA and complexes, as described previously
[65]. For the four sequences, the values are around 2 μM
(Table 3). They are lower than those obtained by mass
spectrometry for the binding of BOQ1 to telomeric G-
quadruplex (5.7 μM) or to model duplex sequences (57
μM) (unpublished data). These results confirm the ability

of the PQS in the upstream B regions of the var genes to
fold in G-quadruplexes, and show that G-quadruplex lig-
ands are likely to bind to these structures within the P. fal-
ciparum genome, and could therefore be tested for
biological activity against the parasite.

Potential for G-quadruplexes to be involved in gene 
transcriptional regulation in P. falciparum
If the G-quadruplex structures in the P. falciparum genome
can inhibit gene transcription in vivo, one would expect a
mechanism to regulate these structures. It has been shown
previously in vitro that some helicases specifically unwind
G-quadruplexes in telomeres [66,67]. Two helicases of the
conserved RecQ family, Sgs1p in yeast and BLM in
human, show a much higher affinity for G-quadruplex
than duplex DNA [68,69]. Moreover, a recent microarray
study in a yeast mutant suggests that genes with a PQS in
their upstream region tend to be downregulated when
Sgs1p is knocked out [70]. The proposed explanation is
that, in the absence of the helicase, G-quadruplexes in
promoters cannot be unwound and they therefore act as a
steric block to the transcriptional machinery [71]. A
BLAST search with BLM and Sgs1p in P. falciparum brings
up PFI0910w, annotated as a putative RecQ helicase on
PlasmoDB. A ClustalW alignment with these 3 sequences
shows that the 7 domains found in all RecQ helicases are
also conserved in PFI0910w (Figure 7). PFI0910w is com-
paratively shorter and is lacking the RecQ-C-terminal and
a HRDC (Helicase-and-RNaseD-like-C-terminal) domain
present in BLM or Sgs1p. However, RecQ4, another
human helicase part of the RecQ family, is also lacking
these 2 domains [72]. Therefore it appears that P. falci-
parum does encode a helicase that may have the capacity
to regulate G-quadruplex structures, allowing us to
hypothesize that the RecQ helicase (PFI0910w) could be
involved in UpsB var gene regulation. This suggestion that
members of a particular var gene group could have a
unique regulatory mechanism is not unprecedented, as it
has been suggested previously that Group A and E var gene
transcription, but not groups B and C were influenced by
the histone deacetylase Sir2 [11].

Conclusion
Increasing evidence suggests that G-quadruplexes play a
role in gene transcriptional regulation in humans and
other organisms. We identified 63 potential G-quadruplex
sequences in the non-telomeric regions of the genome of
P. falciparum clone 3D7. 16 of these PQS occurred in the
upstream region of group B var genes. The var gene-related
PQS were shown to form stable G-quadruplex structures
in vitro under physiological conditions and bind with high
affinity to a known G-quadruplex ligand. It is noteworthy
that the most prevalent sequence UpsB-Q-1 (dCAGGGT-
TAAGGGTATAACTTTAGGGGTTAGGGTT) adopts a sin-
gle structure which is stable in physiological conditions

Thermal denaturation curves (heating) of putative G-quadru-plex sequences (PQS) from the upstream B regions of var genes in 150 mM potassium cationFigure 5
Thermal denaturation curves (heating) of putative 
G-quadruplex sequences (PQS) from the upstream B 
regions of var genes in 150 mM potassium cation. 
UpsB-Q-1 (blue), UpsB-Q-2 (red), UpsB-Q-3 (pink) and 
UpsB-Q-4 (green). For the four sequences, Tm's are about 
50°C and the proportion of folded G-quadruplexes at 37°C 
is above 85%.

Table 3: Melting temperature (Tm) of G-quadruplex sequences 
from the upstream B regions of var genes and the equilibrium 
dissociation constant of the PQS with the G-quadruplex ligand 
BOQ 1 (shown in the Kd column)

Tm
1

PQS K+ Na+ NH4
+ Kd (μM)

UpsB-Q-1 47.2 ± 0.6 35.1 ± 1.2 31.6 ± 0.7 2.6 ± 0.5
UpsB-Q-2 49 ± 0.5 36.1 ± 2 27.7 ± 0.5 1.4 ± 0.4
UpsB-Q-3 50 ± 1.2 36.9 ± 1.1 34.2 ± 1.1 1.7 ± 0.7
UpsB-Q-4 49.3 ± 1.4 39.4 ± 0.9 32.3 ± 0.3 2.7 ± 1.1

1 Thermal denaturation experiments were performed at the cation 
concentration of 150 mM. Thermal denaturation experiments were 
repeated twice and Tm values shown are the mean of four values 
obtained from four curves (two heatings and two coolings).
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(37°C and 150 mM K+). This discovery allows us to gen-
erate a new hypothesis concerning var gene regulation
mechanisms in P. falciparum, in which a helicase such as
PFI0910w could be involved in G-quadruplex unwinding
and thus facilitate RNA polymerase transcriptional activ-
ity. The role of G-quadruplexes in Plasmodium gene regu-
lation, the structure of these G-quadruplexes, and their
use as potential drug targets merits further research.

Methods
Bioinformatic analysis
Both strands of each chromosome of the P. falciparum
3D7 clone (PlasmoDB_5.4 [73]) were analyzed using
QGRS-Mapper [33]. The parameters used were: Max
length: 33; Min G-group: 3; loop size: 0 to 11. The P. fal-
ciparum HB3 genome was downloaded from the Broad
Institute http://www.broad.mit.edu. Upstream sequences

of var genes were analyzed using QGRS-Mapper with the
same parameters.

Materials
All oligonucleotides were ordered from Eurogentec (Sera-
ing, Belgium) with Oligold quality. The oligonucleotide
sequences used are shown in the Table 2. Oligonucle-
otides were received lyophilized and stock solutions were
prepared in bi-distilled water with 300 μM total strand
concentration. For all experiments, the stock solution was
heated at 80°C for 5 minutes, diluted using a cold aque-
ous solution containing either KCl, NaCl or NH4OAc to
reach the desired DNA concentration in 150 mM cation,
and then cooled rapidly on ice. 10 mM lithium
cacodylate, pH 7.4 was added in thermal denaturation
and circular dichroism experiments. The molecule BOQ1
was synthesized as described previously [74]

A: chemical structure of BOQ1Figure 6
A: chemical structure of BOQ1. B: Mass spectrum of UpsB-Q-1 and the G-quadruplex ligand BOQ 1 in equimolar concen-
trations (10 μM). Only a [1:1] complex was observed. The upper panel shows a magnification on the DNA7- and the number of 
ammonium adducts (from zero to three). The mass difference between two adjacent ammonium adducts is around 2.43, indi-
cating that the G-quadruplex is intramolecular.
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Circular dichroism
Experiments were performed on a Jasco J-810 spectropo-
larimeter using 1-cm path length cells (Hellma, type No.
114-QS, France). The final concentration of oligonucle-
otide was 5 μM in a buffer containing 150 mM salt and 10
mM lithium cacodylate, pH 7.4. For each sample, five
spectra were recorded from 220 nm to 350 nm with a scan
rate of 100 nm/min.

NMR
NMR samples were prepared by dissolving the oligonucle-
otides in H2O/D2O 90/10, lithium cacodylate 10 mM, pH
7.4 to get a oligonucleotide final concentration of 270
μM. Ammonium acetate or potassium chloride were pro-
gressively titrated in to a final cation concentration of 150
mM. NMR data were collected at 500 MHz on a Bruker
Avance spectrometer (fitted with a TXI triple resonance
probe with z-axis gradient). 1D 1H spectra were recorded
at a temperature of 25°C using a WATERGATE sequence
with a water flip-back pulse [75,76].

Thermal denaturation
Thermal denaturation experiments were carried out on a
Uvikon XS spectrophotometer (Secomam), using 1-cm
path length quartz cells (Hellma, type No. 115B-QS,
France). The final oligonucleotide concentration was 5
μM in 150 mM salt and 10 mM lithium cacodylate, pH =
7.4. Absorbance was monitored as a function of the tem-

perature at 295, 240, 260 nm for the determination of the
melting temperature (Tm) [44] and at 405 nm as control
wavelength. Gradient was 0.2°C/min between 10 and
90°C. Melting temperatures were determined using the
method described by Marky and Breslauer [77]. Before
heating and after the cooling, spectra were recorded from
220 to 440 nm, to allow thermal difference spectra (TDS)
to be obtained. TDS were obtained by subtracting the low
temperature curve from the high temperature curve and
normalization, as described previously by Mergny et al.
[42].

Electrospray mass spectrometry
All measurements were carried out on a Q-TOF Ultima
Global mass spectrometer (Micromass, now Waters, Man-
chester, U.K.), using the electrospray ionization (ESI)
source in negative mode, as described previously [78].
Source conditions were optimized to avoid in-source frag-
mentation: capillary voltage = -2.2 kV, cone voltage = 50
V, RF, source block temperature = 80°C, and desolvation
gas temperature = 100°C. Source backing pressure was set
to 3.5 mbar. Oligonucleotide samples were first prepared
at 50 μM final concentration in NH4OAc 150 mM. Just
before injection in the mass spectrometer, they were fur-
ther diluted to 10 μM in 150 mM NH4OAc and 20%
methanol. The role of methanol is to increase ion signals.

Alignment of PFI0910w (P. falciparum) with two helicases of the RecQ family, BLM (human) and Sgs1p (Saccharomyces cerevisiae)Figure 7
Alignment of PFI0910w (P. falciparum) with two helicases of the RecQ family, BLM (human) and Sgs1p (Sac-
charomyces cerevisiae). The seven conserved motifs of the helicase domain are indicated with a red bar.
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