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Summary:

Analysis of matched case-control studies is often complicated by missing data on covariates. Analysis can be restricted

to individuals with complete data, but this is inefficient and may be biased. Multiple imputation (MI) is an efficient

and flexible alternative. We describe two MI approaches. The first uses a model for the data on an individual and

includes matching variables; the second uses a model for the data on a whole matched set and avoids the need to

model the matching variables. Within each approach, we consider three methods: full-conditional specification (FCS),

joint model MI using a normal model, and joint model MI using a latent normal model. We show that FCS MI is

asymptotically equivalent to joint model MI using a restricted general location model that is compatible with the

conditional logistic regression analysis model. The normal and latent normal imputation models are not compatible

with this analysis model. All methods allow for multiple partially-observed covariates, non-monotone missingness and

multiple controls per case. They can be easily applied in standard statistical software and valid variance estimates

obtained using Rubin’s Rules. We compare the methods in a simulation study. The approach of including the matching

variables is most efficient. Within each approach, the FCS MI method generally yields the least biased odds ratio

estimates, but normal or latent normal joint model MI is sometimes more efficient. All methods have good confidence

interval coverage. Data on colorectal cancer and fibre intake from the EPIC-Norfolk study are used to illustrate the

methods, in particular showing how efficiency is gained relative to just using individuals with complete data.
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1. Introduction

Case-control studies are used to investigate associations between disease and putative risk

factors. Confounding of observed associations can be handled at the design stage by matching

cases and controls on confounders, at the analysis stage by adjusting for confounders using a

regression model, or by a combination of these. In matched case-control studies each case is

individually matched with one or more controls on a subset of confounders and the (usual)

analysis uses conditional logistic regression (CLR) to control for the remaining confounders.

Often, the analysis is complicated by missing data on covariates (i.e. exposures and remaining

confounders). A common solution is to restrict analysis to individuals with complete data.

Although appealing for its simplicity, this ‘complete-case analysis’ (‘case’ here means any

individual, rather than an individual with disease) is inefficient and may be biased. In

particular, where exclusion of a case or control leaves a matched set in which remaining

members are either all cases or all controls, the whole set ceases to contribute information

to the CLR estimating equations.

To improve efficiency and reduce bias, several alternatives have been proposed. Lipsitz et al.

(1998) allow for one partially observed covariate. They assume data are missing at random

(MAR) and fit a missingness model, i.e. a model for the probability that an individual is

a complete case. Functions of the fitted probabilities are then used as offsets in CLR. This

consistently estimates odds ratios (ORs) when the missingness model is correctly specified,

but is inefficient as it only uses data on complete cases. Paik and Sacco (2000) also allow

for just one partially observed covariate and assume MAR. They assume a model for the

distribution of the partially observed covariate given the other covariates, matching vari-

ables and binary disease status. When this covariate model is correctly specified, consistent

estimation of the ORs can be achieved by CLR after imputing the missing covariate as its

fitted value when the disease status variable is set to 0.5. Rathouz (2003) notes that this
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method implicitly assumes missingness does not depend on disease status, and generalises it

to allow for such dependence, as well as for multiple missing covariates. His method assumes

the partially observed covariates are all observed or all missing on each individual. Sinha and

Wang (2009) take a similar approach, but instead of a parametric covariate model, kernel

density estimation is used for those functions in the estimating equations that depend on

the distribution of the partially observed covariate. They find their OR estimator is less

biased than that of Paik and Sacco (2000) when the latter’s covariate model is misspecified.

A drawback is that categorical variables are handled by stratifying individuals on these

variables and performing kernel density estimation separately in each stratum, which limits

the feasible number of categorical variables (and categories). Paik (2004) extends Paik and

Sacco’s (2000) method to allow for data missing not at random (MNAR).

The forementioned methods all reduce to standard CLR when there are no missing data: the

assumed missingness or covariate model then becomes irrelevant. Other methods for missing

data derive information from an assumed covariate model even when data are complete.

These methods may be more efficient but at the cost of possible bias when the covariate

model is misspecified. Satten and Carroll (2000) propose such a method. This allows for

multiple partially observed covariates, but assumes these are all observed or all missing on

each individual. Ahn et al. (2011) generalise it to allow for MNAR and multiple disease states.

Rathouz et al. (2002) elaborate Lipsitz et al.’s (1998) method to use a covariate model and

so gain efficiency. The resulting estimator is doubly robust but difficult to implement. They

also propose a more practical approximation which, though not doubly robust, still gains

efficiency. Liu et al. (2013) use empirical likelihood to develop a semiparametric-efficient

competitor to Rathouz et al.’s (2002) estimator. Gebregziabher and DeSantis (2010) assume

all covariates are categorical and carry out multiple imputation (MI) using a latent-class

model. A drawback is that imputation of a individual’s missing value makes no use of data
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on matching variables, covariate values of other individuals in the same matched set, or

disease status, which may cause bias (Moons et al., 2006) and inefficiency.

The methods described so far assume the distribution of the partially observed covariate(s)

given fully observed covariates, disease status and matching variables can be modelled

parametrically. Sometimes this is not feasible. For example, if cases are matched with controls

from the same family, from the same postcode area or from the set of patients attending the

same general practice, it could be difficult to model parametrically the matching via explicit

matching variables, while the alternative of allowing a separate nuisance parameter for each

matched set may cause problems with model fitting and induce bias and even inconsistency

of estimators. Even when matching could, in principle, be modelled parametrically, this is

only possible if the analyst has data on matching variables, which is not always so, and some

analysts may prefer to avoid modelling effects of matching variables, since CLR makes no

assumptions about the association between disease and matching variables. One solution,

adopted by Sinha et al. (2005), is to allow each matched set to have its own parameter in the

covariate model but treat these as random effects. They assume a single partially observed

covariate and that the random effects are generated by a Dirichlet process. They fit their

Bayesian model using a Hastings-Metropolis algorithm with specially written computer code.

Though useful, these methods have limitations. Many assume only one partially observed

covariate or that partially observed covariates are collectively observed or missing on each

individual. Many require bespoke computer code. Most require parametric modelling of

matching variables. In this article we advocate the use of MI, proposing and comparing

six MI methods suitable for matched case-control data that can be easily implemented in

commonly used statistical packages. MI has several advantages. First, it is increasingly being

used to handle missing data and many researchers are familiar with the technique. Second,

MI software is readily available and easy to use. Third, MI allows for multiple partially
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observed covariates without needing them to be collectively observed or missing. Fourth,

MI can easily incorporate information on variables that are not included in the CLR model

but are predictive of missing covariates in that model. This can increase efficiency and can

also reduce bias when these extra variables are required to make the MAR assumption more

plausible. Fifth, we propose both methods that parametrically model matching variables and

methods in which this is not required. Arguably, a sixth advantage is that, unlike some of

the methods proposed earlier, MI reduces to standard CLR when there are no missing data.

Although this means MI does not offer the potential efficiency gain associated with methods

that make use of a covariate model even when data are complete, it should make it more

robust to misspecification of that model.

We illustrate the use of MI for matched case-control data on a study of association between

fibre intake and colerectal cancer nested within the European Prospective Investigation

of Cancer (EPIC) Norfolk cohort. This is one of the studies in the UK Dietary Cohort

Consortium, which combines case-control studies nested within several cohorts. Results from

this study have been described elsewhere (Dahm et al., 2010). Cases were individuals in the

EPIC Norfolk cohort diagnosed with colorectal cancer between recruitment to the cohort

(1993–1998) and the end of 2006. Seven-day diet diaries were completed by participants

shortly after recruitment to the underlying cohort and stored for later use. The diet diaries

were processed for individuals selected for the case-control sample to obtain measures of

average daily intake of foods and nutrients (Dahm et al., 2010). There were 318 colorectal

cancer cases and each was matched with 4 controls on sex, age within 3 years, and date of

diary completion within 3 months. Controls had to be alive and have not been diagnosed

with colorectal cancer at the end of 2006. In the original analysis, the association between

fibre intake and colorectal cancer was adjusted for several potential confounders using CLR :

smoking status (3 categories), education (4 categories), social class (6 categories) and physical
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activity level (4 categories), and height, weight, exact age, alcohol intake, folate intake, intake

of energy from fat and intake of energy from non-fat (all continuous). We wished also to adjust

for aspirin use (2 categories). Many other studies have adjusted for aspirin use (Aune et al.,

2011), which is known to be associated with reduced risk of colorectal cancer (Asano and

McLeod, 2004; National Cancer Institute, 2014). It was omitted from the original analysis

(Dahm et al., 2010) because it was not measured in some of the contributing studies. Of

the 1590 individuals in the study, 328 (78 cases and 250 controls) were missing one or more

adjustment variables, most commonly aspirin use or social class; the main exposure, fibre

intake, and the matching variables were fully observed. A complete-case analysis uses only

240 (75%) matched sets and 1012 (64%) individuals.

The article is structured as follows. Section 2 discusses CLR with complete data. Section 3

describes MI in general. For matched case-control studies, Section 4 proposes three MI

methods that parametrically model the matching variables, and Section 5 three analogous

methods that avoid this. Section 6 contains a simulation study comparing the methods.

Section 7 describes their application to the EPIC study. We end with a discussion in Section 8.

2. Analysis of Matched Case-Control Studies with Complete Data

For each individual in the population, let D = 1 if he/she has disease and D = 0 otherwise.

So, D = 1 for cases and D = 0 for controls. Let S denote the variables used to match controls

with cases. Let Xcat and Xcon denote categorical and continuous covariates, respectively. A

categorical variable with m > 2 levels is coded as m − 1 dummy variables. Assume

P (D = 1 |Xcat,Xcon,S) =
exp{β⊤

catX
cat + β⊤

conX
con + q(S)}

1 + exp{β⊤
catX

cat + β⊤
conX

con + q(S)}
, (1)

where q(S) = logit P (D = 1 |Xcat = 0,Xcon = 0,S). Let M denote the number of controls

matched with each case. We use subscript j (j = 1, . . . , M +1) to index individual within set

and assume cases and controls have been ordered so that D1 = 1 and D2 = . . . = DM+1 = 0.
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In ordinary logistic regression the log ORs βcat and βcon are estimated by maximising the

likelihood based on expression (1) and the data on the sampled individuals. This requires that

either q(S) is modelled or a separate baseline parameter is included for each matched set.

The former corresponds to breaking the matching and adjusting for S, which there is often a

reluctance to do, because it requires a functional form to be specified for the effect of matching

variables on disease risk. The alternative of including a baseline parameter for each set yields

inconsistent maximum likelihood estimates (Breslow and Day, 1980). For this reason, CLR

is often used instead. CLR includes a baseline parameter for each set, but then eliminates

these from the likelihood by conditioning on the number of cases and controls in each set.

Let G(xcat
1 ,xcon

1 , . . . ,xcat
M+1,x

con
M+1) denote the conditional probability that (Xcat

1 ,Xcon
1 ) =

(xcat
1 ,xcon

1 ) given that (Xcat
1 ,Xcon

1 ) = (xcat∗
1 ,xcon∗

1 ), . . . , (Xcat
M+1,X

con
M+1) = (xcat∗

M+1,x
con∗
M+1)

for some permutation (xcat∗
1 ,xcon∗

1 ), . . . , (xcat∗
M+1,x

con∗
M+1) of (xcat

1 ,xcon
1 ), . . . , (xcat

M+1,x
con
M+1) and

given that D1 = 1 and D2 = . . . = DM+1 = 0 and S1 = . . . = SM+1. Equation (1) implies

G(xcat
1 ,xcon

1 , . . . ,xcat
M+1,x

cat
M+1) =

exp(β⊤
catx

cat
1 + β⊤

conx
con
1 )

∑M+1
j=1 exp(β⊤

catx
cat
j + β⊤

conx
con
j )

, (2)

and vice versa (Web Appendix A). CLR finds the values of βcat and βcon that maximise the

product of expression (2) over the matched sets; these consistently estimate the log ORs .

3. Joint model MI and full-conditional specification (FCS) MI

We briefly review the most commonly used forms of MI: joint model MI and FCS MI (Web

Appendix B has more detail). In joint model MI, a Bayesian model with non-informative

priors is specified for the distribution of the partially observed variables given fully observed

variables. This ‘imputation model’ is fitted to the observed data, and values for missing

variables then sampled from their joint posterior predictive distribution. The model of inter-

est (‘analysis model’) is fitted to each resulting complete (or ‘imputed’) dataset separately,

and the parameter and variance estimates obtained are combined using simple equations
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called Rubin’s Rules. When the imputation model is correctly specified and is compatible

with the analysis model, i.e. there exists a model for the joint distribution of all the variables

that implies the analysis and imputation models as submodels, and data are MAR, joint

model MI gives consistent parameter and variance estimates for the analysis model. Thus,

compatibility, if possible, is desirable. The first of the methods described in each of Sections 4

and 5 are based on imputation models that are compatible with the CLR analysis model.

Instead of requiring a joint model for the partially observed variables, FCS MI involves

specifying a model for the conditional distribution of each partially observed variable given

all other variables. The FCS algorithm cycles through these models, sampling missing values

for the dependent variable in the current model given the observed and most recently sampled

values of all the other variables, until convergence is achieved. This may be easier than

specifying and fitting a joint model. In special cases FCS corresponds to joint model MI

(Hughes et al., 2014). Otherwise, FCS is less theoretically justified, but there is much evidence

that it works well in terms of approximate unbiasedness of parameter and variance estimates

and coverage of confidence intervals (van Buuren, 2012; Hughes et al., 2014; Lee and Carlin,

2010). An important theoretical result was given by Liu et al. (2014). They defined the set

of conditional models to be compatible with a joint model if, for each conditional model and

every possible set of parameter values for that model, there exists a set of parameter values

for the joint model such that the conditional and joint models imply the same distribution for

the dependent variable of that conditional model. They showed that when this compatibility

holds, the distribution of the data imputed by FCS MI converges, as sample size tends to

infinity, to the posterior predictive distribution of the missing data under that joint model.

Hence, FCS MI is asymptotically equivalent to joint model MI in this case. The first of the

MI methods in each of Sections 4 and 5 use this asymptotic result.
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4. MI using matching variables

Let R denote the missingness pattern in (Xcat⊤,Xcon⊤)⊤. Assume D and S are fully

observed and the data are MAR. In this section, we propose multiply imputing missing

(Xcat⊤,Xcon⊤)⊤ from its conditional distribution given S and D. We call this ‘MI using

matching variables’. It is analogous to breaking the matching and adjusting for the matching

variables. However, matching is broken only to impute missing data; matching is then

restored and the imputed data analyzed using CLR. Most methods reviewed in Section 1

effectively break the matching for the individuals with missing data. In Section 5 we describe

an alternative (‘MI using matched set’), which imputes without breaking the matching. We

now propose three ways of modelling the distribution of (Xcat⊤,Xcon⊤)⊤ given S and D.

The first model for (Xcat⊤,Xcon⊤)⊤ given S and D is a restricted general location model

(Schafer, 1997). This has a log-linear model for Xcat and normal model for Xcon given Xcat:

P (Xcat = xcat | S, D) =
exp{a(xcat,S; ζ) + Dλ⊤xcat}

∑

x
cat′ exp{a(xcat′,S; ζ) + Dλ⊤xcat′}

(3)

Xcon |Xcat,S, D ∼ N(α + φD + γXcat + δS, Σ) (4)

where a(xcat,S; ζ) includes a main effect for Xcat and all pairwise interactions between

Xcat and S and between pairs of elements of Xcat. Vectors λ, ζ, α and φ and matrices

γ, δ and Σ are unknown parameters. In Web Appendix C, we prove that (3)–(4) imply

that equation (2) holds with βcat = λ − γ⊤Σ−1φ and βcon = Σ−1φ. Hence, this model is

compatible with the CLR analysis model.

Bayesian modelling software, such as WinBUGS (Lunn et al., 2000), can be used to impute

missing (Xcat⊤,Xcon⊤)⊤ from its posterior predictive distribution implied by joint model (3)–

(4). However, such software requires specialist programming skills. Instead we propose using

FCS MI with a set of conditional models that is compatible with this joint model, and hence

is asymptotically equivalent to joint model MI. FCS MI is widely available in general-purpose
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statistical packages, e.g. Stata, R and SAS. In Web Appendix D, we show that a compatible

conditional model for a partially observed continuous covariate (an element of Xcon) is a

linear regression of this covariate onS, D,Xcat and the remaining elements ofXcon. Likewise,

a compatible conditional model for one of the partially observed categorical covariates making

up Xcat is a multinomial logistic regression of this categorical covariate on S, D, Xcon

and those elements of Xcat that are not dummy indicators for this categorical covariate.

Conveniently, these conditional models are the default options in many MI packages.

Although asymptotically equivalent, in finite samples this FCS MI method may be inefficient

compared to joint model MI, because it estimates the parameters of the conditional model for

Xcat using only part of the available data onXcon (Hughes et al., 2014). Our second proposed

model for (Xcat⊤,Xcon⊤)⊤ given S and D is a latent normal model (Carpenter and Kenward,

2013). This is not compatible with the CLR analysis model, but it has the advantage that it

can be used for joint model MI without needing specialist Bayesian software. For simplicity,

suppose that all the categorical covariates are binary (see Carpenter and Kenward (2013)

for general case). The latent normal model is

(Xcon⊤,W cat⊤)⊤ | S, D ∼ N(αLN + φLND + δLNS, ΣLN) (5)

where W cat is a vector of latent variables (each with unit variance), one for each element

of Xcat, and such that an element of Xcat equals 1 if its corresponding element of W cat

is positive and 0 otherwise. αLN, φLN, δLN and ΣLN are unknown parameters. Joint model

MI using (5) can be done using the software REALCOM-MI or the jomo package in R. The

realcomImpute program provides an interface between Stata and REALCOM-MI.

When all partially observed covariates are continuous, our FCS MI method and joint model

MI using (5) both reduce to joint model MI using the normal model (4). Use of this normal

model for MI even when some partially observed variables are categorical was originally

promoted by Schafer (1997) and has become common. Although the model is obviously
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misspecified, this method has been found to work well in many situations and software is

widely available, e.g. mi mvn impute in Stata and norm in R. Thus, our third proposed

model for (Xcat⊤,Xcon⊤)⊤ given S and D is expression (5) with W cat replaced by Xcat.

Following Bernaards et al. (2007), we use ‘adaptive rounding’ after imputation to handle

non-integer imputed values of Xcat.

5. MI using matched set

Now we propose three models for Xset = (Xcat⊤
1 ,Xcon⊤

1 , . . . ,Xcat⊤
M+1,X

con⊤
M+1)

⊤ unconditional

on S, thus allowing imputation without using the matching variables. These are analogous

to the models in Section 4 but involve a matched-set-specific random effect, u.

The first is a restricted general location model. Assume that for each matched set,

P (Xcat
1 = xcat

1 , . . . ,Xcat
M+1 = xcat

M+1 | D1 = 1, D2 = . . . = DM+1 = 0) =

exp{b(xcat
1 , . . . ,xcat

M+1; ν) + τ⊤xcat
1 }

∑

x
cat′

1
,...,xcat′

M+1

exp{b(xcat′
1 , . . . ,xcat′

M+1; ν) + τ⊤xcat′
1 }

(6)

with b(xcat
1 , . . . ,xcat

M+1) =

M+1
∑

j=1

b1(x
cat
j ; ν) +

M
∑

j=1

M+1
∑

k=j+1

b2(x
cat
j ,xcat

k ;ν) (7)

where b1(x
cat
j ; ν) includes a main effect of each element of Xcat

j and an interaction between

each pair of these elements, and b2(x
cat
j ,xcat

k ;ν) includes all pairwise interactions between one

element of Xcat
j and one element of Xcat

k . This allows correlation between Xcat of members

of the same matched set. Also assume that for j = 1, . . . , M + 1 independently,

Xcon
j | D1 = 1, D2 = . . . = DM+1 = 0,Xcat

1 ,Xcat
2 , . . . ,Xcat

M+1,u

∼ N(η + ξI(j = 1) + ρXcat
j +ψX̄cat + u,Λ) (8)

and u | D1 = 1, D2 = . . . = DM+1 = 0,Xcat
1 ,Xcat

2 , . . . ,Xcat
M+1 ∼ N(0,Ω) (9)

where X̄cat = (M + 1)−1
∑M+1

j=1 X
cat
j . Note that ψ and Ω allow correlation between one

individual’s Xcon and the Xcat and Xcon of other members of the same matched set. In Web
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Appendix E, we show this model implies equation (2) holds with βcat = τ−ρ⊤(F −C)ξ and

βcon = (F −C)ξ, where C−1 = Λ + Ω −Ω(Λ + MΩ)−1MΩ and F = −(Λ + MΩ)−1ΩC.

As in Section 4, we propose using FCS MI with conditional models compatible with this

joint model. In Web Appendix F, we show that a compatible conditional model for a

partially observed element ofXcon
j is a linear regression of that element onXcat

j ,
∑

k 6=jX
cat
k ,

∑

k 6=jX
con
k and all the remaining elements ofXcon

j . Likewise, a compatible conditional model

for one of the partially observed categorical variables making upXcat
j is a multinomial logistic

regression of this categorical variable onXcon
j ,

∑

k 6=jX
con
k ,

∑

k 6=j X
cat
k , and those elements of

Xcat
j that are not dummy indicators for this categorical variable. These conditional models

are not the default options in MI software, because some predictors in the regression are sums

of conditioning variables, e.g.
∑

k 6=jX
cat
k . However, specification of non-default conditional

models is straightforward (see Web Appendix H).

As with the FCS method in Section 4, this method is asymptotically equivalent to joint

model MI, but in finite samples may be inefficient. Our second proposed model for Xset is

a latent normal model with random effects (Carpenter and Kenward, 2013). Like the latent

normal model of Section 4, this is not compatible with equation (2), but its use may improve

efficiency. The latent normal model is the same as model (5), but with δLNS replaced by u

and now conditioning on all of D1, . . . , DM+1: for j = 1, . . . , M + 1 independently,

(Xcon⊤
j ,W cat⊤

j )⊤ | D1 = 1, D2 = . . . = DM+1 = 0,u ∼ N(αLN + φLNDj + u, ΣLN) (10)

where u is normally distributed with mean zero and unstructured variance given D1 =

1, D2 = . . . = DM+1 = 0. Again, joint model MI can be done using REALCOM-MI or jomo.

As in Section 4, there is a normal version of this model. This assumes (10) but with W cat
j

replaced by Xcat
j . Joint model MI with this model can be done using the pan package of R.
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6. Simulation Study

One thousand datasets were generated for each of 24 scenarios resulting from considering

two sample sizes (N = 100 or 500 matched sets), two numbers of matching controls (M =

1 or M = 4), three missingness mechanisms, and two proportions of missing data. Each

dataset was generated using the model defined by expressions (3)–(4). Specifically, there were

two matching variables, one binary (Scat) and one continuous (Scon), and three covariates,

one categorical (Xcat) and two continuous (XconA and XconB). We assumed P (Scat = 1 |

D = 1) = 0.6 and Scon | Scat, D = 1 ∼ N(0, 1). These could represent, for example,

sex and standardised age. Among cases, the sex with greater risk would be more common,

while age might be approximately normal if risk increases with age but total population

size diminishes due to all-cause mortality. We assumed logit P (Xcat = 1 | Scat, Scon, D) =

−2.5+0.5Scat +0.5Scon +0.75D (so about 10% of controls and 20% of cases have Xcat = 1),

and (XconA, XconB) given Xcat, Scat, Scon, D is bivariate normal with univariate marginal

distributions N(0.5Xcat + 0.5Scat + 0.5Scon + 0.5D, 1) and covariance 0.5. From βcat = λ−

γ⊤Σ−1φ and βcon = Σ−1φ, the true log ORs of Xcat, XconA and XconB are βcat = 5/12,

βconA = 1/3 and βconB = 1/3.

Missingness was imposed on Xcat and XconA assuming either missing completely at random

(MCAR) or one of two MAR mechanisms. For MCAR data, each individual’s Xcat and XconA

variables were independently missing with probability pmiss. Two values, pmiss = 0.1 and

pmiss = 0.25, were considered. Thus, either 19% or 44% of individuals had at least one missing

variable. For the first MAR mechanism (MAR-A), each individual’s Xcat and XconA variables

were independently missing with logit probability cmiss + 0.25(XconB + Scat + Scon + D). For

the second (MAR-B), it was cmiss + 0.25(XconB + Scat + Scon + D + XconBD). In both cases,

cmiss was chosen to give pmiss = 0.1 or pmiss = 0.25 missingness in each of Xcat and XconA.

Each dataset was analyzed using CLR with Xcat, XconA and XconB as covariates. Missing
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data were handled in seven ways: complete-case analysis; FCS MI using matching variables

or matched set (using ice in Stata); latent normal MI using matching variables or matched

set (jomo in R); and normal MI using matching variables (mi impute in Stata) or matched

set (pan in R). We used 25 imputed datasets when pmiss = 0.1, and 50 when pmiss = 0.25. In

addition, the complete data were analyzed before imposing missingness on the covariates.

Tables 1 and 2 show results for the MCAR mechanism with 1:1 matching (M = 1) and

1:4 matching (M = 4) when N = 500. The results from these scenarios also give a good

indication of the general patterns observed for MAR-A, MAR-B and N = 100 (see Web

Tables 1–10). We shall focus on βcat and βconA, since for βconB (the fully-observed covariate),

differences between the three MI methods using matched variables were small, as were

differences between those using matched set. To ease comparison of the six MI methods,

Tables 3 and 4 show, for pmiss = 0.25, the bias, ratio of empirical SEs, ratio of mean estimated

SEs, and relative efficiency (i.e. ratio of mean squared errors, MSE) of each method, averaged

over the three missingness mechanisms, separately for βcat and βconA, for N = 100 and 500,

and for M = 1 and M = 4. Unsurprisingly, differences between methods were smaller when

pmiss = 0.1; we focus on pmiss = 0.25 below.

The two FCS methods are approximately unbiased when N = 500 and usually when N =

100. Exceptions are when N = 100 and M = 1, where the complete-data method is also

biased (with biases similar to those of FCS MI), and when N = 100 and M = 4, where there

is bias for βcat when using matched set. Normal MI has some negative bias for βcat, especially

when using matching variables (except when N = 100 and M = 1, where its negative bias

cancels out the positive bias of the complete-data estimator). Latent normal MI has some

positive bias for βcat when M = 1; latent normal MI using matched set also has negative

bias for βconA. The complete-case estimators are generally approximately unbiased, but note

that the estimator of βconB is severely biased under MAR-B (Web Tables 2, 4, 7 and 10).



14 Biometrics, 000 0000

Empirical standard errors (SEs) from MI are almost always smaller when using matching

variables than when using matched set, and negatively biased estimators tend to have smaller

SEs. For βcat, the SEs from FCS MI and latent normal MI are usually similar (when using

matched set with N = 100, FCS MI has the smaller SE); the smallest SEs come from normal

MI. For βconA, latent normal MI has the smallest SEs; the SEs from normal MI are similar

to those from FCS MI when using matching variables and larger when using matched set.

These differences are less marked when M = 4.

Efficiency (mean square error, MSE) is a function of bias and SE. For βcat, normal MI is most

efficient, despite its bias; FCS MI and latent normal MI are usually about equally efficient,

with neither uniformly better than the other. For βconA, latent normal MI is more efficient

than FCS and normal MI when using matching variables; FCS and normal MI are equally

efficient. When using matched set, FCS MI is more efficient for βconA than normal MI; latent

MI is more efficient than FCS MI when M = 1, but is the least efficient of all the methods

when N = 500 and M = 4, where its bias dominates its smaller SE. All MI methods are

more efficient than the complete-case analysis.

The MI methods show a tendency to slightly overestimate SEs. Mostly, this is fairly mild, but

is more severe for normal MI with βcat when M = 1, and for latent normal MI with βconA when

M = 1 or 4. Thus, although normal and latent normal MI are most efficient for βcat and βconA,

respectively, this advantage is not apparent in the width of the estimated confidence intervals.

Indeed, the average estimated SEs of the three MI methods using matching variables were

generally rather similar; the same was true of the methods using matched set. Coverage of

95% confidence intervals was between 93% and 97% for all methods.

We also performed two simulation studies using modified data-generating mechanisms that

make our imputation models misspecified. In the first, there was an interaction between Scat

and Scon; in the second, XconA and XconB were log-normally distributed. See Web Appendix G
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and Web Tables 11–16 for details and results. Briefly, none of the MI methods showed

considerable bias for either of these data-generating mechanisms, and all MI methods were

much more efficient than the complete-case analysis.

In summary, all the MI methods appear to work well. Using matching variables is more

efficient than using matched set. If using matching variables, normal and latent normal MI

appear to be preferable to FCS MI, which is less efficient; normal MI is more efficient for βcat,

but latent normal MI more efficient for βconA. Of these, one might prefer latent normal MI,

because of the bias in βcat for normal MI. If using matched set, FCS MI might be preferred

when M = 4, on bias and efficiency grounds. However, when M = 1 and using matched set,

no method appears better than any other.

7. Analysis of EPIC-Norfolk Data

Table 5 shows the estimated adjusted log OR for fibre intake from the complete-case analysis.

This analysis excludes all matched sets in which the case had missing data, as well as any

controls with missing data. It uses 240 (75%) matched sets, consisting of 240 cases and

772 controls. Also shown are the results of the three MI methods using matching variables,

including sex, age and date of diary completion as S in the imputation model. The complete-

case and MI analyses produce similar log OR estimates (differing by less than 20% of a SE),

but the latter are more efficient, because they use all 318 cases and 1272 controls i.e. 33%

more matched sets, and this is reflected by a 17% reduction in estimated SE.

MI using matching variables imputes missing values assuming that age, sex and time of diary

completion have linear and additive effects on the logit probability of disease. Furthermore,

the way that recruitment took place in the EPIC-Norfolk cohort means that date of diary

completion is predictive of which GP surgery the individual was registered with, and hence

matching by the former tends to induce some degree of matching by the latter. Treating
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date of diary completion as a continuous variable will not fully account for this. For these

two reasons, one might prefer MI using matched set, or might wish to check that the results

from the two methods do not differ substantially.

Table 5 shows that the results from MI using matching variables and MI using matched set

are very similar, providing some reassurance about the validity of both sets of results. In

this study, both approaches can be used, but had matching been on GP practice itself, MI

using matched set might have been the only feasible option.

8. Discussion

We have described two broad MI approaches to the analysis of matched case-control studies

with missing values in covariates, and three methods within each approach. One approach

involves parametric modelling of the association between the matching variables and the

partially observed covariates; the other instead treats matched set as a random effect. Our

simulation results suggest that the first approach is preferable when it can be done, as it is

more efficient. However, in studies where matching is on, e.g. family, GP practice or postcode

area of residence, or if data on the matching variables are not available to the analyst, the

first approach is not feasible and the second approach can be used instead. The second

approach might also be preferred if one were reluctant to specify a form for association

between matching variables and covariates in the imputation model, because, for example,

there were several matching variables, including continuous ones and potential interactions.

Of the three MI methods within each approach, FCS MI based on a restricted general location

model and joint model MI using a multivariate normal distribution can be implemented

in many statistical packages, whereas joint model MI using a latent normal distribution is

currently limited to R and the specialist software REALCOM-MI. All three methods are easy

to use, appear to work well, and are more efficient than the complete-case analysis. They

can all handle continuous and nominal categorical covariates, multiple partially-observed
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covariates, non-monotone missingness patterns and multiple controls per case. Computer

commands to implement the methods are given in Web Appendix H.

FCS MI has the theoretical appeal of being asymptotically equivalent to joint model MI using

an imputation model (the restricted general location model) that is compatible with the CLR

analysis model. It nearly always gave the least biased estimates in simulations. However, when

using matching variables, normal MI and latent normal MI were more efficient. When using

matched set, FCS MI was marginally better than normal and latent normal MI for a 1:4

matched study (M = 4); no method was obviously best or worst for 1:1 matching (M = 1).

A drawback of FCS MI using matched set when M > 1 is that the estimates may depend on

the arbitrary order chosen for the M controls in each matched set. Any order produces valid

imputations, but one could avoid this dependence by randomly permuting indices of controls

within matched sets before generating each imputed dataset. However, that is only likely to

be worthwhile if the sample size is small and there is a lot of missing data. Normal MI was, in

general, the most biased of the three methods, but even its biases were fairly modest. A slight

drawback of normal MI is the need manually to post-process imputed values of categorical

variables, e.g. using adaptive rounding. None of the MI methods was uniformly superior to

the others in simulations, and we regard use of any of them as entirely acceptable.

All methods can handle the situation where the number of matched controls, M , varies

between cases, although this is slightly more complicated for FCS MI using matched set. For

this method, extra controls with completely missing data would have to be added to those

matched sets with fewer than the maximum number of controls, before performing MI, and

then deleted again before analysing the imputed datasets.

Another method, which merits further research, is joint model MI using the restricted general

location model. This requires specialist Bayesian software and more advanced programming

skills, and the focus of this article is on methods that are easy to implement in standard pack-
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ages. Nevertheless, it would be worth investigating whether this method is significantly more

efficient than our FCS MI method based on the same model. The mix package in R (Schafer,

1997) may also be of interest. This uses a model similar to (3)–(4), but additionally assumes

the continuous part of S is normally distributed given D, Xcat and the rest of S. The MI

methods considered in this article assume, like the CLR analysis model, nothing about the

distribution of the matching variables. Mix cannot be used for MI using matched set.

Finally, we note that, as always with missing data methods, it is important to consider

the plausibility of the assumption about the missing data mechanism. Often, the MAR

assumption can be made more plausible by including in the imputation model additional

variables that are associated with the partially observed covariates.

Supplementary Materials

Web Appendices referenced in Sections 3–8, along with computer code, are available with

this paper at the Biometrics website on Wiley Online Library.
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Web-based Supplementary Materials for ‘Handling Missing Data in Matched

Case-Control Studies using Multiple Imputation’ by SR Seaman and RH Keogh

Web Appendix A: Proof that equation (1) implies (2) and vice versa

First, suppose that equation (1) holds for any function q(S). Then

G(xcat
1 ,xcon

1 , . . . ,xcat
M+1,x

con
M+1)

=
P (D = 1 |Xcat = xcat

1 ,Xcon = xcon
1 ,S)

∏M+1
k=2 P (D = 0 |Xcat = xcat

k ,Xcon = xcon
k ,S)

∑M+1
j=1 P (D = 1 |Xcat = xcat

j ,Xcon = xcon
j ,S)

∏

k 6=j P (D = 0 |Xcat = xcat
k ,Xcon = xcon

k ,S)

=
exp(β⊤

catx
cat
1 + β⊤

conx
con
1 )

∑M+1
j=1 exp(β⊤
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cat
j + β⊤
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con
j )

Second, suppose that equation (2) holds. Then

G(xcat,xcon, 0, 0, . . . , 0, 0) =
exp(β⊤
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cat + β⊤

conx
con)

exp(β⊤
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This implies that

M exp(−β⊤
catx

cat − β⊤
conx

con) + 1

= 1 + M
P (D = 1 |Xcat = 0,Xcon = 0,S)P (D = 0 |Xcat = xcat,Xcon = xcon,S)

P (D = 1 |Xcat = xcat,Xcon = xcon,S)P (D = 0 |Xcat = 0,Xcon = 0,S)

which, in turn, implies that

exp(β⊤
catx

cat + β⊤
conx

con)

=
P (D = 1 |Xcat = xcat,Xcon = xcon,S)

P (D = 0 |Xcat = xcat,Xcon = xcon,S)
×

P (D = 0 |Xcat = 0,Xcon = 0,S)

P (D = 1 |Xcat = 0,Xcon = 0,S)
.
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Since this is true for any xcat, xcon and any value of S, equation (1) holds with q(S) =

logit P (D = 1 |Xcat = 0,Xcon = 0,S).

Web Appendix B: Joint Model MI and Full-Conditional Specification (FCS) MI

In this appendix, we provide a more technical description of joint model MI and FCS MI

than that given in the main text of the paper. We begin with joint model MI, and then

discuss FCS MI and its relation to joint model MI.

Consider a generic dataset with n units and K random variables Y1, . . . , YK potentially

measured on each unit. Let Y−k = (Y1, . . . , Yk−1, Yk+1, . . . , YK). Use subscript i to index

the unit. So, Yik (i = 1, . . . , n) and Yi,−k denote, respectively, Yk and Y−k for the ith unit.

Let Y•k = (Y1k, . . . , Ynk) and Y•−k = (Y•1, . . . ,Y•k−1,Y•k+1, . . . ,Y•K). Let Y obs
•k and Y mis

•k

denote, respectively, the observed and missing parts of Y•k, and let Y obs
•−k and Y mis

•−k denote

the observed and missing parts of Y•−k.

In joint model MI, a model f(Y1, . . . , YK | θ) is specified for Y1, . . . , YK, with prior distribu-

tion π(θ) on the parameters θ of this model. Random vectors (Yi1, . . . , YiK) and (Yj1, . . . , YjK)

(i 6= j) are assumed to be conditionally independent given θ. Let fk(Yk | Y−k; θ) denote

the full-conditional distribution of Yk, i.e. the distribution of Yk given Y−k and θ implied

by f(Y1, . . . , YK | θ). Imputed values for Y mis
•1 , . . . ,Y mis

•K are drawn from their posterior

predictive distribution:

p(Y mis
•1 , . . . ,Y mis

•K | Y obs
•1 , . . . ,Y obs

•K ) ∝

∫

f(Y mis
•1 , . . . ,Y mis

•K | Y obs
•1 , . . . ,Y obs

•K , θ) π(θ)

×f(Y obs
•1 , . . . ,Y obs

•K | θ) dθ

(Little and Rubin, 2002). This can be achieved by using a Gibbs sampler algorithm. One

form of the Gibbs sampler is as follows (Liu et al., 2014). Initially, the missing values of Yk

(k = 1, . . . , K) are replaced by the mean, or a random sample, of the observed values of Yk.
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A single iteration of the Gibbs sampler involves K steps, in the kth of which the missing

values of Yk are updated. The kth step (k = 1, . . . , K) of the algorithm is to sample θ from

its posterior distribution given Y obs
•k and Y•−k (using the current value of Y mis

•−k) and then,

for each individual i (i = 1, . . . , n) with missing Yik, to sample Yik from fk(Yik | Yi,−k; θ)

using the sampled value of θ. Step k is omitted if Yk is fully observed. The Gibbs sampler

is iterated until convergence, at which point Y mis
•1 , . . . ,Y mis

•K are drawn from their posterior

predictive distribution. This algorithm is applied repeatedly to the original dataset, in order

to create multiple imputed datasets. The analysis model is then fitted to each imputed dataset

separately and the resulting parameter and variance estimates combined using Rubin’s Rules

(Little and Rubin, 2002). The imputation model is said to be compatible with the analysis

model if there exists a model for the joint distribution of all the variables that implies the

analysis and imputation models as submodels. When the imputation model is correctly

specified and compatible with the analysis model, and data are MAR, joint model MI gives

consistent parameter and variance estimates for the analysis model (Little and Rubin, 2002).

An alternative to joint model MI is FCS MI (also known as MI by chained equations)

(van Buuren, 2012). FCS MI avoids the need to specify a model for the joint distribution of

Y1, . . . , YK and to sample from the corresponding posterior of θ given Y obs
•k and Y•−k and from

the full-conditionals. Instead, for each k = 1, . . . , K, a model gk(Yk | Y−k; θk) is specified for

the conditional distribution of Yk given Y−k, and a non-informative prior πk(θk) is specified

for the parameters θk of this model. FCS proceeds as per the Gibbs sampler except that at

step k, θk is sampled from the posterior distribution proportional to the likelihood formed by

the product of gk(Yik | Yi,−k; θk) over units with observed Yik multiplied by the prior πk(θk),

and missing values of Yik are sampled from gk(Yik | Yi,−k; θk). Step k and the specification

of gk(Yk | Y−k; θk) is omitted if Yk is fully observed.

An important theoretical result about the asymptotic relation between joint model MI and
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FCS MI was provided by Liu et al. (2014). They defined the set of conditional models

{gk(Yk | Y−k; θk) : k = 1, . . . , K} to be ‘compatible’ with a joint model f(Y1, . . . , YK ; θ)

if the following condition holds for each k = 1, . . . , K. For each value of θk in its parameter

space, there exists at least one value of θ in its parameter space for which gk(Yk | Y−k; θk) =

fk(Yk | Y−k; θ). (Note that there is no need for there to exist a value of θ for which this

is true for all k = 1, . . . , K simultaneously.) Liu et al. (2014) showed that when the set of

conditional models is compatible with a joint model, the distribution of the imputed data

converges, as the sample size tends to infinity, to the posterior predictive distribution of the

missing data under that joint model. Hence, the use of FCS MI is asymptotically valid in

this case.

For more information about joint model MI and FCS MI, refer to, for example, Carpenter

and Kenward (2013).

Web Appendix C: Proof that equations (3) and (4) imply that (2) holds with

βcon = Σ−1φ and βcat = λ− γ⊤Σ−1φ

log p(Xcon,Xcat | S, D) = log p(Xcon |Xcat,S, D) + log p(Xcat | S, D) (11)

From equation (4),

log p(Xcon |Xcat,S, D = 1) − log p(Xcon |Xcat,S, D = 0)

= φ⊤Σ−1(Xcon −α− γXcat − δS) − φ⊤Σ−1φ/2

= φ⊤Σ−1(Xcon − γXcat) − φ⊤Σ−1(α+ δS) − φ⊤Σ−1φ/2 (12)

Note that only the first term in expression (12) depends on Xcat or Xcon.

It follows from equation (3) that

log P (Xcat = xcat | S, D = 1) − log P (Xcat = xcat | S, D = 0)

= λ⊤xcat + terms that do not depend on xcat. (13)
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From equations (11), (12) and (13), we have,

log p(Xcon,Xcat | S, D = 1) − log p(Xcon,Xcat | S, D = 0)

= φ⊤Σ−1(Xcon − γXcat) + λ⊤Xcat

+ terms that do not depend on Xcat or Xcon.

Therefore

log p(Xcon
1 ,Xcat

1 | S, D1 = 1) − log p(Xcon
1 ,Xcat

1 | S, D1 = 0)

− log

{

M+1
∑

j=1

p(Xcon
j ,Xcat

j | S, Dj = 1) − log p(Xcon
j ,Xcat

j | S, Dj = 0)

}

= φ⊤Σ−1(Xcon
1 − γXcat

1 ) + λ⊤Xcat
1

−

{

M+1
∑

j=1

φ⊤Σ−1(Xcon
j − γXcat

j ) + λ⊤Xcat
j

}

This does not depend on S, and hence

G(x1, . . . ,xM+1) =
exp(β⊤

catx
cat
1 + β⊤

conx
con
1 )

∑M+1
j=1 exp(β⊤

catx
cat
j + β⊤

conx
con
j )

with

βcon = Σ−1φ

βcat = λ− γ⊤Σ−1φ

Web Appendix D: Proof that linear regression and multinomial logistic

regression conditional models are compatible with the general location model

of equations (3) and (4)

It is obvious from expression (4) that the conditional distribution of any element of Xcon

given Xcat, S, D and the remaining elements of Xcon is a normal distribution with mean

equal to a linear function of those variables and with constant variance. Since the parameters

of the joint normal distribution in expression (4) are unconstrained, so are the parameters

describing the mean and variance of this conditional distribution. Therefore, a linear regres-



6 Biometrics, 000 0000

sion of a partially observed element of Xcon on Xcat, S, D and the remaining elements of

Xcon (with main effects only and no interactions) constitutes a conditional model that is

compatible (in the sense of Definition 1 of Liu et al., 2014) with the general location model

of equations (3) and (4).

Now consider partially observed categorical covariates. By Bayes’ Theorem,

log p(Xcat |Xcon,S, D)

= log p(Xcat | S, D) + log p(Xcon |Xcat,S, D) − log p(Xcon | S, D)

= a(Xcat,S; ζ) + Dλ⊤Xcat −
1

2
(Xcon −α− φD − γXcat − δS)⊤Σ−1

×(Xcon −α− φD − γXcat − δS) + terms not involving Xcat

= a(Xcat,S; ζ) + Dλ⊤Xcat −
1

2
Xcat⊤γ⊤Σ−1γXcat

+Xcat⊤γ⊤Σ−1(Xcon −α− φD − δS) + terms not involving Xcat

= a(Xcat,S; ζ) −α⊤Σ−1γXcat − S⊤δ⊤Σ−1γXcat + D
(

λ⊤ − φ⊤Σ−1γ
)

Xcat

−
1

2
Xcat⊤γ⊤Σ−1γXcat +Xcat⊤γ⊤Σ−1Xcon

+ terms not involving Xcat (14)

Now write Xcat = (Xcat⊤
A ,Xcat⊤

B )⊤, where Xcat
A represents one categorical variable (coded

as a vector of dummy indicators), and Xcat
B represents the remaining variables in Xcat. Also

write

a(Xcat,S; ζ) = ζ⊤1 X
cat
A +Xcat⊤

B ζ2X
cat
A + S⊤ζ3X

cat
A + terms not involving Xcat

A

To get the distribution of Xcat
A given Xcon, S, D and Xcat

B we take equation (14) and ignore
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all terms not involving Xcat
A . The result is

log p(Xcat
A |Xcat

B ,Xcon,S, D)

= (ζ⊤1 −α⊤Σ−1γA)Xcat
A +Xcat⊤

B ζ2X
cat
A + S⊤(ζ3 − δ

⊤Σ−1γA)Xcat
A

+D(λ⊤
A − φ⊤Σ−1γA)Xcat

A

−
1

2
Xcat⊤

A γ⊤
AΣ−1γAX

cat
A −Xcat⊤

B γ⊤
BΣ−1γAX

cat
A +Xcat⊤

A γ⊤
AΣ−1Xcon

+ terms not involving Xcat
A

=

(

ζ⊤1 −α⊤Σ−1γA −
1

2
diag(γ⊤

AΣ−1γA)⊤
)

Xcat
A +Xcat⊤

B (ζ2 − γ
⊤
BΣ−1γA)Xcat

A

+S⊤(ζ3 − δ
⊤Σ−1γA)Xcat

A + D(λ⊤
A − φ⊤Σ−1γA)Xcat

A

+Xcon⊤Σ−1γAX
cat
A

+ terms not involving Xcat
A (15)

where γA, γB, λA and λB are given by the partitions γ = [γA γB] and λ = (λ⊤
A,λ⊤

B)⊤. Note

that Xcat⊤
A γ⊤

AΣ−1γAX
cat
A = diag(γ⊤

AΣ−1γA)⊤Xcat
A because Xcat

A is a vector whose elements

all equal zero except for at most one element.

It follows from equation (15) that the distribution ofXcat
A givenXcon, S, D andXcat

B follows

a multinomial logistic regression with main effects for S, Xcat
B , D and Xcon. It can also be

seen that, because there are no constraints on the parameters of the general location model

of expressions (3) and (4) or on ζ1, ζ2 and ζ3, there are also no constraints on the main-

effect parameters in this multinomial logistic regression model. Hence, a multinomial logistic

regression of a partially observed categorical variable on Xcon, S, D and the elements of

Xcat that are not dummy indicators for this categorical variable (with main effects only)

constitutes a conditional model that is compatible (in the sense of Definition 1 of Liu et al.,

2014) with the general location model of equations (3) and (4).
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Web Appendix E: Proof that equations (6)–(8) imply that (2) holds with

βcat = τ − ρ⊤(F −C)ξ and βcon = (F −C)ξ

Let q = dim(Xcon), and let ξ∗j = (0⊤
q(j−1), ξ

⊤, 0⊤
q(M−j+1))

⊤ be a vector of length (M + 1)q,

with 0a meaning a vector of length a and composed of zeros. From equations (8)–(9) it can

be shown that

log P (Xcon
1 , . . . ,Xcon

M+1 |X
cat
1 , . . . ,Xcat

M+1, Dj = 1, D1 = . . . = Dj−1 = Dj+1 = . . . = DM+1 = 0)

− log P (Xcon
1 , . . . ,Xcon

M+1 |X
cat
1 , . . . ,Xcat

M+1, D1 = 1, D2 = . . . = DM+1 = 0)

=















Xcon
1 − η − ρXcat

1 −ψX̄cat

...

Xcon
M+1 − η − ρXcat

M+1 −ψX̄
cat















⊤





























Λ + Ω Ω . . . Ω Ω

Ω Λ + Ω Ω Ω

...
. . .

...

Ω Ω Λ + Ω Ω

Ω Ω . . . Ω Λ + Ω





























−1

×(ξ∗j − ξ
∗
1) (16)

Now, using the following lemma, it can be shown that















Xcon
1 − η − ρXcat

1 −ψX̄cat

...

Xcon
M+1 − η − ρXcat

M+1 −ψX̄
cat















⊤





























Λ + Ω Ω . . . Ω Ω

Ω Λ + Ω Ω Ω

...
. . .

...

Ω Ω Λ + Ω Ω

Ω Ω . . . Ω Λ + Ω





























−1

ξ∗j

= (Xcon
j − η − ρXcat

j −ψX̄cat)⊤(C − F )ξ

+

M+1
∑

k=1

(Xcon
k − η − ρXcat

k −ψX̄cat)⊤Fξ (17)
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From equations (6), (8), (16) and (17), it can be shown that

G(xcat
1 ,xcon

1 , . . . ,xcat
M+1,x

con
M+1) =

exp











τ⊤xcat
1 + xcon⊤

1 (F −C)ξ − xcat⊤
1 ρ⊤(F −C)ξ

−x̄cat⊤
1 ψ⊤(F −C)ξ











∑M+1
j=1 exp











τ⊤xcat
j + xcon⊤

j (F −C)ξ − xcat⊤
j ρ⊤(F −C)ξ

−x̄cat⊤ψ⊤(F −C)ξ











=
exp{τ⊤xcat

1 + ξ⊤(F −C)xcon
1 − ξ⊤(F −C)ρxcat

1 }
∑M+1

j=1 exp{τ⊤xcat
j + ξ⊤(F −C)xcon

j − ξ⊤(F −C)ρxcat
j }

=
exp[{τ − ρ⊤(F −C)ξ}⊤xcat

1 + ξ⊤(F −C)xcon
1 ]

∑M+1
j=1 exp[{τ − ρ⊤(F −C)ξ}⊤xcat

j + ξ⊤(F −C)xcon
j ]

Lemma

If Λ and Ω are invertible, symmetric n × n matrices and M > 1, then the inverse of the

(M + 1)n × (M + 1)n matrix




























Λ + Ω Ω . . . Ω Ω

Ω Λ + Ω Ω Ω

...
. . .

...

Ω Ω Λ + Ω Ω

Ω Ω . . . Ω Λ + Ω





























is given by




























Λ + Ω Ω . . . Ω Ω

Ω Λ + Ω Ω Ω

...
. . .

...

Ω Ω Λ + Ω Ω

Ω Ω . . . Ω Λ + Ω





























−1

=





























C F . . . F F

F C F F

...
. . .

...

F F C F

F F . . . F C





























where

C−1 = Λ + Ω − Ω(Λ + MΩ)−1MΩ

F = −(Λ + MΩ)−1ΩC
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This result is easily verified. Note that C and F are symmetric.

Web Appendix F: Proof that linear regression and multinomial logistic

regression conditional models are compatible with the general location model

of equations (6)–(9)

First, consider a continuous covariate. It follows from expressions (8)–(9) that

Xcon
j |











Xcat
1 , . . . ,Xcat

M+1,X
con
1 , . . . ,Xcon

j−1,X
con
j+1, . . . ,X

con
M+1,

D1 = 1, D2 = . . . = DM+1 = 0











∼ N(µj ,Λ
′) (18)

with

µj = η + ξDj + ρXcat
j +ψX̄cat + [Ω, . . . ,Ω]

×





























C ′ F ′ . . . F ′ F ′

F ′ C ′ F ′ F ′

...
. . .

...

F ′ F ′ C ′ F ′

F ′ F ′ . . . F ′ C ′







































































Xcon
1 − η − ξD1 − ρX

cat
1 −ψX̄cat

...

Xcon
j−1 − η − ξDj−1 − ρX

cat
j−1 −ψX̄

cat

...

Xcon
j+1 − η − ξDj+1 − ρX

cat
j+1 −ψX̄

cat

...

Xcon
M+1 − η − ξDM+1 − ρX

cat
M+1 −ψX̄

cat
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where the M × M matrices C ′ and F ′ are the same as the (M + 1) × (M + 1) matrices C

and F but with M replaced by (M − 1) and the final row and final column missing. Hence,

µj = η + ξDj + ρXcat
j +ψX̄cat

+Ω{C ′ + (M − 1)F ′}
∑

k 6=j

(Xcon
k − η − ξDk − ρX

cat
k −ψX̄cat)

= [I − Ω{C ′ + (M − 1)F ′}M ]η + ξDj

+

[

ρ+
1

M + 1
ψ − Ω{C ′ + (M − 1)F ′}

M

M + 1
ψ

]

Xcat
j

+Ω{C ′ + (M − 1)F ′}
∑

k 6=j

Xcon
k −Ω{C ′ + (M − 1)F ′}ξ

∑

k 6=j

Dk

+

[

1

M + 1
ψ − Ω{C ′ + (M − 1)F ′}ρ− Ω{C ′ + (M − 1)F ′}

M

M + 1
ψ

]

∑

k 6=j

Xcat
k

= [I − Ω{C ′ + (M − 1)F ′}M ]η + [I(j = 1) − Ω{C ′ + (M − 1)F ′}I(j 6= 1)]ξ

+

[

ρ+
1

M + 1
ψ − Ω{C ′ + (M − 1)F ′}

M

M + 1
ψ

]

Xcat
j

+Ω{C ′ + (M − 1)F ′}
∑

k 6=j

Xcon
k

+

[

1

M + 1
ψ − Ω{C ′ + (M − 1)F ′}ρ− Ω{C ′ + (M − 1)F ′}

M

M + 1
ψ

]

×
∑

k 6=j

Xcat
k (19)

Line (19) follows because D1, . . . , DM+1 sum to one. Also,

Λ′ = Λ + Ω − [Ω, . . . ,Ω]





























C ′ F ′ . . . F ′ F ′

F ′ C ′ F ′ F ′

...
. . .

...

F ′ F ′ C ′ F ′

F ′ F ′ . . . F ′ C ′











































Ω

...

Ω















= Λ + Ω − MΩ{C ′ + (M − 1)F ′}Ω

Note that the right-hand side of equation (19) is a linear combination of Xcat
j ,

∑

k 6=jX
cat
k ,

∑

k 6=jX
con
k , and that Λ′ does not depend on any of the variables.

Now partition Xcon
j as Xcon

j = (Xcon⊤
jA ,Xcon⊤

jB )⊤, where Xcon
jA denotes a single element of
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Xcon
j . It follows from expression (18) that the distribution of Xcon

jA given the other variables

is

Xcon
jA |











Xcon
jB ,Xcat

1 , . . . ,Xcat
M+1,X

con
1 , . . . ,Xcon

j−1,X
con
j+1, . . . ,X

con
M+1,

D1 = 1, D2 = . . . = DM+1 = 0











∼ N(µjA, Λ′′)

where µjA is a linear combination of Xcat
j ,

∑

k 6=j X
cat
k ,

∑

k 6=jX
con
k and Xcon

jB , and where Λ′′,

like Λ′, is not a function of the variables.

Since the parameters in equation (8) are unconstrained, it can be seen from expression (18)

that the parameters relating the mean ofXcon
j toXcat

j ,
∑

k 6=j X
cat
k and

∑

k 6=jX
con
k are uncon-

strained. Thus, the parameters relating the mean of µjA toXcat
j ,

∑

k 6=j X
cat
k ,

∑

k 6=jX
con
k and

Xcon
jB are also unconstrained. Therefore a linear regression of a partially observed element of

Xcon
j onXcat

j ,
∑

k 6=jX
cat
k ,

∑

k 6=j X
con
k and the remaining elements ofXcon

j (with main effects

only and no interactions) constitutes a conditional model that is compatible (in the sense of

Definition 1 of Liu et al., 2014) with the general location model of expressions (6)–(8).

Second, consider a categorical covariate. Using equation (9.28) of Schafer (1997), it follows

from expressions (6), (7) and (8) that

P (Xcat
1 = xcat

1 , . . . ,Xcat
M+1 = xcat

M+1 |X
con
1 , . . . ,Xcon

M+1, D1 = 1, D2 = . . . = DM+1 = 0)

=
exp{b(xcat

1 , . . . ,xcat
M+1; ν) + τ⊤xcat

1 + c(xcat
1 , . . . ,xcat

M+1)}
∑

x
cat′

1
,...,xcat′

M+1

exp{b(xcat′
1 , . . . ,xcat′

M+1; ν) + τ⊤xcat′
1 + c(xcat′

1 , . . . ,xcat′
M+1)}

(20)
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where

c(xcat
1 , . . . ,xcat

M+1)

=















η + ξD1 + ρxcat
1 +ψx̄cat

...

η + ξDM+1 + ρxcat
M+1 +ψx̄cat















⊤





























C F . . . F F

F C F F

...
. . .

...

F F C F

F F . . . F C











































Xcon
1

...

Xcon
M+1















−
1

2















η + ξD1 + ρxcat
1 +ψx̄cat

...

η + ξDM+1 + ρxcat
M+1 +ψx̄cat















⊤





























C F . . . F F

F C F F

...
. . .

...

F F C F

F F . . . F C





























×















η + ξD1 + ρxcat
1 +ψx̄cat

...

η + ξDM+1 + ρxcat
M+1 +ψx̄cat















=

M+1
∑

j=1

(η + ξDj + ρxcat
j +ψx̄cat)⊤

{

C

(

Xcon
j −

1

2
(η + ξDj + ρxcat

j +ψx̄cat)

)

+F
∑

k 6=j

(

Xcon
k −

1

2
(η + ξDk + ρxcat

k + ψx̄cat)

)

}

(21)

Now partition Xcat
j as Xcat

j = (Xcat⊤
jA ,Xcat⊤

jB )⊤, where Xcat
jA denotes the subvector of Xcat

j

that consists of the dummy indicators for a single categorical covariate, and partition xcat
j

analogously. To obtain the distribution ofXcat
jA givenXcat

jB ,Xcat
1 , . . . ,Xcat

j−1,X
cat
j+1, . . . ,X

cat
M+1,

Xcon
1 , . . . , Xcon

M+1, D1 = 1 and D2 = . . . = DM+1 = 0, we can take equation (20) and ignore



14 Biometrics, 000 0000

terms not involving xcat
jA . Using equation (21) it can be shown that

b(xcat
1 , . . . ,xcat

M+1; ν) + τ⊤xcat
1 + c(xcat

1 , . . . ,xcat
M+1)

= u⊤
1jx

cat
jA + xcat⊤

jB U2x
cat
jA +Xcon⊤

j U3x
cat
jA +

∑

k 6=j

Xcat⊤
k U4x

cat
jA +

∑

k 6=j

Xcon⊤
k U5x

cat
jA

+ terms not involving xcat
jA (22)

where u1j is a vector function of ν and the parameters in equation (21), and U2, . . . ,U5

are matrix functions of the same set of parameters. From equations (20) and (22) it can be

seen that the distribution of Xcat
jA given Xcat

jB , Xcat
1 , . . . ,Xcat

j−1,X
cat
j+1, . . . ,X

cat
M+1, X

con
1 , . . . ,

Xcon
M+1, D1 = 1 and D2 = . . . = DM+1 = 0 has the form of a multinomial logistic regression

with main effects for Xcon
j ,

∑

k 6=jX
con
k ,

∑

k 6=jX
cat
k and Xcat

jB .

The inclusion of b(xcat
1 , . . . ,xcat

M+1; ν) with unconstrained ν ensures that u1j , U2 and U4 are

unconstrained. Therefore, it only remains to check that U3 and U5 are unconstrained. It can

be shown that

U3 = C{ρA +ψA(M + 1)−1} + FψAM(M + 1)−2

U5 = CψA(M + 1)−1 + F {ρA +ψAM(M + 1)−1}

where ρA and ψA are given by the partitions ρ = [ρA ρB] and ψ = [ψA ψB]. Since ρA

and ψA are unconstrained, so are U3 and U5. So, none of the parameters in the multinomial

logistic regression is constrained. Hence, this multinomial logistic regression is compatible (in

the sense of Definition 1 of Liu et al., 2014) with the general location model of expressions (6)–

(8).

Web Appendix G: Additional simulation studies with misspecified models

We simulated datasets using data-generating mechanisms that made the imputation models

of all our MI methods misspecified. In the first, data were simulated with an interaction
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between Scat and Scon; in the second, XconA and XconB were log-normally distributed. We

now detail these two data-generating mechanisms, before giving the results.

Sensitivity analysis 1: interaction between Scat and Scon

The data-generating process used in the main simulations (Section 6) assumed that the con-

ditional distribution of (XconA, XconB) given Xcat, Scat, Scon and D was bivariate normal with

univariate marginal distributions N(0.5Xcat +0.5Scat +0.5Scon +0.5D, 1) and covariance 0.5.

We modified this data-generating process by changing the univariate marginal distributions

to N(0.5Xcat + 0.5Scat + 0.5Scon + 0.5ScatScon + 0.5D, 1), thus including an interaction term

that was not present in the imputation models. The rest of the data-generating process was

the same as that used in the main simulations, including the application of the MCAR,

MAR-A and MAR-B missingness mechanisms with 10% or 25% missingness. One thousand

simulated datasets, each with N = 500 cases and 500 matched controls (M = 1), were

generated.

Sensitivity analysis 2: log normally distributed XconA and XconB

We simulated data for a matched case-control study as follows. First, data on a population

of 15000 independent individuals were generated. For each individual in this population,

variables Scat, Scon, Xcat, XconA, XconB and D were generated. Binary variable Scat and

continuous variable Scon were generated independently using P (Scat = 1) = 0.5 and Scon ∼

Normal(0, 1). Binary variable Xcat was generated with logit P (Xcat = 1 | Scat, Scon) =

−2.5+0.5Scat+0.5Scon. Continuous variables XconA and XconB were generated using XconA =

0.5Xcat + 0.5Scat + 0.5Scon + exp(eA) and XconB = 0.5Xcat + 0.5Scat + 0.5Scon + exp(eB),

where (eA, eB) was bivariate normally distributed with zero mean and unit variance, indepen-

dently of Scat, Scon and Xcat. The covariance of (eA, eB) was chosen so that the covariance

between XconA and XconB conditional on Xcat, Scat and Scon was approximately 0.5, as
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it was in the main simulations. Binary variable D was generated using logit P (D = 1 |

Scat, Scon, Xcat, XconA, XconB) = −4.68 + 0.25Scat + 0.25Scon + 5
12

Xcat + 1
3
XconA + 1

3
XconB.

The intercept of −4.68 was chosen to give P (D = 1) = 0.05, i.e. a 5% population prevalence

of disease.

Having generated data on this population of 15000 individuals, 500 individuals with D = 1

were randomly drawn from it. These are the 500 cases. One individual with D = 0 was

then matched with each case on Scat and Scon. These are the 500 matching controls. Finally,

missingness was randomly imposed on this matched case-control sample using the same

MCAR, MAR-A and MAR-B mechanisms with 10% or 25% missingness that were used in

the main simulation study.

This entire process (i.e. simulation of population and sampling of cases and controls) was

repeated 1000 times to generate 1000 matched case-control study datasets.

Results

Web Tables 11–13 and 14–16 show the results for the first and second sensitivity analyses,

respectively. It can be seen that the MI methods are reasonably robust to the imputation

model misspecifications.

Web Appendix H: Application of MI methods in Stata and R

Here we provide the Stata or R code that we used to perform MI in the simulation study

when there were M = 4 controls per case, for each of the methods outlined in the paper,

along with a specimen simulated dataset. Text files of the Stata and R code given below

and the files containing the simulated dataset are available as a web supplement at the

Biometrics website. The dataset is provided as a Stata file (simulated data.dta) and as a

comma-separated-values file (simulated data.csv).
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In the dataset the three covariates Xcat, XconA and XconB are denoted xcat, xconA and

xconB, respectively. The categorical and continuous matching variables Scat and Scon are

denoted respectively as scat and scon, and the case or control status is denoted d. There

are missing values in XconA and XconB, which were generated completely at random to give

approximately 25% of the values missing in each variable.

We specify a seed at the start of each block of code, so that the results are reproducible. The

results of applying the code to the simulated dataset provided are shown in Web Table 17.

The results from the complete case analysis are also shown; this analysis can be performed

in, for example, Stata using clogit d xcat xconA xconB , group(set).

FCS MI using matching variables

This analysis was performed in Stata using the ice command, as shown below.

use simulated_data.dta, clear

set seed 780423

ice d xcat xconA xconB i.scat scon, /*

*/ eq(xcat: d xconA xconB _Iscat_1 scon, xconA: d xcat xconB _Iscat_1 scon)/*

*/ m(50) clear

* fit the analysis model to each imputed dataset and combine using Rubin’s Rules

mim: clogit d xcat xconA xconB , group(set)

Normal MI using matching variables

This analysis was performed in Stata using mi impute, as shown below. Adaptive rounding

is used post-imputation to assign values 0 or 1 for missing values in xcat.

use simulated_data.dta, clear

set seed 780423
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mi set mlong

mi register imputed xcat xconA

mi register regular d xconB scat scon

mi impute mvn xcat xconA = d xconB i.scat scon, add(50)

* apply adaptive rounding for xcat

mi passive: egen thres_mean=mean(xcat)

mi passive: gen thres=thres_mean-invnormal(thres_mean)*sqrt(thres_mean*(1-thres_mean))

replace xcat=0 if xcat<=thres & _mi_m!=0 & xcat!=0 & xcat!=1

replace xcat=1 if xcat>thres & _mi_m!=0 & xcat!=0 & xcat!=1

* fit the analysis model to each imputed dataset and combine using Rubin’s Rules

mim: clogit d xcat xconA xconB , group(set)

Adaptive rounding does not apply for non-binary categorical variables, which should be

represented by a series of dummy variables. Non-binary categorical variables can be handled

using the approach outlined by Carpenter and Kenward (2013, Section 5.2). In this approach,

if the imputed values of all the dummy variables are less than 0.5, then the most common

category is assigned; otherwise, the category with the highest imputed value is assigned. The

categories of the categorical variable are first ordered so that the most frequently occurring

category is the reference category. This was the approach used in the EPIC example.

Latent normal MI using matching variables

This analysis was performed in R using the jomo1mix function in the ‘jomo’ package.

The ‘jomo’, ‘survival’ and ‘mice’ libraries are required. The jomo1mix function requires a

dataframe containing continuous variables with missing values (data.cont), a dataframe

containing categorical variables with missing values (data.cat), and a dataframe containing

the outcome, the fully observed variables (including the matching variables) and a vector

of ones (data.x.matrix). The number of categories in the categorical variable with missing
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values is indicated by Y numcat=2 (this becomes a vector if there is more than one categorical

variable with missing values). Categorical variables with missing values must take ordered

integer values starting at 1. A loop is used to fit the conditional logistic regression in each

imputed dataset, and the stored results are combined using the pool.scalar function, which

is in the ‘mice’ package. In the output from pool.scalar the pooled estimate is given by

qbar and its variance is given by t.

data<-read.table("simulated_data.csv",sep=",",header=T)

set.seed(780423)

n.imp <- 50 # number of imputations

data.cont<-data.frame(data$xconA)

data.cat<-data.frame(data$xcat)+1

data.x.matrix<-data.frame(rep(1,length(data$ccid)),data$scat,data$scon,data$xconB,data$d)

myjomo<-jomo1mix(Y_con=data.cont, Y_cat=data.cat, Y_numcat=2, X=data.x.matrix,nimp=n.imp)

#fit the analysis model to each imputed dataset

coef<-matrix(nrow=n.imp,ncol=3)

var<-matrix(nrow=n.imp,ncol=3)

for(k in 1:n.imp){

imp.data<-data.frame(myjomo[myjomo$Imputation==k,],data$set)

model.imp<-clogit(data.d~data.xcat+data.xconA+data.xconB+strata(data.set),data=imp.data)

coef[k,]<-model.imp$coef

var[k,]<-diag(model.imp$var)

}

# combine using Rubin’s Rules

pool.scalar(coef[,1],var[,1])

pool.scalar(coef[,2],var[,2])

pool.scalar(coef[,3],var[,3])
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FCS MI using matched set

This analysis was performed in Stata using the ice command, as shown below. First, the

dataset was transformed to ‘wide’ format using the reshape command, i.e. so that there

is one row per matched set. Then, within each matched set,
∑

k 6=j Xcat

k ,
∑

k 6=j XconA

k and

∑

k 6=j XconB

k were calculated for j = 1, . . . , 5. These are denoted as ‘xcatsum1’, . . ., ‘xcatsum5’,

‘xconAsum1’, . . ., ‘xconAsum5’, and ‘xconBsum1’, . . ., ‘xconBsum5’. Note the following

features of the ice command used for this analysis. First, the option ‘eq(xcat1: xconA1

xconB1 xcatsum1 xconAsum1 xconBsum1’ tells ice that the conditional model for xcat1 is

a regression of xcat1 on xconA1, xconB1, xcatsum1, xconAsum1 and xconBsum1. Without

this option, xcat1 would be regressed (by default) on all the other covariates. Second, the

option ‘passive(xcatsum1:(xcat2+xcat3+xcat4+xcat5)’ tells ice what xcatsum1 means: it is

a variable that is equal to the sum of xcat2, xcat3, xcat4 and xcat5.

Finally, the imputed datasets were transformed back to ‘long’ format, i.e. so that there is

one row per individual (we used the ‘reshape’ command in Stata), before analysing them

using conditional logistic regression and combining the results using Rubin’s Rules.

use simulated_data.dta, clear

set seed 780423

reshape wide

forval i=1/5{

gen xcatsum‘i’=.

gen xconAsum‘i’=.

}

gen xconBsum1=xconB2+xconB3+xconB4+xconB5

gen xconBsum2=xconB1+xconB3+xconB4+xconB5

gen xconBsum3=xconB1+xconB2+xconB4+xconB5
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gen xconBsum4=xconB1+xconB2+xconB3+xconB5

gen xconBsum5=xconB1+xconB2+xconB3+xconB4

ice d1 xcat1 xconA1 xconB1 d2 xcat2 xconA2 xconB2 d3 xcat3 xconA3 xconB3 d4 xcat4 xconA4 xconB4 /*

*/ d5 xcat5 xconA5 xconB5 xcatsum1 xcatsum2 xcatsum3 xcatsum4 xcatsum5 xconAsum1 xconAsum2 /*

*/ xconAsum3 xconAsum4 xconAsum5 xconBsum1 xconBsum2 xconBsum3 xconBsum4 xconBsum5, /*

*/ eq(xcat1: xconA1 xconB1 xcatsum1 xconAsum1 xconBsum1,/*

*/ xcat2: xconA2 xconB2 xcatsum2 xconAsum2 xconBsum2,/*

*/ xcat3: xconA3 xconB3 xcatsum3 xconAsum3 xconBsum3,/*

*/ xcat4: xconA4 xconB4 xcatsum4 xconAsum4 xconBsum4,/*

*/ xcat5: xconA5 xconB5 xcatsum5 xconAsum5 xconBsum5,/*

*/ xconA1: xcat1 xconB1 xconAsum1 xcatsum1 xconBsum1,/*

*/ xconA2: xcat2 xconB2 xconAsum2 xcatsum2 xconBsum2,/*

*/ xconA3: xcat3 xconB3 xconAsum3 xcatsum3 xconBsum3,/*

*/ xconA4: xcat4 xconB4 xconAsum4 xcatsum4 xconBsum4,/*

*/ xconA5: xcat5 xconB5 xconAsum5 xcatsum5 xconBsum5) /*

*/ passive(xcatsum1:(xcat2+xcat3+xcat4+xcat5)\/*

*/ xcatsum2:(xcat1+xcat3+xcat4+xcat5)\/*

*/ xcatsum3:(xcat2+xcat1+xcat4+xcat5)\/*

*/ xcatsum4:(xcat2+xcat3+xcat1+xcat5)\/*

*/ xcatsum5:(xcat2+xcat3+xcat4+xcat1)\/*

*/ xconAsum1:(xconA2+xconA3+xconA4+xconA5)\/*

*/ xconAsum2:(xconA1+xconA3+xconA4+xconA5)\/*

*/ xconAsum3:(xconA2+xconA1+xconA4+xconA5)\/*

*/ xconAsum4:(xconA2+xconA3+xconA1+xconA5)\/*

*/ xconAsum5:(xconA2+xconA3+xconA4+xconA1)/*

*/ ) m(50) saving(name_of_output_file.dta, replace) clear

use name_of_output_file.dta, clear

mi import ice, automatic

mi reshape long d xcat xconA xconB, i(set) j(setpos)

* fit the analysis model to each imputed dataset and combine using Rubin’s Rules

mim: clogit d xcat xconA xconB , group(set)
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Normal MI using matched set

This analysis was performed in R using the pan function in the ‘pan’ package. The ‘pan’,

‘survival’ and ‘mice’ libraries are required. The pan function requires a data frame containing

the model covariates (y), a data frame containing the outcome and a vector of 1s (x), and a

data frame containing the matched set variable (set). The model covariates without missing

values could alternatively be included in x. It is necessary to set up an array that stores

the imputed datasets (y.imp) and also to specify the random seeds used to perform the

imputations (seeds.n.imp). Adaptive rounding is used post-imputation to assign values 0

or 1 for missing values in xcat (note that a different approach is required for non-binary

categorical variables, as described in the section on Normal MI using matching variables). A

loop is used to fit the conditional logistic regression to each imputed dataset and the stored

results are combined using the pool.scalar function, which is in the ‘mice’ package. In the

output from pool.scalar the pooled estimate is given by qbar and its variance is given by

t.

data<-read.table("simulated_data.csv",sep=",",header=T)

set.seed(780423)

N <- 500 # number of matching sets

setsize <- 5 # the number of individuals in a matching set

n.imp <- 50 # number of imputations

nvar <- 3 # number of covariates (xcat, xconA and xconB in this case)

set.seed(10)

seeds <- floor( runif(1000) * 1e6 )

y <- as.matrix( data[, c("xcat", "xconA", "xconB")] )

set <- data[, "set"]

x <- cbind(1, data[, "d"])

y.imp <- array(0, c(N*setsize, nvar, n.imp)) # Set up array to store imputations
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# Get random seeds for all imputations

seeds.n.imp <- floor( runif(n.imp) * 1e6 )

# The first imputation is performed separately, then subsequent imputations

# restart Gibbs sampler from the final state of a previous run

imp.pan <- pan(y=y, subj=set, pred=x, xcol=1:2, zcol=1,

prior=list(a=nvar, Binv=diag(nvar, nvar), c=nvar, Dinv=diag(nvar, nvar)),

seeds.n.imp[1], iter=1000)

# first imputed dataset

y.imp[,,1] <- imp.pan$y

# apply adaptive rounding

thres.mean<-mean(y.imp[,1,1])

thres<-thres.mean-qnorm(thres.mean)*sqrt(thres.mean*(1-thres.mean))

assign_zero<-(y.imp[,1,1]<=thres & y.imp[,1,1]!=0 & y.imp[,1,1]!=1)|y.imp[,1,1]==0

y.imp[,1,1]<-ifelse(assign_zero==1,0,1)

# imputations 2:n.imp

for (j in 2:n.imp)

{

imp.pan <- pan(y=y, subj=set, pred=x, xcol=1:2, zcol=1,

prior=list(a=nvar, Binv=diag(nvar, nvar), c=nvar, Dinv=diag(nvar, nvar)),

seed=seeds.n.imp[j], iter=1000, start=imp.pan$last)

y.imp[,,j] <- imp.pan$y

# apply adaptive rounding

thres.mean<-mean(y.imp[,1,j])

thres<-thres.mean-qnorm(thres.mean)*sqrt(thres.mean*(1-thres.mean))

assign_zero<-(y.imp[,1,j]<=thres & y.imp[,1,j]!=0 & y.imp[,1,j]!=1)|y.imp[,1,j]==0

y.imp[,1,j]<-ifelse(assign_zero==1,0,1)

}

# fit the analysis model to each imputed dataset

coef<-matrix(nrow=n.imp,ncol=3)

var<-matrix(nrow=n.imp,ncol=3)
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for (j in 1:n.imp){

model.imp<-clogit(data$d ~ y.imp[,,j] + strata(data$set))

coef[j,]<-model.imp$coef

var[j,]<-diag(model.imp$var)

}

# combine using Rubin’s Rules

pool.scalar(coef[,1],var[,1])

pool.scalar(coef[,2],var[,2])

pool.scalar(coef[,3],var[,3])

Latent normal MI using matched set

This analysis was performed in R using the jomo1ranmix function in the ‘jomo’ package. The

‘jomo’, ‘survival’ and ‘mice’ libraries are required. Like jomo1mix, the jomo1ranmix function

requires a dataframe containing continuous variables with missing values (data.cont), a

dataframe containing categorical variables with missing values (data.cat), and a dataframe

containing the outcome, the fully observed variables (including the matching variables) and

a vector of ones (data.x.matrix). The number of categories in the categorical variable with

missing values is indicated by Y numcat=2. The clustering variable, which here is matched set,

is indicated in jomo1ranmix by clus=set. The clustering variable must take ordered integer

values starting at 0. As with jomo1mix, categorical variables with missing values must take

ordered integer values starting at 1. A loop is used to fit the conditional logistic regression to

each imputed dataset and the stored results are combined using the pool.scalar function,

which is in the ‘mice’ package. In the output from pool.scalar the pooled estimate is given

by qbar and its variance is given by t.

data<-read.table("simulated_data.csv",sep=",",header=T)

set.seed(780423)

set<-data.frame(data$set-1)
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n.imp <- 50 # number of imputations

data.cont<-data.frame(data$xconA)

data.cat<-data.frame(data$xcat)+1

data.x.matrix<-data.frame(rep(1,length(data$ccid)),data$xconB,data$d)

myjomo<-jomo1ranmix(Y_con=data.cont, Y_cat=data.cat, Y_numcat=2, X=data.x.matrix,

clus=set,nimp=n.imp)

coef<-matrix(nrow=n.imp,ncol=3)

var<-matrix(nrow=n.imp,ncol=3)

for(k in 1:n.imp){

imp.data<-data.frame(myjomo[myjomo$Imputation==k,],data$set)

model.imp<-clogit(data.d~data.xcat+data.xconA+data.xconB+strata(data.set),data=imp.data)

coef[k,]<-model.imp$coef

var[k,]<-diag(model.imp$var)

}

# combine using Rubin’s Rules

pool.scalar(coef[,1],var[,1])

pool.scalar(coef[,2],var[,2])

pool.scalar(coef[,3],var[,3])
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Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
10% missing
Complete cases 0.431 0.264 0.256 70.0 96 0.337 0.100 0.102 10.1 96 0.340 0.103 0.102 10.6 96
Match var: FCS 0.429 0.224 0.219 50.2 94 0.335 0.083 0.087 6.92 96 0.338 0.085 0.084 7.17 94

Normal 0.410 0.214 0.218 45.7 96 0.336 0.083 0.087 6.85 96 0.339 0.084 0.083 7.16 95
Latent norm 0.435 0.223 0.218 50.0 95 0.330 0.081 0.087 6.63 96 0.340 0.084 0.084 7.12 94

Match set: FCS 0.429 0.225 0.219 51.0 95 0.334 0.084 0.087 7.05 96 0.338 0.085 0.084 7.23 94
Normal 0.420 0.221 0.223 49.0 96 0.340 0.086 0.089 7.44 96 0.335 0.086 0.084 7.34 95

Latent norm 0.437 0.226 0.220 51.6 95 0.320 0.082 0.087 6.83 96 0.340 0.085 0.084 7.35 95
25% missing
Complete cases 0.449 0.379 0.377 145 96 0.341 0.144 0.149 20.8 97 0.342 0.150 0.149 22.4 96
Match var: FCS 0.431 0.240 0.241 57.6 96 0.336 0.090 0.096 8.06 96 0.337 0.087 0.086 7.51 95

Normal 0.386 0.215 0.235 47.1 97 0.338 0.090 0.095 8.04 97 0.341 0.086 0.086 7.49 95
Latent norm 0.446 0.238 0.241 57.7 96 0.322 0.085 0.095 7.31 97 0.343 0.085 0.086 7.39 95

Match set: FCS 0.430 0.247 0.243 61.0 95 0.335 0.094 0.097 8.81 96 0.339 0.088 0.086 7.69 95
Normal 0.407 0.238 0.251 56.8 96 0.350 0.098 0.101 9.93 96 0.329 0.090 0.088 8.08 94

Latent norm 0.455 0.249 0.247 63.7 95 0.300 0.085 0.095 8.27 95 0.344 0.088 0.088 7.89 95

Table 1: Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MCAR missingness mechanism.
‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error, ‘MSE’ is mean
squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and 0.333 for Xcat,
XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.418 0.150 0.144 22.4 94 0.334 0.058 0.061 3.37 97 0.337 0.062 0.061 3.89 94
10% missing
Complete cases 0.419 0.179 0.169 32.1 94 0.333 0.069 0.071 4.72 96 0.338 0.073 0.071 5.38 94
Match var: FCS 0.418 0.158 0.153 25.1 95 0.333 0.062 0.065 3.82 97 0.337 0.064 0.062 4.07 94

Normal 0.407 0.154 0.152 23.8 96 0.335 0.062 0.064 3.82 96 0.339 0.064 0.062 4.06 94
Latent norm 0.424 0.158 0.153 25.1 94 0.329 0.061 0.065 3.69 97 0.339 0.063 0.062 4.05 94

Match set: FCS 0.415 0.159 0.153 25.4 94 0.332 0.062 0.065 3.80 96 0.338 0.064 0.062 4.08 94
Normal 0.411 0.157 0.154 24.7 95 0.336 0.062 0.065 3.89 97 0.337 0.064 0.062 4.08 94

Latent norm 0.424 0.159 0.153 25.2 95 0.320 0.060 0.065 3.83 97 0.340 0.064 0.062 4.15 94
25% missing
Complete cases 0.411 0.242 0.225 58.5 93 0.337 0.089 0.093 7.90 97 0.338 0.095 0.093 8.99 95
Match var: FCS 0.417 0.176 0.168 30.8 94 0.335 0.069 0.071 4.75 97 0.337 0.066 0.064 4.36 94

Normal 0.389 0.164 0.165 27.7 95 0.338 0.069 0.071 4.73 96 0.340 0.066 0.064 4.37 94
Latent norm 0.432 0.174 0.168 30.4 94 0.323 0.066 0.070 4.42 97 0.343 0.065 0.064 4.37 94

Match set: FCS 0.409 0.176 0.168 31.0 94 0.333 0.068 0.071 4.68 96 0.338 0.066 0.064 4.41 94
Normal 0.398 0.170 0.170 29.3 95 0.343 0.070 0.072 5.04 95 0.335 0.067 0.064 4.47 94

Latent norm 0.431 0.177 0.170 31.4 94 0.302 0.065 0.070 5.23 95 0.344 0.067 0.065 4.59 94

Table 2: Results from 1000 simulated datasets of N = 500 cases and M = 4 controls per case with MCAR missingness mechanism.
‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error, ‘MSE’ is mean
squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and 0.333 for Xcat,
XconA and XconB, respectively.



βcat βconA

ratio ratio rel. ratio ratio rel.
bias SE estSE eff. bias SE estSE eff.

M=1
Complete data 0.010 1.000 1.000 100.0 0.003 1.000 1.000 100.0

Match var: FCS 0.014 1.136 1.188 77.4 0.002 1.142 1.161 76.7
Normal −0.046 1.018 1.156 92.2 0.006 1.137 1.157 77.2

Latent norm 0.026 1.126 1.183 78.1 −0.010 1.081 1.150 84.4
Match set: FCS 0.013 1.181 1.207 71.7 −0.002 1.196 1.184 70.0

Normal −0.015 1.132 1.245 77.9 0.014 1.251 1.223 62.7
Latent norm 0.035 1.187 1.220 69.7 −0.035 1.082 1.157 73.0

M=4
Complete data 0.001 1.000 1.000 100.0 0.001 1.000 1.000 100.0

Match var: FCS −0.001 1.195 1.200 70.0 0.002 1.188 1.172 70.8
Normal −0.051 1.108 1.171 73.9 0.005 1.184 1.169 70.9

Latent norm 0.010 1.177 1.195 72.0 −0.010 1.129 1.163 76.6
Matchset: FCS −0.006 1.220 1.210 67.3 −0.002 1.190 1.187 70.5

Normal −0.036 1.149 1.206 72.0 0.007 1.215 1.196 67.0
Latent norm 0.008 1.200 1.211 69.3 −0.034 1.126 1.168 62.4

Table 3: Biases (‘bias’), ratios of empirical SEs (‘ratio SE’), ratios of mean estimated SEs (‘ratio empSE’), and relative efficiencies

(%, ‘rel. eff.́) of six MI methods when N = 500 and pmiss = 0.25. Ratios and relative efficiencies are calculated relative to the
corresponding complete-data estimators. Each reported ratio or relative efficiency is the average over three ratios or relative
efficiencies: one from each of the MCAR, MAR-A and MAR-B scenarios. Reported biases are the signed average absolute bias
over these three scenarios.



βcat βconA

ratio ratio rel. ratio ratio rel.
bias SE estSE eff. bias SE estSE eff.

M=1
Complete data 0.038 1.000 1.000 100.0 0.018 1.000 1.000 100.0

Match var: FCS 0.048 1.199 1.227 69.7 0.025 1.164 1.192 73.5
Normal −0.017 1.068 1.186 88.3 0.027 1.150 1.185 75.2

Latent norm 0.066 1.193 1.219 69.9 0.008 1.080 1.178 86.4
Match set: FCS 0.041 1.221 1.277 67.3 0.022 1.234 1.231 65.7

Normal 0.029 1.160 1.309 74.7 0.051 1.321 1.295 55.6
Latent norm 0.099 1.304 1.301 57.9 −0.013 1.085 1.203 85.3

M=4
Complete data −0.015 1.000 1.000 100.0 0.003 1.000 1.000 100.0

Match var: FCS −0.018 1.200 1.217 69.5 0.005 1.130 1.183 78.3
Normal −0.065 1.099 1.184 80.3 0.008 1.124 1.176 78.9

Latent norm −0.009 1.191 1.210 70.7 −0.008 1.073 1.172 86.6
Match set: FCS −0.037 1.157 1.213 74.3 −0.011 1.091 1.183 83.7

Normal −0.040 1.136 1.228 76.7 0.012 1.172 1.211 72.5
Latent norm −0.010 1.234 1.237 65.8 −0.026 1.079 1.185 83.6

Table 4: Biases (‘bias’), ratios of empirical SEs (‘ratio SE’), ratios of mean estimated SEs (‘ratio empSE’), and relative efficiencies

(%, ‘rel. eff.́) of six MI methods when N = 100 and pmiss = 0.25. Ratios and relative efficiencies are calculated relative to the
corresponding complete-data estimators. Each reported ratio or relative efficiency is the average over three ratios or relative
efficiencies: one from each of the MCAR, MAR-A and MAR-B scenarios. Reported biases are the signed average absolute bias
over these three scenarios.



Method log OR SE 95% CI p-value

Complete cases −0.196 0.126 (−0.444, 0.052) 0.121
MI using matching variables:
FCS −0.176 0.104 (−0.380, 0.027) 0.090
Normal −0.177 0.104 (−0.380, 0.027) 0.088
Latent normal −0.176 0.104 (−0.380, 0.027) 0.089

MI using matched set:
FCS −0.175 0.104 (−0.378, 0.028) 0.092
Normal −0.181 0.104 (−0.384, 0.023) 0.082
Latent normal −0.174 0.104 (−0.377, 0.030) 0.094

Table 5: Association between fibre intake and colerectal cancer estimated from EPIC-Norfolk.
Log odds ratio is for six-gram per day increase in fibre intake, conditional on smoking,
education, social class, physical activity, height, weight, age, alcohol intake, folate intake,
intake of energy from fat and non-fat, aspirin use and the matching variables. Missing data
are handled by restriction to complete cases or by MI.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
10% missing
Complete cases 0.432 0.275 0.263 76.1 95 0.338 0.097 0.101 9.47 96 0.328 0.102 0.101 10.5 95
Match var: FCS 0.430 0.222 0.221 49.6 95 0.336 0.082 0.087 6.72 96 0.337 0.084 0.084 7.12 94

Normal 0.407 0.212 0.219 45.1 96 0.337 0.082 0.087 6.75 96 0.339 0.084 0.083 7.11 94
Latent norm 0.434 0.221 0.221 49.3 96 0.331 0.080 0.087 6.47 96 0.339 0.084 0.084 7.10 95

Match set: FCS 0.430 0.226 0.221 51.1 95 0.334 0.083 0.088 6.88 96 0.338 0.085 0.084 7.19 94
Normal 0.422 0.222 0.226 49.4 96 0.340 0.085 0.089 7.24 96 0.335 0.085 0.084 7.28 94

Latent norm 0.439 0.225 0.223 50.9 96 0.320 0.080 0.087 6.58 96 0.341 0.085 0.084 7.25 95
25% missing
Complete cases 0.456 0.400 0.398 162 96 0.339 0.143 0.143 20.5 96 0.320 0.148 0.144 22.1 94
Match var: FCS 0.430 0.243 0.247 59.2 96 0.336 0.090 0.096 8.03 97 0.337 0.087 0.086 7.56 95

Normal 0.375 0.216 0.240 48.5 97 0.339 0.089 0.095 7.93 97 0.342 0.086 0.086 7.54 95
Latent norm 0.442 0.240 0.245 58.4 95 0.323 0.085 0.095 7.27 97 0.343 0.086 0.086 7.45 95

Match set: FCS 0.429 0.254 0.251 64.5 96 0.332 0.094 0.097 8.81 96 0.341 0.088 0.087 7.88 94
Normal 0.408 0.241 0.259 58.2 96 0.347 0.098 0.101 9.81 96 0.333 0.090 0.088 8.12 95

Latent norm 0.451 0.255 0.254 66.2 95 0.298 0.085 0.095 8.48 95 0.347 0.089 0.088 8.07 95

Web Table 1: Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MAR-A missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
10% missing
Complete cases 0.428 0.269 0.262 72.7 95 0.338 0.096 0.099 9.26 97 0.269 0.101 0.100 14.4 89
Match var: FCS 0.430 0.221 0.220 48.9 95 0.335 0.082 0.087 6.74 97 0.337 0.084 0.084 7.14 94

Normal 0.395 0.212 0.219 45.3 96 0.337 0.082 0.087 6.77 97 0.340 0.084 0.083 7.11 95
Latent norm 0.434 0.219 0.220 48.4 95 0.331 0.081 0.087 6.5 97 0.340 0.084 0.084 7.11 94

Match set: FCS 0.430 0.225 0.221 50.7 95 0.332 0.083 0.087 6.91 96 0.339 0.085 0.084 7.23 95
Normal 0.414 0.223 0.226 49.6 96 0.338 0.085 0.088 7.25 96 0.337 0.085 0.084 7.31 94

Latent norm 0.437 0.225 0.222 51 95 0.319 0.080 0.087 6.6 96 0.342 0.085 0.084 7.29 95
25% missing
Complete cases 0.439 0.395 0.390 156 96 0.339 0.136 0.138 18.5 96 0.197 0.143 0.138 39.1 82
Match var: FCS 0.431 0.242 0.246 58.8 95 0.336 0.089 0.095 7.95 96 0.337 0.087 0.086 7.6 95

Normal 0.351 0.218 0.240 52 96 0.340 0.089 0.095 7.91 97 0.343 0.087 0.086 7.6 95
Latent norm 0.440 0.239 0.245 57.9 95 0.323 0.085 0.094 7.27 97 0.344 0.086 0.086 7.54 95

Match set: FCS 0.431 0.253 0.252 64.2 95 0.330 0.093 0.097 8.73 96 0.342 0.089 0.087 7.93 95
Normal 0.391 0.243 0.259 59.6 96 0.344 0.098 0.100 9.7 96 0.336 0.090 0.088 8.16 94

Latent norm 0.449 0.253 0.253 65 95 0.296 0.084 0.095 8.52 95 0.348 0.089 0.087 8.08 95

Web Table 2: Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MAR-B missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.418 0.150 0.144 22.4 94 0.334 0.058 0.061 3.37 97 0.337 0.062 0.061 3.89 94
10% missing
Complete cases 0.415 0.182 0.175 33.1 94 0.333 0.068 0.071 4.66 96 0.329 0.074 0.071 5.48 94
Match var: FCS 0.417 0.160 0.155 25.6 94 0.334 0.062 0.065 3.79 96 0.337 0.064 0.062 4.07 94

Normal 0.398 0.155 0.155 24.4 95 0.336 0.061 0.065 3.78 97 0.339 0.064 0.062 4.09 94
Latent norm 0.422 0.159 0.155 25.3 94 0.330 0.061 0.065 3.68 97 0.339 0.063 0.062 4.07 94

Match set: FCS 0.415 0.161 0.156 26.0 94 0.332 0.061 0.065 3.75 97 0.338 0.064 0.062 4.09 94
Normal 0.404 0.157 0.156 24.9 95 0.336 0.062 0.065 3.86 97 0.339 0.064 0.062 4.09 94

Latent norm 0.421 0.161 0.156 25.9 94 0.319 0.060 0.065 3.83 96 0.341 0.064 0.062 4.15 94
25% missing
Complete cases 0.407 0.259 0.241 67.2 94 0.334 0.089 0.093 7.87 97 0.320 0.096 0.094 9.43 94
Match var: FCS 0.416 0.180 0.175 32.4 94 0.335 0.069 0.072 4.77 96 0.337 0.066 0.064 4.35 95

Normal 0.372 0.166 0.170 29.6 94 0.338 0.069 0.071 4.75 96 0.342 0.066 0.064 4.37 94
Latent norm 0.427 0.177 0.174 31.5 94 0.323 0.066 0.071 4.43 97 0.343 0.065 0.064 4.33 94

Match set: FCS 0.411 0.184 0.176 33.9 94 0.330 0.069 0.073 4.79 96 0.340 0.066 0.064 4.42 95
Normal 0.388 0.173 0.176 30.8 94 0.340 0.071 0.073 5.04 96 0.339 0.066 0.064 4.44 94

Latent norm 0.426 0.181 0.176 33.0 94 0.299 0.065 0.071 5.45 94 0.347 0.067 0.065 4.64 94

Web Table 3: Results from 1000 simulated datasets of N = 500 cases and M = 4 controls per case with MAR-A missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.418 0.150 0.144 22.4 94 0.334 0.058 0.061 3.37 97 0.337 0.062 0.061 3.89 94
10% missing
Complete cases 0.407 0.184 0.176 33.8 94 0.334 0.067 0.071 4.55 96 0.266 0.073 0.071 9.9 83
Match var: FCS 0.416 0.160 0.156 25.5 94 0.334 0.061 0.065 3.76 97 0.337 0.064 0.062 4.09 94

Normal 0.378 0.155 0.155 25.3 95 0.336 0.061 0.065 3.75 97 0.340 0.064 0.062 4.11 94
Latent norm 0.419 0.158 0.156 25.1 95 0.329 0.060 0.065 3.64 97 0.340 0.064 0.062 4.09 94

Match set: FCS 0.415 0.161 0.157 26 95 0.332 0.061 0.065 3.74 97 0.339 0.064 0.062 4.14 94
Normal 0.388 0.156 0.157 25.3 95 0.335 0.062 0.065 3.81 97 0.340 0.064 0.062 4.13 94

Latent norm 0.416 0.159 0.157 25.4 95 0.319 0.060 0.065 3.8 96 0.342 0.064 0.062 4.21 94
25% missing
Complete cases 0.397 0.262 0.243 69.1 94 0.334 0.087 0.092 7.65 97 0.190 0.096 0.092 29.8 64
Match var: FCS 0.415 0.182 0.177 33 95 0.335 0.069 0.072 4.77 97 0.337 0.066 0.064 4.36 94

Normal 0.335 0.168 0.172 34.7 93 0.340 0.069 0.072 4.78 96 0.344 0.066 0.064 4.42 94
Latent norm 0.421 0.178 0.176 31.7 95 0.323 0.065 0.072 4.36 97 0.343 0.065 0.064 4.33 95

Match set: FCS 0.411 0.188 0.180 35.5 94 0.330 0.070 0.074 4.89 96 0.340 0.067 0.065 4.53 94
Normal 0.355 0.173 0.177 33.7 94 0.339 0.071 0.073 5.02 96 0.342 0.066 0.065 4.47 95

Latent norm 0.417 0.181 0.179 32.9 96 0.298 0.066 0.072 5.55 95 0.348 0.067 0.065 4.73 94

Web Table 4: Results from 1000 simulated datasets of N = 500 cases and M = 4 controls per case with MAR-B missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.454 0.489 0.488 240 97 0.351 0.194 0.191 38 95 0.353 0.196 0.191 38.8 96
10% missing
Complete cases 0.460 0.628 0.625 396 97 0.359 0.258 0.242 67.4 96 0.362 0.259 0.242 67.6 95
Match var: FCS 0.463 0.516 0.523 268 97 0.354 0.207 0.204 43.1 96 0.353 0.200 0.195 40.3 96

Normal 0.444 0.495 0.521 246 98 0.354 0.207 0.204 43.1 96 0.354 0.200 0.195 40.3 96
Latent norm 0.470 0.518 0.523 271 98 0.348 0.203 0.204 41.3 96 0.355 0.199 0.195 40.1 96

Match set: FCS 0.459 0.519 0.527 271 97 0.353 0.212 0.206 45.5 96 0.355 0.202 0.195 41.1 96
Normal 0.454 0.509 0.538 260 98 0.363 0.217 0.210 48.1 95 0.349 0.203 0.197 41.5 96

Latent norm 0.483 0.531 0.533 286 97 0.341 0.202 0.206 40.9 97 0.354 0.202 0.197 41.1 96
25% missing
Complete cases 0.347 0.932 0.965 873 98 0.416 0.477 0.393 235 96 0.404 0.462 0.392 218 97
Match var: FCS 0.462 0.565 0.587 322 98 0.357 0.227 0.228 52.3 97 0.355 0.205 0.202 42.7 96

Normal 0.410 0.502 0.569 252 99 0.358 0.225 0.227 51 96 0.358 0.204 0.202 42.1 96
Latent norm 0.484 0.562 0.586 321 98 0.340 0.211 0.225 44.7 97 0.362 0.202 0.202 41.5 96

Match set: FCS 0.433 0.569 0.606 324 98 0.356 0.240 0.234 58.3 96 0.362 0.211 0.206 45.3 96
Normal 0.433 0.548 0.622 301 98 0.388 0.259 0.249 70 96 0.341 0.216 0.211 46.9 96

Latent norm 0.516 0.611 0.618 383 98 0.321 0.212 0.230 45.2 97 0.358 0.209 0.208 44.3 96

Web Table 5: Results from 1000 simulated datasets of N = 100 cases and M = 1 control per case with MCAR missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively. The complete-case analysis failed in 4 simulated datasets when 10% missing data,
and in 67 datasets when 25% missing data. MI methods failed in no datasets when 10% missing data, and in at most 5 when 25%
missing data. When calculating LOR, SE, estSE, MSE and cv for a method, datasets for which that method failed were excluded.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.454 0.489 0.488 240 97 0.351 0.194 0.191 38 95 0.353 0.196 0.191 38.8 96
10% missing
Complete cases 0.458 0.655 0.647 431 97 0.360 0.250 0.240 63.5 96 0.351 0.256 0.241 65.9 95
Match var: FCS 0.461 0.523 0.530 275 97 0.357 0.205 0.204 42.6 96 0.351 0.199 0.195 39.9 96

Normal 0.435 0.495 0.526 246 98 0.358 0.205 0.204 42.6 96 0.353 0.199 0.195 39.9 96
Latent norm 0.467 0.521 0.530 274 97 0.351 0.201 0.204 40.5 96 0.354 0.198 0.195 39.8 96

Match set: FCS 0.464 0.531 0.534 284 97 0.354 0.207 0.205 43.4 95 0.355 0.200 0.195 40.5 96
Normal 0.459 0.521 0.548 274 97 0.365 0.215 0.210 47.2 96 0.348 0.202 0.197 41.1 96

Latent norm 0.481 0.540 0.541 296 96 0.341 0.200 0.206 39.9 96 0.354 0.200 0.197 40.6 96
25% missing
Complete cases 0.317 0.973 0.997 957 98 0.408 0.422 0.366 184 96 0.369 0.422 0.367 179 97
Match var: FCS 0.468 0.603 0.605 366 97 0.359 0.224 0.228 50.8 96 0.353 0.205 0.203 42.5 96

Normal 0.409 0.534 0.584 285 98 0.360 0.222 0.226 49.8 97 0.358 0.204 0.202 42.1 96
Latent norm 0.487 0.595 0.600 359 97 0.342 0.207 0.225 43 97 0.360 0.202 0.203 41.4 97

Match set: FCS 0.458 0.603 0.630 366 98 0.357 0.236 0.235 56.3 96 0.361 0.211 0.206 45.2 96
Normal 0.454 0.572 0.647 329 99 0.387 0.254 0.247 67.1 95 0.342 0.215 0.210 46.2 96

Latent norm 0.517 0.649 0.643 431 98 0.321 0.209 0.230 43.7 97 0.359 0.208 0.208 44 96

Web Table 6: Results from 1000 simulated datasets of N = 100 cases and M = 1 control per case with MAR-A missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively. The complete-case analysis failed in 5 simulated datasets when 10% missing data,
and in 82 datasets when 25% missing data. MI methods failed in no datasets when 10% missing data, and in at most 6 when 25%
missing data. When calculating LOR, SE, estSE, MSE and cv for a method, datasets for which that method failed were excluded.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.454 0.489 0.488 240 97 0.351 0.194 0.191 38 95 0.353 0.196 0.191 38.8 96
10% missing
Complete cases 0.444 0.655 0.641 430 97 0.360 0.249 0.236 63 96 0.291 0.257 0.236 67.7 95
Match var: FCS 0.458 0.521 0.528 273 97 0.355 0.206 0.203 43.1 96 0.352 0.200 0.195 40.3 96

Normal 0.422 0.499 0.524 249 98 0.356 0.205 0.203 42.5 96 0.355 0.199 0.194 40.3 96
Latent norm 0.464 0.520 0.528 273 97 0.350 0.200 0.203 40.5 96 0.354 0.199 0.195 39.9 97

Match set: FCS 0.465 0.528 0.533 281 97 0.351 0.208 0.205 43.7 95 0.356 0.201 0.195 40.9 96
Normal 0.453 0.518 0.547 269 97 0.360 0.215 0.209 47.1 95 0.351 0.202 0.197 41.3 96

Latent norm 0.475 0.536 0.540 291 97 0.338 0.199 0.205 39.6 96 0.355 0.201 0.196 40.9 96
25% missing
Complete cases 0.326 0.958 0.978 927 98 0.403 0.407 0.351 170 96 0.239 0.406 0.350 174 93
Match var: FCS 0.465 0.589 0.604 349 97 0.360 0.227 0.227 52 96 0.350 0.208 0.203 43.4 96

Normal 0.379 0.529 0.583 282 98 0.361 0.223 0.225 50.7 96 0.357 0.205 0.202 42.7 96
Latent norm 0.479 0.591 0.599 353 98 0.342 0.210 0.224 44.4 97 0.359 0.204 0.203 42.2 96

Match set: FCS 0.481 0.617 0.633 385 98 0.354 0.242 0.235 59.1 96 0.358 0.214 0.207 46.3 96
Normal 0.452 0.579 0.647 336 98 0.380 0.256 0.245 67.9 95 0.345 0.217 0.209 47.3 96

Latent norm 0.513 0.651 0.643 433 98 0.320 0.211 0.228 44.7 97 0.358 0.211 0.208 45 96

Web Table 7: Results from 1000 simulated datasets of N = 100 cases and M = 1 control per case with MAR-B missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively. The complete-case analysis failed in 6 simulated datasets when 10% missing data,
and in 88 datasets when 25% missing data. MI methods failed in at most one dataset when 10% missing data, and in at most
7 when 25% missing data. When calculating LOR, SE, estSE, MSE and cv for a method, datasets for which that method failed
were excluded.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.402 0.334 0.330 112 95 0.336 0.143 0.138 20.4 94 0.339 0.135 0.138 18.4 96
10% missing
Complete cases 0.408 0.387 0.388 150 96 0.340 0.165 0.160 27.3 95 0.341 0.161 0.160 26 96
Match var: FCS 0.400 0.349 0.350 122 95 0.336 0.147 0.146 21.7 96 0.339 0.137 0.140 18.7 96

Normal 0.391 0.340 0.349 116 97 0.338 0.147 0.146 21.7 96 0.340 0.136 0.140 18.6 96
Latent norm 0.406 0.349 0.350 122 96 0.332 0.145 0.146 20.9 96 0.341 0.136 0.140 18.5 96

Match set: FCS 0.390 0.347 0.349 121 96 0.332 0.145 0.146 21.1 96 0.342 0.136 0.140 18.5 96
Normal 0.395 0.345 0.353 119 96 0.340 0.148 0.147 22 96 0.339 0.137 0.141 18.8 96

Latent norm 0.408 0.352 0.352 124 95 0.325 0.144 0.146 20.9 96 0.341 0.138 0.141 19 96
25% missing
Complete cases 0.437 0.564 0.533 318 95 0.353 0.219 0.216 48.3 96 0.348 0.219 0.216 48.1 96
Match var: FCS 0.405 0.388 0.388 151 96 0.337 0.161 0.162 26 96 0.339 0.139 0.145 19.3 96

Normal 0.380 0.360 0.379 131 97 0.341 0.160 0.161 25.7 96 0.342 0.138 0.144 19.2 96
Latent norm 0.421 0.388 0.387 150 96 0.324 0.153 0.160 23.5 97 0.345 0.137 0.145 19 96

Match set: FCS 0.375 0.375 0.386 142 96 0.325 0.156 0.160 24.4 97 0.349 0.138 0.144 19.2 96
Normal 0.392 0.372 0.393 139 96 0.347 0.168 0.166 28.4 95 0.337 0.142 0.146 20.1 95

Latent norm 0.429 0.400 0.395 161 96 0.308 0.154 0.162 24.3 96 0.344 0.142 0.147 20.2 96

Web Table 8: Results from 1000 simulated datasets of N = 100 cases and M = 4 controls per case with MCAR missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.402 0.334 0.330 112 95 0.336 0.143 0.138 20.4 94 0.339 0.135 0.138 18.4 96
10% missing
Complete cases 0.406 0.407 0.402 166 95 0.341 0.168 0.162 28.1 95 0.329 0.159 0.162 25.5 96
Match var: FCS 0.402 0.357 0.356 127 96 0.338 0.149 0.147 22.3 96 0.339 0.136 0.141 18.6 96

Normal 0.385 0.347 0.354 122 96 0.339 0.149 0.147 22.3 96 0.340 0.136 0.140 18.6 95
Latent norm 0.406 0.357 0.356 128 96 0.333 0.147 0.147 21.5 96 0.341 0.136 0.141 18.5 96

Match set: FCS 0.396 0.351 0.355 124 96 0.332 0.148 0.147 21.8 96 0.342 0.136 0.141 18.5 96
Normal 0.395 0.349 0.359 122 96 0.340 0.150 0.148 22.6 96 0.340 0.136 0.141 18.6 96

Latent norm 0.407 0.358 0.358 129 96 0.325 0.146 0.147 21.4 96 0.342 0.137 0.141 18.8 96
25% missing
Complete cases 0.436 0.616 0.577 380 95 0.353 0.218 0.215 47.8 96 0.331 0.220 0.217 48.5 96
Match var: FCS 0.399 0.405 0.405 165 95 0.338 0.161 0.163 26 96 0.338 0.140 0.146 19.7 96

Normal 0.359 0.369 0.393 140 96 0.341 0.160 0.163 25.6 96 0.343 0.139 0.145 19.4 96
Latent norm 0.412 0.401 0.401 161 95 0.325 0.153 0.161 23.4 97 0.345 0.138 0.146 19.3 96

Match set: FCS 0.378 0.390 0.403 153 97 0.321 0.155 0.163 24.2 97 0.349 0.139 0.146 19.6 96
Normal 0.385 0.384 0.409 149 97 0.345 0.167 0.167 28 96 0.339 0.142 0.147 20.3 96

Latent norm 0.417 0.417 0.411 174 95 0.306 0.153 0.163 24.2 96 0.346 0.142 0.148 20.4 96

Web Table 9: Results from 1000 simulated datasets of N = 100 cases and M = 4 controls per case with MAR-A missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.402 0.334 0.330 112 95 0.336 0.143 0.138 20.4 94 0.339 0.135 0.138 18.4 96
10% missing
Complete cases 0.395 0.420 0.406 177 95 0.341 0.167 0.161 28 94 0.265 0.158 0.162 29.6 93
Match var: FCS 0.398 0.364 0.358 133 95 0.338 0.150 0.147 22.6 96 0.338 0.136 0.141 18.6 95

Normal 0.363 0.352 0.356 127 96 0.340 0.149 0.147 22.4 96 0.341 0.136 0.141 18.5 95
Latent norm 0.401 0.362 0.357 132 96 0.333 0.148 0.147 21.9 96 0.341 0.136 0.141 18.5 96

Match set: FCS 0.396 0.360 0.357 130 96 0.331 0.149 0.147 22.1 96 0.342 0.136 0.141 18.6 96
Normal 0.378 0.354 0.361 127 96 0.338 0.151 0.148 22.9 96 0.341 0.136 0.141 18.7 96

Latent norm 0.399 0.368 0.360 135 95 0.325 0.147 0.148 21.6 96 0.342 0.137 0.142 18.8 96
25% missing
Complete cases 0.403 0.624 0.583 390 95 0.354 0.216 0.212 47.3 96 0.193 0.216 0.213 66.3 89
Match var: FCS 0.391 0.411 0.411 169 96 0.340 0.162 0.164 26.3 96 0.336 0.142 0.146 20.1 96

Normal 0.317 0.373 0.398 149 96 0.344 0.162 0.163 26.3 96 0.343 0.141 0.145 20 95
Latent norm 0.398 0.406 0.408 165 96 0.327 0.154 0.163 23.9 97 0.343 0.140 0.146 19.7 96

Match set: FCS 0.386 0.396 0.411 158 96 0.322 0.157 0.166 24.6 96 0.346 0.141 0.147 20.1 96
Normal 0.355 0.384 0.413 151 97 0.343 0.167 0.167 28.1 95 0.342 0.144 0.147 20.7 96

Latent norm 0.399 0.421 0.418 177 96 0.307 0.155 0.164 24.8 96 0.346 0.144 0.149 20.9 95

Web Table 10: Results from 1000 simulated datasets of N = 100 cases and M = 4 controls per case with MAR-B missingness
mechanism. ‘LOR’ is mean estimated log odds ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error,
‘MSE’ is mean squared error ×1000, and ‘cv’ is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and
0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

10% missing
Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
Complete cases 0.431 0.264 0.256 70 96 0.337 0.100 0.102 10.1 96 0.340 0.103 0.102 10.6 96
Match var: FCS 0.432 0.223 0.219 50.1 95 0.332 0.083 0.087 6.9 96 0.338 0.085 0.084 7.2 94

Normal 0.412 0.214 0.218 45.6 96 0.333 0.083 0.087 6.82 96 0.340 0.085 0.084 7.2 95
Latent norm 0.437 0.222 0.218 49.6 96 0.327 0.081 0.087 6.64 96 0.340 0.084 0.084 7.17 95

Match set: FCS 0.429 0.226 0.219 51.1 95 0.334 0.084 0.088 7.09 96 0.338 0.085 0.084 7.23 94
Normal 0.422 0.222 0.223 49.2 96 0.340 0.086 0.089 7.49 96 0.335 0.086 0.084 7.35 95

Latent norm 0.445 0.225 0.220 51.3 95 0.311 0.081 0.087 7.01 95 0.342 0.086 0.084 7.44 95
25% missing
Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
Complete cases 0.449 0.379 0.377 145 96 0.341 0.144 0.149 20.8 97 0.342 0.150 0.149 22.4 96
Match var: FCS 0.439 0.239 0.241 57.8 96 0.328 0.089 0.095 7.98 96 0.339 0.087 0.086 7.59 95

Normal 0.390 0.215 0.235 46.8 97 0.330 0.089 0.095 7.93 97 0.342 0.087 0.086 7.58 95
Latent norm 0.451 0.238 0.240 58 96 0.316 0.084 0.095 7.45 96 0.345 0.086 0.086 7.5 95

Match set: FCS 0.430 0.247 0.243 61.3 95 0.335 0.094 0.098 8.87 96 0.339 0.088 0.087 7.71 95
Normal 0.413 0.239 0.251 57 97 0.351 0.099 0.102 10.1 95 0.329 0.090 0.088 8.12 94

Latent norm 0.476 0.249 0.246 65.7 95 0.279 0.084 0.095 9.98 93 0.348 0.090 0.089 8.3 95

Web Table 11: Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MCAR missingness
mechanism in Sensitivity Analysis 1 (where there is an interaction between Scat and Scon). ‘LOR’ is mean estimated log odds
ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error, ‘MSE’ is mean squared error ×1000, and ‘cv’ is
coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and 0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

10% missing
Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
Complete cases 0.432 0.275 0.264 76.1 95 0.338 0.097 0.101 9.42 96 0.328 0.102 0.101 10.5 95
Match var: FCS 0.434 0.222 0.221 49.5 95 0.332 0.081 0.087 6.6 96 0.338 0.084 0.084 7.13 94

Normal 0.408 0.212 0.220 45.1 96 0.334 0.081 0.087 6.64 96 0.340 0.084 0.084 7.12 95
Latent norm 0.438 0.220 0.221 48.9 96 0.328 0.080 0.087 6.45 96 0.340 0.084 0.084 7.1 95

Match set: FCS 0.431 0.227 0.222 51.7 95 0.334 0.083 0.088 6.85 96 0.339 0.084 0.084 7.15 95
Normal 0.424 0.222 0.226 49.5 95 0.339 0.084 0.089 7.17 96 0.336 0.085 0.084 7.24 94

Latent norm 0.448 0.225 0.223 51.8 95 0.310 0.079 0.087 6.82 96 0.343 0.085 0.084 7.34 95
25% missing
Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
Complete cases 0.457 0.408 0.397 168 96 0.339 0.140 0.141 19.7 96 0.321 0.147 0.143 21.6 94
Match var: FCS 0.437 0.244 0.248 59.8 96 0.328 0.089 0.095 8.02 96 0.339 0.088 0.086 7.7 95

Normal 0.377 0.217 0.240 48.7 97 0.331 0.089 0.095 7.9 97 0.344 0.087 0.086 7.71 95
Latent norm 0.448 0.241 0.246 58.9 96 0.316 0.085 0.094 7.54 96 0.345 0.087 0.086 7.64 95

Match set: FCS 0.430 0.256 0.253 65.5 96 0.330 0.094 0.098 8.92 96 0.342 0.089 0.087 7.93 95
Normal 0.410 0.242 0.260 58.7 97 0.347 0.100 0.101 10.1 96 0.333 0.091 0.088 8.24 94

Latent norm 0.471 0.255 0.254 68.1 94 0.277 0.085 0.095 10.3 93 0.351 0.090 0.088 8.47 94

Web Table 12: Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MAR-A missingness
mechanism in Sensitivity Analysis 1 (where there is an interaction between Scat and Scon). ‘LOR’ is mean estimated log odds
ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error, ‘MSE’ is mean squared error ×1000, and ‘cv’ is
coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and 0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

10% missing
Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
Complete cases 0.427 0.272 0.262 73.9 94 0.336 0.096 0.099 9.16 97 0.272 0.101 0.099 13.9 88
Match var: FCS 0.435 0.220 0.221 48.8 95 0.331 0.082 0.087 6.68 97 0.338 0.085 0.084 7.2 95

Normal 0.394 0.211 0.219 45.1 96 0.333 0.082 0.087 6.7 97 0.342 0.084 0.084 7.17 95
Latent norm 0.439 0.218 0.220 48.2 96 0.326 0.080 0.087 6.51 97 0.341 0.084 0.084 7.18 95

Match set: FCS 0.434 0.225 0.222 50.8 94 0.330 0.083 0.087 6.94 96 0.340 0.085 0.084 7.27 94
Normal 0.414 0.222 0.226 49.2 96 0.336 0.085 0.088 7.26 96 0.338 0.085 0.084 7.31 94

Latent norm 0.448 0.222 0.223 50.2 95 0.307 0.080 0.087 7.07 95 0.345 0.086 0.084 7.49 94
25% missing
Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
Complete cases 0.428 0.318 0.302 101 95 0.339 0.109 0.111 11.9 96 0.244 0.114 0.111 21.1 86
Match var: FCS 0.438 0.228 0.230 52.4 96 0.329 0.085 0.089 7.16 96 0.339 0.086 0.085 7.39 95

Normal 0.375 0.212 0.227 46.7 96 0.333 0.084 0.089 7.06 97 0.343 0.085 0.084 7.37 95
Latent norm 0.442 0.226 0.230 51.6 97 0.322 0.082 0.089 6.82 97 0.343 0.085 0.085 7.33 95

Match set: FCS 0.435 0.236 0.233 56.1 95 0.329 0.087 0.091 7.65 96 0.341 0.087 0.085 7.55 95
Normal 0.407 0.229 0.239 52.4 96 0.339 0.090 0.092 8.1 96 0.338 0.088 0.085 7.68 95

Latent norm 0.458 0.233 0.234 56.1 95 0.293 0.081 0.089 8.2 94 0.349 0.087 0.086 7.85 95

Web Table 13: Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MAR-B missingness
mechanism in Sensitivity Analysis 1 (where there is an interaction between Scat and Scon). ‘LOR’ is mean estimated log odds
ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error, ‘MSE’ is mean squared error ×1000, and ‘cv’ is
coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and 0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR eSE estSE MSE cv LOR eSE estSE MSE cv LOR eSE estSE MSE cv

10% missing
Complete data 0.414 0.198 0.195 39.2 94 0.336 0.073 0.075 5.3 96 0.338 0.078 0.075 6.07 94
Complete cases 0.421 0.245 0.242 60 95 0.340 0.092 0.093 8.55 94 0.342 0.098 0.093 9.77 94
Match var: FCS 0.428 0.204 0.207 41.7 96 0.326 0.071 0.078 5.03 96 0.345 0.078 0.076 6.26 94

Normal 0.408 0.195 0.206 38.1 96 0.327 0.071 0.078 5.07 97 0.345 0.078 0.076 6.29 95
Latent norm 0.420 0.205 0.207 42 96 0.337 0.073 0.079 5.41 97 0.340 0.079 0.076 6.22 95

Match set: FCS 0.428 0.206 0.208 42.7 96 0.325 0.072 0.078 5.21 96 0.345 0.078 0.076 6.28 95
Normal 0.417 0.202 0.211 41 96 0.330 0.072 0.079 5.18 97 0.343 0.079 0.076 6.3 95

Latent norm 0.413 0.211 0.210 44.5 95 0.337 0.075 0.080 5.65 97 0.338 0.079 0.076 6.32 95
25% missing
Complete data 0.414 0.198 0.195 39.2 94 0.336 0.073 0.075 5.3 96 0.338 0.078 0.075 6.07 94
Complete cases 0.423 0.353 0.356 124 96 0.350 0.136 0.136 18.8 96 0.350 0.141 0.137 20.3 95
Match var: FCS 0.443 0.222 0.228 49.9 96 0.314 0.072 0.084 5.6 96 0.353 0.080 0.078 6.77 95

Normal 0.394 0.202 0.223 41.3 97 0.316 0.073 0.084 5.59 97 0.356 0.080 0.078 6.86 95
Latent norm 0.419 0.231 0.229 53.4 95 0.338 0.079 0.086 6.25 97 0.343 0.080 0.078 6.57 95

Match set: FCS 0.441 0.231 0.232 53.9 96 0.312 0.075 0.084 6.12 96 0.355 0.080 0.078 6.87 95
Normal 0.414 0.221 0.238 48.6 97 0.325 0.077 0.087 6.08 97 0.348 0.081 0.079 6.83 95

Latent norm 0.410 0.252 0.241 63.3 95 0.338 0.084 0.090 7 97 0.338 0.083 0.079 6.88 95

Web Table 14: Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MCAR missingness
mechanism in Sensitivity Analysis 2 (where XconA and XconB are log normally distributed). ‘LOR’ is mean estimated log odds
ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error, ‘MSE’ is mean squared error ×1000, and ‘cv’ is
coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and 0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR eSE estSE MSE cv LOR eSE estSE MSE cv LOR eSE estSE MSE cv

10% missing
Complete data 0.414 0.198 0.195 39.2 94 0.336 0.073 0.075 5.3 96 0.338 0.078 0.075 6.07 94
Complete cases 0.422 0.245 0.246 59.9 95 0.341 0.092 0.092 8.55 96 0.328 0.103 0.098 10.6 94
Match var: FCS 0.427 0.204 0.208 41.8 96 0.330 0.073 0.079 5.41 96 0.336 0.080 0.077 6.45 94

Normal 0.404 0.195 0.208 38.3 97 0.331 0.073 0.079 5.36 96 0.338 0.080 0.077 6.45 95
Latent norm 0.419 0.204 0.208 41.5 96 0.339 0.076 0.079 5.81 96 0.332 0.081 0.077 6.49 94

Match set: FCS 0.409 0.207 0.209 42.7 96 0.323 0.074 0.079 5.65 96 0.341 0.081 0.078 6.67 94
Normal 0.417 0.203 0.213 41.1 96 0.332 0.075 0.080 5.6 97 0.335 0.081 0.078 6.59 94

Latent norm 0.413 0.209 0.211 43.9 95 0.337 0.077 0.080 5.92 96 0.331 0.082 0.078 6.7 94
25% missing
Complete data 0.414 0.198 0.195 39.2 94 0.336 0.073 0.075 5.3 96 0.338 0.078 0.075 6.07 94
Complete cases 0.427 0.366 0.366 134 96 0.351 0.132 0.133 17.7 95 0.316 0.149 0.150 22.5 94
Match var: FCS 0.438 0.227 0.232 52 95 0.322 0.076 0.086 5.89 97 0.335 0.084 0.081 7.06 95

Normal 0.384 0.206 0.227 43.6 97 0.324 0.076 0.086 5.81 98 0.339 0.084 0.081 7.03 95
Latent norm 0.421 0.234 0.233 54.8 95 0.341 0.082 0.087 6.71 97 0.326 0.085 0.081 7.3 94

Match set: FCS 0.398 0.238 0.236 56.8 95 0.307 0.078 0.086 6.83 95 0.344 0.087 0.082 7.63 95
Normal 0.415 0.226 0.243 51.1 97 0.327 0.080 0.089 6.45 97 0.329 0.086 0.082 7.46 95

Latent norm 0.415 0.253 0.244 63.8 94 0.335 0.085 0.090 7.2 97 0.320 0.088 0.083 7.99 93

Web Table 15: Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MAR-A missingness
mechanism in Sensitivity Analysis 2 (where XconA and XconB are log normally distributed). ‘LOR’ is mean estimated log odds
ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error, ‘MSE’ is mean squared error ×1000, and ‘cv’ is
coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and 0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

LOR eSE estSE MSE cv LOR eSE estSE MSE cv LOR eSE estSE MSE cv

10% missing
Complete data 0.414 0.198 0.195 39.2 94 0.336 0.073 0.075 5.3 96 0.338 0.078 0.075 6.07 94
Complete cases 0.431 0.238 0.237 56.8 95 0.350 0.091 0.090 8.57 95 0.216 0.106 0.098 25 73
Match var: FCS 0.422 0.202 0.206 40.9 96 0.344 0.077 0.079 5.99 96 0.321 0.083 0.079 7.09 93

Normal 0.393 0.196 0.205 38.9 96 0.345 0.076 0.079 5.97 96 0.324 0.083 0.079 7.01 94
Latent norm 0.416 0.202 0.206 40.8 96 0.351 0.079 0.080 6.48 95 0.318 0.084 0.079 7.22 93

Match set: FCS 0.414 0.205 0.207 41.9 96 0.333 0.076 0.079 5.7 96 0.325 0.085 0.080 7.36 93
Normal 0.410 0.202 0.210 41 97 0.343 0.078 0.080 6.1 95 0.320 0.085 0.080 7.34 93

Latent norm 0.410 0.206 0.209 42.6 96 0.347 0.079 0.080 6.46 95 0.315 0.085 0.080 7.59 92
25% missing
Complete data 0.414 0.198 0.195 39.2 94 0.336 0.073 0.075 5.3 96 0.338 0.078 0.075 6.07 94
Complete cases 0.437 0.341 0.347 117 96 0.355 0.125 0.126 16.1 96 0.105 0.152 0.148 75.4 64
Match var: FCS 0.426 0.226 0.231 51 96 0.346 0.081 0.088 6.79 97 0.310 0.088 0.084 8.27 93

Normal 0.353 0.206 0.225 46.4 96 0.349 0.081 0.088 6.88 97 0.317 0.087 0.083 7.9 93
Latent norm 0.412 0.228 0.230 51.9 95 0.360 0.086 0.089 8.04 96 0.303 0.089 0.084 8.76 92

Match set: FCS 0.409 0.234 0.236 55 95 0.324 0.080 0.088 6.56 96 0.317 0.094 0.086 9.15 93
Normal 0.398 0.225 0.241 50.9 96 0.346 0.085 0.091 7.43 97 0.306 0.091 0.086 9 92

Latent norm 0.410 0.241 0.239 58 95 0.349 0.086 0.090 7.71 96 0.296 0.092 0.086 9.9 91

Web Table 16: Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MAR-B missingness
mechanism in Sensitivity Analysis 2 (where XconA and XconB are log normally distributed). ‘LOR’ is mean estimated log odds
ratio, ‘SE’ is empirical standard error, ‘estSE’ is mean estimated standard error, ‘MSE’ is mean squared error ×1000, and ‘cv’ is
coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333 and 0.333 for Xcat, XconA and XconB, respectively.



Xcat XconA XconB

Method Est SE Est SE Est SE

Complete cases 0.443 0.211 0.235 0.089 0.269 0.083
MI using matching variables
FCS 0.306 0.159 0.305 0.069 0.314 0.059
Normal 0.298 0.151 0.318 0.067 0.310 0.059
Latent norm 0.324 0.158 0.300 0.072 0.316 0.060
MI using matched set
FCS 0.289 0.155 0.310 0.074 0.313 0.061
Normal 0.290 0.157 0.312 0.072 0.312 0.060
Latent norm 0.321 0.165 0.299 0.076 0.307 0.062

Web Table 17: Results from the specimen simulated dataset of Appendix H. Dataset has
N = 500 cases and M = 4 controls per case with 25% missing values in Xcat and XconA,
generated independently in each variable and completely at random. ‘Est’ is the estimated
log odds ratio and ‘SE’ is its estimated standard error.




