Woods, LM; Rachet, B; O’Connell, D; Lawrence, GL; Coleman, MP; (2012) Is there evidence of a ‘cured’ sub-population amongst women with screen-detected breast cancer? Results from New South Wales, Australia, and the West Midlands region of England (oral presentation). [Conference or Workshop Item] https://researchonline.lshtm.ac.uk/id/eprint/2121479

Downloaded from: http://researchonline.lshtm.ac.uk/2121479/

DOI:

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: Copyright the author(s)
Is there evidence of a ‘cured’ sub-population amongst women with screen-detected breast cancer?

Results from New South Wales, Australia, and the West Midlands region of England

Laura M Woods¹ Bernard Rachet¹
Dianne O’Connell² Gill Lawrence³ Michel P Coleman¹

¹ London School of Hygiene and Tropical Medicine, London, UK
² Cancer Epidemiology Research Unit, Cancer Council NSW, Sydney, Australia
³ West Midlands Cancer Intelligence Unit, University of Birmingham, Birmingham, UK
Concept

Population ‘cure’ occurs when excess hazard reaches zero and the relative survival curve plateaus.

Median survival time of ‘fatal’ cases

Proportion of patients considered ‘cured’
Background

- Long-term excess mortality from breast cancer
- Our previous work:
 - Women with apparently localised disease
 - 'Cure' seldom attained
 - Inflexible approach?
- Statistical developments: flexible models
- ‘Cure’ and breast cancer screening
Hypothesis

That a sub-population of women diagnosed with asymptomatic disease via screening have no excess mortality, in comparison to their counterparts, and that the presence of this ‘cured’ population could be detected using a flexible modelling approach.
Materials and Methods

- 6,396 women in New South Wales,
- 5,717 women in West Midlands
- Non-parametric flexible (spline-based) relative survival model, adjusted for age:
 - ‘cure’ option assumes zero excess mortality after the last knot
- Reduction of 3 AIC to indicate better fitting model
Results

<table>
<thead>
<tr>
<th>Region</th>
<th>Screening category</th>
<th>AIC non-'cure' model</th>
<th>AIC 'cure' model</th>
<th>Difference</th>
<th>Evidence of cure?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSW</td>
<td>Not screen-detected</td>
<td>3054.63</td>
<td>3067.33</td>
<td>12.70</td>
<td>No</td>
</tr>
<tr>
<td>NSW</td>
<td>Screen-detected</td>
<td>774.97</td>
<td>775.01</td>
<td>0.05</td>
<td>Yes</td>
</tr>
<tr>
<td>NSW</td>
<td>Lapsed attender</td>
<td>155.32</td>
<td>156.69</td>
<td>1.36</td>
<td>Yes</td>
</tr>
<tr>
<td>NSW</td>
<td>Interval cancer</td>
<td>664.74</td>
<td>663.57</td>
<td>-1.18</td>
<td>Yes</td>
</tr>
<tr>
<td>WM</td>
<td>Not screen-detected</td>
<td>2490.48</td>
<td>2510.85</td>
<td>20.38</td>
<td>No</td>
</tr>
<tr>
<td>WM</td>
<td>Screen-detected</td>
<td>1138.46</td>
<td>1136.54</td>
<td>-1.92</td>
<td>Yes</td>
</tr>
<tr>
<td>WM</td>
<td>Lapsed attender</td>
<td>164.31</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WM</td>
<td>Interval cancer</td>
<td>1555.11</td>
<td>1556.55</td>
<td>1.44</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Conclusions

• Evidence of ‘cure’ for screen-detected women

Next steps

• Examination by stage of diagnosis for the non-screened (missing values)