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Abstract

Background: Limited tools exist to identify which individuals infected with Plasmodium falciparum are at risk of developing
serious complications such as cerebral malaria (CM). The objective of this study was to assess serum biomarkers that
differentiate between CM and non-CM, with the long-term goal of developing a clinically informative prognostic test for
severe malaria.

Methodology/Principal Findings: Based on the hypothesis that endothelial activation and blood-brain-barrier dysfunction
contribute to CM pathogenesis, we examined the endothelial regulators, angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-
2), in serum samples from P. falciparum-infected patients with uncomplicated malaria (UM) or CM, from two diverse
populations – Thai adults and Ugandan children. Angiopoietin levels were compared to tumour necrosis factor (TNF). In
both populations, ANG-1 levels were significantly decreased and ANG-2 levels were significantly increased in CM versus UM
and healthy controls (p,0.001). TNF was significantly elevated in CM in the Thai adult population (p,0.001), but did not
discriminate well between CM and UM in African children. Receiver operating characteristic curve analysis showed that
ANG-1 and the ratio of ANG-2:ANG-1 accurately discriminated CM patients from UM in both populations. Applied as a
diagnostic test, ANG-1 had a sensitivity and specificity of 100% for distinguishing CM from UM in Thai adults and 70% and
75%, respectively, for Ugandan children. Across both populations the likelihood ratio of CM given a positive test (ANG-
1,15 ng/mL) was 4.1 (2.7–6.5) and the likelihood ratio of CM given a negative test was 0.29 (0.20–0.42). Moreover, low
ANG-1 levels at presentation predicted subsequent mortality in children with CM (p = 0.027).

Conclusions/Significance: ANG-1 and the ANG-2/1 ratio are promising clinically informative biomarkers for CM. Additional
studies should address their utility as prognostic biomarkers and potential therapeutic targets in severe malaria.
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Introduction

Although greater than 500 million Plasmodium falciparum malaria

infections are estimated to occur each year, only a small

proportion of patients progress to severe and potentially fatal

complications such as cerebral malaria (CM) [1,2,3,4]. However,

the mechanisms underlying CM are poorly understood, and

limited prognostic tools are available to determine which infected

individuals will progress to cerebral complications [5,6,7,8].

The discovery of a reliable laboratory test that accurately

identifies individuals with, or at risk of, CM would be valuable.

The capacity for early detection and intervention in cases of severe

malaria and CM would have clinical and economic impact,

particularly in resource-poor settings where effective allocation of

limited health resources is essential. Several studies have examined

the correlation of serum markers, such as cytokines, with severe

and complicated malaria. Elevated levels of TNF have been

associated with severe malaria [9,10,11,12,13,14] and were
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identified as a predictor of mortality in CM [10,11]. However,

other studies have challenged these findings and reported that

TNF levels do not correlate with disease severity [15,16].

Endothelial cell activation and dysfunction have been implicat-

ed in the pathogenesis of CM, in which the endothelium responds

to parasite-induced inflammation and mediates parasitized

erythrocyte sequestration, especially in vital organs such as the

brain [17]. Endothelial activation markers, such as endothelial

microparticles, vonWillebrand factor and soluble cell-adhesion

molecules (sCAMs), including soluble intercellular adhesion

molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1

and soluble endothelial leukocyte adhesion molecule-1, are

increased in malaria and have been positively correlated with

disease severity [14,16,18,19,20,21]. However the role of sCAMs

in the pathophysiology of malaria is unclear, and circulating levels

of sCAMs may not accurately reflect expression in vascular beds

[16]. Furthermore, it is unclear whether these markers are useful

in predicting disease progression or outcome [16,18,19,20].

In addition to systemic endothelial activation, recent work has

focused on mechanisms by which malaria may compromise the

structural and functional integrity of the blood-brain-barrier

(BBB), leading to leakage of plasma proteins, perivascular edema

and neuronal injury [22,23,24,25,26]. Angiopoietins, a recently

described distinct family of angiogenic proteins, have recently been

shown to play fundamental physiological roles in maintenance of

vascular integrity. Angiopoietin-1 (ANG-1) is constitutively

expressed and acts to maintain vascular quiescence [27]. The

ANG-1 stabilizing effect is antagonized by angiopoietin-2 (ANG-

2), which primes the endothelial activation response and promotes

vascular permeability [27,28]. In healthy individuals, serum ANG-

1 levels are normally high, while serum ANG-2 levels are low.

Consequently, an increase in ANG-2, or a dysregulation of the

ANG-1/2 balance, may be associated with disease states that cause

inflammation and vascular permeability [27,28]. Specifically,

elevated ANG-2 levels have been reported in patients with severe

sepsis and may contribute to sepsis-related vascular leak

[28,29,30,31].

Based on the hypothesis that dysregulation of angiopoietins may

be associated with endothelial and BBB dysfunction during

malaria infection, we examined whether both ANG-1 and ANG-

2 were clinically informative biomarkers for cerebral malaria. We

report that angiopoietin levels were accurate biomarkers of CM

and predicted mortality in African children.

Methods

Thai Study population
Individuals ($13 years of age) admitted to the Hospital for

Tropical Disease (Mahidol University, Thailand) for ongoing

studies of anti-malarial drug efficacy were eligible for enrolment.

The institutional review board of Mahidol University approved

the study, and written informed consent was obtained from all

patients or their legal guardians. Venous blood samples were

collected from 50 patients with P. falciparum malaria (25

consecutive cases of UM and 25 consecutive cases of CM) prior

to the initiation of standard anti-malarial therapy, and from 10

healthy controls who had negative blood smears and no history of

malaria infection in the previous 6 months (Table 1). Patients with

UM were defined based on a positive blood smear for P. falciparum

without evidence for severe or complicated malaria as defined by

the WHO [1]. CM was defined as P. falciparum infection on blood

smear, unrousable coma (Glasgow coma scale #8) not attributable

to other causes [1].

Ugandan Study population
The Ugandan study population has been previously described

[32]. The institutional review board at Makerere University,

Faculty of Medicine (Kampala, Uganda) granted ethics approval

and written informed consent was obtained from the parents or

guardians of study participants. Briefly, children 4–12 years old

admitted to Mulago Hospital were eligible for enrolment if they

had UM or met the WHO criteria for CM: P. falciparum on blood

smear and coma (Blantyre coma scale #2 or Glasgow coma scale

#8) not attributable to hypoglycemia, convulsions, meningitis or

other identifiable cause [1]. Lumbar punctures were performed to

rule out meningitis/encephalitis. Children were considered to have

UM if they had fever (or a history of fever within 24 hours), P.

falciparum infection on blood smear, but no evidence of severe or

complicated malaria (1). Healthy controls were recruited from the

extended household areas of children with CM or uncomplicated

malaria and were determined to be healthy by medical history

(with no malaria history for the previous 6 months), physical

examination and microscopic examination of blood smears

(Table 1). Blood samples from malaria patients were drawn prior

to the initiation of standard anti-malarial therapy.

Sample handling and quantification of serum biomarker levels:

Serum derived from patient blood was immediately frozen,

shipped on dry ice, and maintained at 280uC until use. The

serum used was thawed (on ice) and re-frozen a maximum of 3

times. Serum concentrations of ANG-1, ANG-2 and TNF were

measured by ELISA (R&D Systems, Minneapolis MN; TNF:

eBioscience, San Diego CA). Concentrations were interpolated

from 4-parameter-fit standard curves generated using a standard

curve of recombinant human proteins. The upper and lower limits

of detection for each assay were as follows: ANG-1 (10,000–

156.25 pg/ml), ANG-2 (3,500–54.69 pg/ml) and TNF (500–

7.8 pg/ml). Samples were diluted between 1:2 to 1:50 in assay

diluent to fall within the range of the standard curves, as per the

manufacturers’ instructions. TNF levels in Ugandan children were

measured as described [32].

Table 1. Demographic information for adult malaria patients from Thailand and pediatric malaria patients from Uganda; healthy
controls (HC), uncomplicated malaria patients (UM) and cerebral malaria patients (CM).

Group Adult (Thailand) Pediatric (Uganda)

N Age Parasites/ml N Age Parasites/ml

HC 10 32 (25–48) 0 28 7 (3.2–12) 0

UM 25 22 (14–63)* 2.26104 (170-1.96105)* 67 7 (3–12) 3.36104 (48-2.46105)*

CM 25 25 (17–50) 3.16105 (500-2.16106)*{ 69 5.4 (3.2–12) *{ 4.06105 (32-9.36105)*

Age and parasitemia are presented as median (range). *p,0.05 vs. HC and {p,0.05 vs. UM (Kruskal-Wallis test with Dunn’s multiple comparison post-test).
doi:10.1371/journal.pone.0004912.t001
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Statistical Analysis
Statistical analysis was performed using GraphPad Prism v4.03

(San Diego, CA). Serum protein levels were analyzed using a

Kruskal-Wallis test, followed by Dunn’s multiple comparison tests.

Receiver operating characteristic (ROC) curves and area under

the ROC curves were generated using (SPSS 16.0. Cutoff values

were derived mathematically from the ROC curves, using the

point on the ROC curve with the lowest value for the formula: (1-

sensitivity)2+(1-specificity)2. Angiopoietin levels and survival out-

comes were analyzed using the Wilcoxon rank-sum test.

Multivariable logistic regression modeling was used to examine

the independent predictive value of biomarkers on outcome (CM

vs.UM) in order to account for potential confounding effects of

multiple covariates (SPSS 16.0). Hosmer Lemeshow test was used

to verify model goodness of fit.

Results

ANG-1 levels are decreased and ANG-2 levels increased in
the serum of cerebral malaria patients compared to
uncomplicated patients and healthy controls

In Thailand, serum ANG-1 levels were significantly lower in

adults with CM compared to either adults with UM or healthy

controls, and in adults with UM compared to healthy controls

(Figure 1A; Kruskal-Wallis: p,0.001). Moreover, serum ANG-2

levels were significantly increased in adults with CM compared

to adults with UM or healthy controls, as well as in adults with

UM compared to healthy controls (Figure 1A; Kruskal-Wallis:

P,0.001). As an additional measure, the ratio of ANG-2 to

ANG-1 for each patient was found to be significantly different

between healthy controls and adults with UM (Figure 1A;

Kruskal-Wallis: p,0.05) and between either healthy controls or

adults with UM and adults with CM (p,0.001). To compare

these novel biomarkers to an established biomarker of CM,

serum TNF levels were also determined. TNF was significantly

increased in adults with CM compared to either adults with UM

or healthy controls (Figure 1A; Kruskal-Wallis: p,0.001).

However, absolute levels of TNF were very low, requiring larger

sample volumes to detect.

The manifestations and outcomes of severe and CM may differ

between adults and children and between varying genetic

backgrounds of patient and parasite populations [1,3,8,16].

Therefore, the hypothesis that angiopoietin levels are informative

biomarkers for CM was further examined in a larger cohort of

African children. Similar to the observations in Thailand, serum

ANG-1 levels were significantly decreased in Ugandan children

with CM compared to Ugandan children with UM and healthy

controls, and in Ugandan children with UM compared to healthy

controls (Figure 2A; Kruskal-Wallis: p,0.001). Additionally,

ANG-2 levels were significantly elevated in children with CM

compared to children with UM and healthy controls (Figure 2A;

Kruskal-Wallis: p,0.001), and between children with UM and

healthy controls (p,0.01). Furthermore, as in the adult popula-

tion, the ANG-2:ANG-1 ratio was significantly higher in children

with CM than in children with UM and healthy controls, and in

children with UM compared with healthy controls (Figure 2A;

Kruskal-Wallis: p,0.001). While TNF levels were significantly

lower in healthy controls compared to children with UM and

children with CM (Figure 2A; Kruskal-Wallis: p,0.001), there was

no significance difference in serum TNF values between children

with CM and children with UM.

Comparisons of the median and range of each serum biomarker

concentration (Table 2), revealed no overlap in the ranges of

ANG-1 and the ANG-2:ANG-1 ratio measures in the CM, UM

and healthy controls groups in Thai adults, indicating that these

markers clearly discriminated the respective groups. However,

there was some overlap in the concentration ranges in the

Ugandan children with UM the Ugandan children with CM.

Figure 1. Comparison of angiopoeitin-1 and -2 levels with TNF in adult malaria patients from Thailand. A. Serum concentrations of
angiopoietin-1 (ANG-1), angiopoietin-2 (ANG-2), the ratio of ANG-2:ANG-1 (RATIO, expressed as log base 10) and tumour necrosis factor (TNF) were
measured in 10 healthy controls (HC), 25 consecutive uncomplicated malaria (UM) patients, and in consecutive 25 cerebral malaria (CM) patients. B.
Receiver operating characteristic curves (blue line) were generated for each test to compare CM with UM patients, with the null hypothesis (green
line) that area under the curve equals 0.5.
doi:10.1371/journal.pone.0004912.g001
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Receiver operating characteristic (ROC) curves indicate
that angiopoietin levels discriminate between
uncomplicated and cerebral malaria patients

ROC curves for the biomarkers, examining CM patients as

‘‘cases’’ and uncomplicated malaria patients as ‘‘controls’’, were

plotted and compared to assess the ability of each marker to

discriminate between patients with and without cerebral compli-

cations (Figure 1&2, Table 3). In the Thai population, ANG-1 and

the ANG-2:ANG-1 ratio have an area under the curve (AUC) of 1

(Figure 1B, Table 3) and differ significantly (p,0.001) from that of

a chance result (AUC: 0.5). This finding was validated in the

geographically, genetically and demographically distinct Ugandan

pediatric population, where ANG-1 (AUC: 0.785, p,0.001) and

the ANG-2:ANG-1 ratio (AUC: 0.779, p,0.001) were still the best

of the biomarkers examined (Figure 2B, Table 3; sICAM-1, data

not shown). Although ANG-2 did not have such large AUC values,

it showed moderate accuracy as a discriminatory marker in both

populations examined (Figure 1B - Thai: AUC = 0.835, p,0.001;

Figure 2B - Uganda: AUC = 0.688, p,0.001).

Compared to ANG-1 and ANG-2 as biomarkers of CM,

previously studied markers of severe and CM such as TNF

(Figure 1B, Figure 2B, Table 3) had moderate accuracy as a

discriminating test (Figure 1B, AUC: 0.834, p,0.001) in Thai

adults; however, TNF was a poor discriminator between CM and

uncomplicated malaria in the Ugandan pediatric population

(Figure 2B, AUC: 0.557, p = 0.268).

ANG-1 shows high sensitivity and specificity as a
biomarker of cerebral malaria

The diagnostic accuracy (sensitivity, specificity, positive and

negative likelihood ratios) for each biomarker, stratified by patient

population, are reported in Table 4. Based on ROC curve

analysis, ANG-1 best discriminated CM from UM. In the Thai

population, ANG-1 at a threshold of 21 ng/mL had a sensitivity

Figure 2. Comparison of angiopoietin-1 and -2 with TNF in pediatric malaria patients from Uganda. A. Serum concentrations of
angiopoietin-1 (ANG-1), angiopoietin-2 (ANG-2), the ratio of ANG-2:ANG-1 (RATIO, expressed as log base 10), and tumour necrosis factor (TNF) were
measured in 28 healthy controls (HC), 67 uncomplicated malaria (UM) patients, and in 69 cerebral malaria (CM) patients. B. Receiver operating
characteristic curves (blue line) were generated for each test to compare CM with UM patients, with the null hypothesis (green line) that area under
the curve equals 0.5.
doi:10.1371/journal.pone.0004912.g002

Table 2. Biomarker levels in serum of healthy controls (HC), uncomplicated malaria patients (UM) and cerebral malaria patients
(CM) from adult Thai patients and pediatric Ugandan patients.

Marker Adult (Thailand) Pediatric (Uganda)

HC UM CM HC UM CM

ANG-1 (ng/ml) 378 (151–946) 82.25 (27.3–379) 3.51 (0.001–15.3) 64.4 (23.5–101) 25.0 (0.39–64.9) 9.0 (0.39–37.5)

ANG-2 (ng/ml) 0.0089 (0.005–0.847) 1.84 (0.25–5.44) 6.19 (0.78–35) 0.068 (0.068–1.33) 0.28 (0.068–10.0) 0.83 (0.068–33.5)

Ratio (ANG-2/ ANG-1) 0.00003 (0.000013–0.0021) 0.017 (0.03–0.11) 3.47 (0.15–204) 0.0015 (0.00071–0.014) 0.013 (0.0011–13.0) 0.14 (0.0024–81.5)

TNF (pg/ml) 0 (0–0) 0 (0–44.8) 6.51 (0–73.8) 0 (0–31.3) 70.6 (0–658) 76 (0–559)

Values are presented as median (range).
doi:10.1371/journal.pone.0004912.t002
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and specificity of 100% for distinguishing CM from UM, while

for Ugandan children ANG-1 (at a cut off of 15 ng/mL)

distinguished CM from UM with sensitivity and specificity of

70% and 75%, respectively. Across both populations, using an

ANG-1 threshold of 15 ng/mL, the pooled sensitivity (95% CI)

was 0.77 (0.67–0.84), specificity 0.82 (0.72–0.88), likelihood ratio

of CM given a positive test (ANG-1 below 15 ng/mL) was 4.1

(2.7–6.5) and the likelihood ratio of CM given a negative test was

0.29 (0.20–0.42).

The association of ANG-1 with CM is independent of
parasite burden and other covariates

Although higher parasitemia is generally associated with an

increased risk of severe malaria or CM, severe disease can occur

in individuals with relatively low peripheral parasitemias. In the

Thai population, patients with CM had significantly higher

parasitemias than in uncomplicated malaria patients (p,0.001);

however, this was not the case in Ugandan children (Table 1).

Increased serum cytokine levels may reflect the immune

response to increased parasite burdens, rather than being

indicative of a clinical syndrome such as CM. In support of

this hypothesis, TNF levels were significantly correlated with the

parasite burden among Ugandan children with UM (r2 = 0.38,

p = 0.004) and CM (r2 = 0.44, p,0.001). In contrast, angio-

poietins did not significantly correlate with parasitemia in an

analysis stratified by clinical syndrome and patient population,

yet were strongly associated with CM, suggesting that they

provide diagnostic information independent of measured

parasitemia. Furthermore, ANG-1 (but not TNF) was indepen-

dently associated with CM in a multivariate logistic regression

model, adjusting for the potential confounding effects of

multiple covariates (Table 5).

ANG-1 levels and the ANG-2:ANG-1 ratio predict survival
in African children with cerebral malaria

We examined angiopoietin levels at presentation and subse-

quent survival in children with CM and observed that ANG-1

levels and the ratio of ANG-2:ANG-1 were related to mortality.

Higher ANG-1 levels at presentation were associated with

protection from fatal CM (median (range): non-fatal CM 9.1

(0.39 to 38) versus fatal CM 0.39 (0.39 to 4.6), p = 0.027; Figure 3),

whereas ANG-2:ANG-1 ratios were higher in those who

subsequently died of CM (median (range): non-fatal CM 0.13

(0.01 to 82) versus fatal CM 2.6 (1.4 to 13), p = 0.013). No patients

died in the Thai cohort.

Discussion

This study provides evidence implicating dysregulation of

angiopoietins in the pathogenesis of CM and suggests that they

may be clinically informative biomarkers of this syndrome.

Since the manifestations of severe malaria may differ between

children and adults and in varying backgrounds, we measured

serum ANG-1 and ANG-2 levels in two geographically and

genetically diverse patient and parasite populations and

demonstrate that these endothelial regulators were accurate

discriminators of CM vs. UM in both settings. In both adults

from Thailand (Figure 1; Tables 2–4) and children from Uganda

(Figure 2; Tables 2–4), low ANG-1 levels or increased ANG-

2:ANG-1 ratios were shown to be informative biomarkers of

CM and superior to TNF. Furthermore, ANG-1 levels and the

ANG-2:ANG-1 ratios predicted survival in African children

with CM (Figure 3). Our findings are in agreement with a recent

study by Yeo et al. [33] who reported that ANG-2 levels were

higher in Indonesian adults with severe malaria and were better

predictors of death than other markers of disease, such as

lactate. Our study extends these observations to African

children and suggests that the balance between ANG-2 and

ANG-1 may be particularly informative with respect to the state

of endothelial activation and disease severity.

No laboratory tests are currently available to definitively

confirm a diagnosis of CM, and misdiagnosis may result in

increased adverse outcomes [34,35]. The lack of a reference

standard for definitive diagnosis of CM is associated with

misdiagnosis of CM, particularly in African children where post-

Table 4. Optimal cut-off values (95% CI) for each test and sensitivity (SEN), specificity (SPEC), positive likelihood ratio (LR(+)) and
negative likelihood ratio (LR(2)) at the chosen cut-off value comparing uncomplicated malaria with cerebral malaria patients.

Marker Adult (Thailand) Pediatric (Uganda)

Cut-off SEN SPEC LR(+) LR(2) Cut-off SEN SPEC LR(+) LR(2)

ANG-1 21.26 ng/ml 1 (0.87–1) 1 (0.87–1) ‘* 0* 15.05 ng/ml 0.70
(0.58–0.79)

0.75
(0.63–0.83)

2.7
(1.8–4.3)*

0.40
(0.28–0.60)*

ANG-2 3.04 ng/ml 0.72
(0.52–0.86)

0.84
(0.65–0.94)

4.5
(1.8–11)*

0.33
(0.17–0.64)*

0.39 ng/ml 0.83
(0.72–0.90)

0.60
(0.48–0.71)

2.1
(1.5–2.8)*

0.29
(0.17–0.51)*

Ratio 0.131 1 (0.87–1) 1 (0.87–1) ‘* 0* 0.052 0.73
(0.61–0.82)

0.70
(0.58–0.79)

2.4
(1.6–3.6)*

0.39
(0.26–0.59)*

TNF 1.46 pg/ml 0.76
(0.57–0.89)

0.88
(0.70–0.96)

6.3
(2.1–19)*

0.27
(0.13–0.56)*

81.1 pg/ml 0.48
(0.36–0.61)

0.62
(0.49–0.74)

1.3
(0.84–2.0)

0.82
(0.60–1.1)

*significantly different from 1 (p,0.05).
doi:10.1371/journal.pone.0004912.t004

Table 3. Area under ROC curve (AUC) for each test
comparing UM with CM patients.

Marker Adult (Thailand) Pediatric (Uganda)

AUC (95% CI) P AUC (95% CI) P

ANG-1 1 (1–1) ,0.001 0.785 (0.709–0.861) ,0.001

ANG-2 0.835 (0.719–0.951) ,0.001 0.688 (0.595–0.780) ,0.001

Ratio 1 (1–1) ,0.001 0.779 (0.702–0.856) ,0.001

TNF 0.834 (0.713–0.955) ,0.001 0.557 (0.453–0.661) 0.268

P values are based on the null hypothesis that AUC = 0.5.
doi:10.1371/journal.pone.0004912.t003
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mortem studies have shown approximately 20% of ‘‘cerebral

malaria’’ cases were due to other causes [1,35]. The ability to

accurately determine the presence of, or risk for progression to

CM in falciparum-infected individuals would be of benefit in

patient triage, appropriate clinical management and efficient

resource allocation. Fundoscopic examination demonstrating

malarial retinopathy has been reported to be a useful pre-mortem

discriminator of severe malaria and has been proposed as a

diagnostic test for CM [35,36]. However, indirect fundoscopy has

inherent limitations, including requirements for pupil dilation,

specialized training and equipment. Furthermore, it is unclear

whether fundoscopy can be used to predict which children will

progress to CM, and retinopathy does not appear to be a

consistent feature of CM in adults [36,37,38]. Although the

current study did not directly address whether ANG-1 and ANG-2

could be used to predict which patients with uncomplicated

disease will progress to cerebral malaria, our results clearly

demonstrate that ANG-1 and ANG-2 are sensitive and specific

indicators of severe disease that effectively differentiate between

uncomplicated malaria and CM.

An ideal biomarker for CM might be expected to possess a

number of logistical, diagnostic/prognostic and therapeutic

attributes, including 1) capacity to be easily measured in a readily

available specimen such as serum or whole blood by a

standardized assay that requires limited specialized equipment

and performed with minimal training, 2) reliable detection, with

high sensitivity and specificity of individuals with either established

CM or at risk of progression to CM, and 3) detection of

determinants likely to be involved in the underlying pathogenesis

of the disorder (rather than bystander reactions/epiphenomena),

thereby providing a metric of the underlying disease process, as

well as representing potential therapeutic targets for intervention.

Despite the growing realization that CM is a complex

multisystem disorder, our data suggest that angiopoietins meet

several of these criteria and may represent clinically useful

biomarkers for this syndrome. Angiopoietins appear to be robust

and accessible targets, readily detectable by standard immunoas-

says in serum or whole blood. ROC curve analysis in both

Ugandan pediatric and Thai adult populations indicated that

ANG-1 and ANG-2 were highly accurate tests for the detection of

CM and its discrimination from uncomplicated disease

(Figure 1&2; Table 3), and superior to current markers, such as

TNF (Figures 1&2; Table 3) and sICAM-1 (data not shown). In

this study, serum TNF levels were positively correlated with

parasitemia, whereas angiopoietin levels were not. Although

peripheral parasitemia is a limited marker of disease burden in

malaria, it does not account for total parasite burden, which

includes sequestered parasites [39]. Total parasite biomass can be

estimated using plasma HRP-2 [39], and Yeo et al. [33] have

recently reported that ANG-2 levels were positively correlated

with this marker of parasite burden. However, the different

relationship between the angiopoietins, TNF and parasitemia in

our study suggests that higher levels of TNF may relate to

parasitemia whereas the change in ANG-2:ANG-1 ratio may be

related to the overall clinical syndrome of CM. This may be an

important distinction given the growing body of evidence

supporting an essential role for host-mediated immunopathology

and tissue injury in the pathogenesis of CM (reviewed in [24]).

Our observations that ANG-1 and ANG-2 are dysregulated in

patients with CM, supports the hypothesis that they may be

involved in the pathogenesis of this syndrome. As key regulators of

endothelial integrity, there are several mechanisms by which

angiopoietins may contribute to the pathophysiology of CM.

Although the role of BBB disruption in CM remains controversial

[33,40,41], CM is characterized by parasite sequestration to

CAMs, dysregulated inflammation, and endothelial cell and BBB

dysfunction [22,23,24,25,26]. The endothelium is a large and

continuous vascular organ whose state of activation is dependent

upon the angiopoietin-Tie2 system [27]. ANG-1 maintains

endothelial quiescence and intact tight junctions important for

preventing vascular permeability especially across the BBB. ANG-

2, stored in endothelial cell granules, may be rapidly released

resulting in endothelial activation, augmented inflammation,

loosening of endothelial cell junctional complexes, and upregula-

tion of cerebral endothelial adhesion molecules such as ICAM-1 to

which parasitised erythrocytes adhere. Increases in BBB perme-

ability have been proposed to be one of the earliest events in the

Figure 3. Angiopoietin-1 levels are associated with clinical
outcome in pediatric cerebral malaria patients from Uganda.
Serum concentrations of angiopoietin-1 (ANG-1) were measured in 69
cerebral malaria (CM) patients at presentation and compared to
outcome. Higher ANG-1 levels at presentation were associated with
protection from fatal cerebral malaria. *p = 0.027, non-fatal CM versus
fatal CM (Wilcoxon rank-sum test).
doi:10.1371/journal.pone.0004912.g003

Table 5. Results of a multivariate logistic regression model to
predict CM (versus UM) in two diverse patient populations.

Predictor Adjusted OR (95%CI) p

Group:

Thailand 1.0*

Uganda 0.36 (0.029–4.7) 0.44

Age 0.96 (0.86–1.1) 0.53

Parasitemia (parasites/mL) 1.00 (1.00–1.00) 0.20

ANG-1 (ng/mL) 0.899 (0.864–0.934)** ,0.001

ANG-2 (ng/mL) 1.10 (0.944–1.28) 0.22

Ratio (ANG-2/ANG-1) 1.01 (0.932–1.09) 0.82

TNF (pg/mL) 1.00 (0.994–1.003) 0.91

*baseline comparator group.
**Adjusted odds ratio represents the incremental odds of CM for every unit

increase (1 ng/mL) in the ANG-1 level.
doi:10.1371/journal.pone.0004912.t005
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pathogenesis of CM [24]. Therefore dysregulation of angiopoie-

tins, as occurs when ANG-2 levels rise and ANG-1 levels fall, may

reflect one of the pivotal or initiating events in the syndrome.

It will be important to dissect the putative mechanisms by which

angiopoietins may contribute to malaria pathogenesis in animal

models where endothelial and BBB dysfunction and vascular leak

are central features of disease [25]. If confirmed by additional

studies in humans and clinically relevant animal models, advanced

therapies to preserve regulated angiogenic responses, for example

by delivering recombinant ANG-1 to restore endothelial cell

quiescence, can be examined to determine if they offer clinical

benefit as they have in other models of life-threatening infectious

disease [42]. It will also be of interest to determine if ANG-2/

ANG-1 imbalance will predict outcome in other severe infectious

and inflammatory disease states that impact vascular integrity and

permeability such as dengue and other viral hemorrhagic fevers,

rickettsial infections, toxic shock syndrome and sepsis [43,44].

One limitation of our study is the relatively small sample sizes,

particularly in the Thai population. The sensitivity and specificity

of ANG-1 levels and the ANG-2/ANG-1 ratio for the diagnosis of

CM was 100% in the Thai population and somewhat lower in the

Ugandan pediatric cohort. It will be important to confirm and

extend our observations and further assess performance and

specificity in larger prospective clinical trials, especially those

assessing malarial retinopathy and autopsy studies with histopath-

ologically confirmed cases of CM [35,36]. Another limitation is

that this study focused on the utility of angiopoietin levels in the

diagnosis and outcome of CM. Future prospective studies will be

required to assess the value of serum angiopoietin levels in

predicting progression and outcome of severe or cerebral disease

and in distinguishing CM from coma of other causes. With respect

to the specificity of angiopoietins for CM versus other life-

threatening infections, it is important to note that biomarkers such

as angiopoietins are more likely to provide clinically relevant

information pertaining to the mechanism and severity of the

underlying disease process and the need for critical care triage/

referral, and are not expected to be pathogen-specific. Therefore,

they will be expected to complement, rather than replace,

conventional pathogen diagnosis (for example, microscopy, HRPII

or pLDH detection for malaria) and enhance triage and clinical

management.

In summary, these data suggest that the dysregulation of

angiogenic factors may be involved in the pathogenesis of cerebral

malaria and that serum ANG-1 and ANG-2 levels are accurate

biomarkers to discriminate CM from uncomplicated disease and

predict survival in African children with cerebral involvement.
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