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Evidence that breast cancer risk at the 2q35
locus is mediated through IGFBP5 regulation
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GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine

mapping of this locus using data from 101,943 subjects from 50 case-control studies.

We genotype 276 SNPs using the ‘iCOGS’ genotyping array and impute genotypes for a

further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs

(rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds

against 4100:1. The best functional candidate, rs4442975, is associated with oestrogen

receptor positive (ERþ ) disease with an odds ratio (OR) in Europeans of 0.85 (95% con-

fidence interval¼0.84�0.87; P¼ 1.7� 10�43) per t-allele. This SNP flanks a transcriptional

enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth

factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and

chromatin looping. Evidence suggests that the g-allele confers increased breast cancer

susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast

cell biology.
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T
he 2q35 breast cancer locus was originally identified in an
Icelandic genome-wide association study (GWAS)1, and
subsequently confirmed in larger European studies. The

largest replication study, comprising 25 studies from the Breast
Cancer Association Consortium, yielded odds ratio (OR) of
0.89 (95% CI � 0.87 to 0.92) per g-allele for rs13387042 with
evidence for association with both oestrogen receptor-positive
(ERþ ) and ER-negative (ER� ) disease2. rs13387042 lies in a
210-kb linkage disequilibrium (LD) block within a gene ‘desert’,
bounded centromerically by the transition nuclear protein 1 gene
(TNP1—181 kb proximal) and telomerically by the disrupted in
renal carcinoma 3 gene (DIRC3—243 kb distal). Additional but
more distant centromeric genes are two members of the insulin
growth factor-binding protein family, IGFBP5 (345 kb proximal)
and IGFBP2 (376 kb proximal).

In the current study, we describe the fine-scale mapping of the
2q35 breast cancer susceptibility locus using 1,560 genotyped and
imputed single nucleotide polymorphisms (SNPs) in 101,943
subjects from 50 case-control studies. The strongest candidate for
causality, SNP rs4442975, flanks a transcriptional enhancer that
physically interacts with the promoter of IGFBP5. Furthermore,
we demonstrate that rs4442975 is associated with allele-specific
FOXA1 binding, chromatin looping and IGFBP5 expression.
Our data suggest that the g-allele of rs4442975 confers
increased breast cancer susceptibility through reduced IGFBP5
expression.

Results
Fine-scale mapping identifies two candidate causal variants.
Association analyses were performed on 1,560 2q35 SNPs (276
genotyped and 1,284 imputed at r240.3). Three hundred and
fifty-two SNPs are associated with overall breast cancer, 327 with
ERþ and none with ER� breast cancer (P values o10� 4;
Supplementary Data 1) in European-ancestry women. The gen-
otyped SNP rs4442975 displays the strongest association
(per-t-allele OR¼ 0.87; 95% CI � 0.86 to 0.89; P¼ 3.9� 10� 46;
Fig. 1; Table 1; Supplementary Fig. 1) and this is stronger
for ERþ disease (OR¼ 0.85; 95% CI � 0.84 to 0.87; P¼ 1.69
� 10� 43) than for ER� disease (OR¼ 0.95; 95% CI � 0.91 to
0.98; P¼ 0.0043; P heterogeneity¼ 2.8� 10� 6; Table 1).

We next conducted multivariable logistic regression for both
overall and ERþ breast cancer, examining each SNP with
univariate Po10� 4 (N¼ 330) in an analysis adjusted for the
most significant SNP rs4442975. No further variants are strongly
associated with overall or ERþ disease. The second most
strongly associated SNP for overall breast cancer after adjusting
for rs4442975 is rs10191184 (OR¼ 0.96; 95% CI¼ 0.93 to 0.99;
P¼ 0.0048), consistent with the hypothesis of a single causative
variant. We compared the log likelihoods from the ERþ
univariate regression models for each SNP with the log likelihood
for rs4442975. All SNPs except one (rs6721996), which was
almost perfectly correlated with rs4442975 (r2¼ 0.98), have log
likelihoods 4100 times lower than rs4442975 and hence can
reasonably be excluded as being causative. The excluded variants
include the original GWAS hit, rs13387042, which is strongly
correlated with rs4442975 (r2¼ 0.93) but has odds of 3300:1
against being causative (Table 1). Haplotype analyses of the five
most strongly associated SNPs identified two common and one
rarer haplotype (frequency 1.4%: Supplementary Table 1). The
rare haplotype (1) carries the cancer-protective alleles at
rs4442975 (t-allele) and rs6721996 (a-allele), but not
rs13387042, and has a similar risk to haplotype 2, carrying the
protective alleles at all five SNPs, which is consistent with the
hypothesis of rs4442975 and/or rs6721996 being the causal
variant.

In Asian studies, the protective alleles for both candidate causal
variants (rs4442975 and rs6721996) are rarer (minor allele
frequencies (MAFs)¼ 0.13 and 0.12, respectively) than in
Europeans (MAF¼ 0.49) but their associated relative risk
estimates with overall breast cancer are consistent: per t-allele
OR (rs4442975)¼ 0.94; 95% CI � 0.87 to 1.02; P¼ 0.12 and per
a-allele OR (rs6721996)¼ 0.95; 95% CI � 0.88 to 1.03; P¼ 0.20
(Table 1).

rs4442975 resides near a putative regulatory element. We used
available ENCODE chromatin immunoprecipitation-sequencing
(ChIP-seq) data to map the candidate causal SNPs relative to
transcriptional regulatory elements. SNP rs4442975 lies near a
putative regulatory element (PRE) as defined by H3K4Me1 his-
tone modifications in seven cell types from ENCODE, and
H3K4Me2 in MCF7 cells (Figs 1 and 2a). This PRE also contains
DNaseI-hypersensitive sites in both MCF7 and HMEC cell lines
(indicative of regions of open chromatin) and binds several
transcription factors (TFs) associated with oestrogen signalling3

(Fig. 2a). By contrast, the region surrounding SNP rs6721996
does not contain specific histone modifications or relevant TF
binding in the cell lines analysed (Fig. 2a).

rs4442975 alters FOXA1 DNA binding. Breast cancer suscept-
ibility loci have been shown to be enriched for FOXA1-binding
sites at active regulatory elements in breast cancer cells; and the
2q35 locus contains variants predicted to modulate the affinity of
FOXA1 (ref. 4). FOXA1 is a pioneer factor and master regulator
of ER activity due to its ability to open local chromatin and
recruit ER to target gene promoters5,6. SNP rs4442975 is
predicted, in silico, to lie in a FOXA1-binding site with the
t-allele promoting increased FOXA1 binding compared with the
g-allele (Fig. 2b,c; Supplementary Fig. 2). To assess occupancy of
FOXA1 in vivo, we conducted ChIP followed by allele-specific
quantitative PCR (qPCR) in the heterozygous BT474 breast
cancer cell line. We found that FOXA1 is indeed preferentially
recruited to the t (cancer-protective) allele of candidate causal
SNP rs4442975 (Fig. 2d; Supplementary Fig. 3). Of note, ChIP-
seq data from ENCODE identified a second, albeit weaker,
FOXA1-binding motif upstream of rs4442975 that may also
influence FOXA1 recruitment (Fig. 2a). However, ChIP-qPCR
did not detect FOXA1 binding in vivo to this additional site, and
due to the limited availability of FOXA1-positive breast cancer
cell lines with the relevant genotypes, we are unable to
unequivocally discern its affinity for FOXA1. Consequently,
while our results support a role for rs4442975 in modulating
FOXA1-binding affinity on the site of overlap, we cannot exclude
additional cis-effects typical of multi-enhancer variants7 where a
rare variant, yet to be identified, would be in LD with rs4442975
and influence the recruitment of FOXA1 or other factors found in
the same LD block.

rs4442975 interacts with the IGFBP5 promoter. To determine
the target gene(s), we used chromatin conformation capture (3C),
which revealed that the PRE containing rs4442975 frequently
interacts with the IGFBP5 promoter (located 345 kb proximal) in
both ERþ breast cancer cell lines (MCF7 and BT474) and in
normal breast epithelial cells (MCF10A and Bre-80; Fig. 3a). No
significant interactions were detected between this PRE and other
flanking genes including IGFBP2, XRCC5, TNP1 and DIRC3
(Fig. 3a; Supplementary Figs 4–7). The region surrounding SNP
rs6721996 did not interact with any flanking genes including the
IGFBP5 promoter (Supplementary Figs 4–7). To assess any
potential impact of SNP rs4442975 on this chromatin interaction,
allele-specific 3C was performed in heterozygous BT474 cell lines.
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Sequence profiles indicate that the rs4442975 t-allele is more
strongly associated with looping of this PRE to the IGFBP5
promoter than the g-allele (Fig. 3b; Supplementary Fig. 8), sug-
gesting that the cancer-protective t-allele may increase IGFBP5
expression through preferential contact between this element and
the IGFBP5 promoter.

rs4442975 influences IGFBP5 expression. The regulatory cap-
ability of the PRE, combined with the effect of SNP rs4442975,
was further examined in luciferase reporter assays, using con-
structs containing the IGFBP5 promoter. The wild-type PRE acts
as a transcriptional enhancer, leading to a 2–3 fold increase in
IGFBP5 promoter activity (Fig. 3c; PRE REF-G), but inclusion of
the rs4442975 t-allele has no significant effect on the PRE
enhancer activity (Fig. 3c; PRE REF-T). While this appears to rule
out an effect of this SNP on transactivation, it is possible that
rs4442975 is influencing gene expression through other reg-
ulatory mechanisms. To assess the impact of the rs4442975 alleles
on IGFBP5 expression, we measured endogenous levels of
IGFBP5 mRNA in ER-positive breast cancer cell lines either
homozygous (G/G) or heterozygous (G/T) for SNP rs4442975.
While limited in number, the results showed that IGFBP5 mRNA
was significantly increased in heterozygous cell lines (Fig. 4a).
Furthermore, given the importance of FOXA1 in oestrogen–ER
activity, we also measured endogenous levels of IGFBP5 mRNA
in MCF7 (G/G) and BT474 (G/T) cells following oestrogen
induction and found that IGFBP5 mRNA was significantly
increased but only in the heterozygous BT474 cells (Fig. 4b;
Supplementary Fig. 9). To evaluate allele-specific IGFBP5

expression, we identified a heterozygous variant (pos271557291)
in the first intron of IGFBP5 in BT474 cells. Sequencing of the 3C
product showed that the t-allele of rs4442975 is physically linked
to the variant c-allele of pos271557291 (Supplementary Fig. 10).
Allele-specific expression assays revealed that the c-allele of var-
iant pos271557291 is preferentially expressed, supporting our
conclusion that the protective t-allele of rs4442975 is associated
with an increase in IGFBP5 expression (Fig. 4c; Supplementary
Fig. 11).

Gene expression analyses in breast tissue. Finally, we examined
the associations of rs4442975 with expression levels of genes
within 1 Mb of the SNPs, in 123 normal breast tissue samples and
254 breast tumour samples in the Norwegian Breast Cancer Study
(NBCS), and additionally in 135 normal breast tissue samples
from the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) study. In normal breast tissue from
NBCS, SNP rs4442975 is associated with expression levels of the
IGFBP5 probe, A_23_P154115 (P¼ 0.045), and similarly in
METABRIC with the IGFBP5 probe, ilmn_1750324 (P¼ 0.026;
Supplementary Table 2), but there are no associations with other
IGFBP5 probes used in these studies. In both studies, the pro-
tective t-allele of rs4442975 was associated with slightly increased
IGFBP5 levels (Supplementary Fig. 12). However, for each tested
IGFBP5 probe there are other more strongly expression-asso-
ciated SNPs (eSNPs) at this locus, none of which are significantly
correlated with the breast cancer risk candidate SNP, rs4442975
(r2o0.001; Supplementary Table 2). No significant associations
were observed between rs4442975 and expression of any other
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Figure 1 | Genetic mapping and epigenetic landscape at the 2q35 locus. Manhattan plot of the 2q35 breast cancer susceptibility locus. Genotyped (black

dots) and imputed (red dots) SNPs are plotted based on their chromosomal position on the x axis and their overall P values (log10 values, likelihood ratio

test) from the European BCAC studies (46,451 cases and 42,599 controls) on the y axis. The shaded region represents an area bounded by SNPs correlated

with rs4442975 at r2¼0.8. Data from the UCSC Genome Browser, including epigenetic marks for methylation of histone H3 at lysine 4 (H3K4me1,

H3K4me3) and acetylation of H3 at lysine 27 (H3K27ac) in seven cell types from ENCODE28. The positions of all analysed iCOGS SNPs are marked. LD,

using data from the BCAC population, is depicted beneath—white represents r2¼0 and black r2¼ 1.
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genes in NBCS normal breast tissues or breast tumours, nor in
METABRIC normal breast samples (Supplementary Table 3).

Discussion
In this study, we have conducted a comprehensive analysis of all
known common variants within a 210-kb interval of the original
2q35 locus. We identified one independent set of correlated,
highly trait-associated variants (iCHAV)8 for ER-positive breast
cancer. Our data are consistent with a single disease-associated
variant, with no evidence for further SNPs being associated with
breast cancer risk after adjustment for the candidate causal SNP,
rs4442975. However, we recently identified another iCHAV for
breast cancer 4300 Kb telomeric to rs4442975 (ref. 9). These two
iCHAVs are separated by several recombination hotspots, and
their tagging SNPs are uncorrelated (r2¼ 0.002). This observation
fits the general pattern that multiple independent cancer
susceptibility variants fall within GWAS-identified loci7,10, and
raises the possibility that both associations are mediated through
the same target gene.

Our allele-specific 3C and expression analyses provided
evidence that rs4442975 contributes to changes in IGFBP5
expression. Although not robustly supported by our expression
quantitative trait locus (eQTL) studies, two independent data sets
showed that the protective t-allele of rs4442975 was associated
with slightly increased IGFBP5 levels, which is consistent with our
functional results. However, we also identified other eSNPs in the

region that are more strongly associated with IGFBP5 expression
in normal breast tissue, but do not drive breast cancer risk. This
situation is not dissimilar to other loci we have studied, where we
have not found that the causal risk SNPs are strong eQTLs for the
gene they regulate11–13. This disparity may at least partly be
explained by the fact that eSNPs are acting in multiple tissues, but
risk-associated SNPs may only act in one specific cell type. Given
that normal breast tissue is so heterogeneous, any eQTL effect
that is specific to one cell type (such as stem cells) is going to be
significantly diluted. In addition, eQTLs are very context
dependent, so might only be expressed in breast tissue under
particular stimuli or stages of development. It is also possible that
the relevant cells for the analysis are luminal progenitor cells in
adolescence, when the human breast seems susceptible to
environmental and hormonal influences, but we have no access
to data from them.

The best understood activity of the IGFBPs is sequestration of
extracellular IGFs to control their growth-promoting actions.
IGFBP5, which is expressed in both normal and cancer tissues, is
a key member of this IGF axis—regulating cellular growth,
differentiation and apoptosis14,15, but IGF-independent actions of
IGFBP5 have also been demonstrated in various cell types16,17.
The roles of IGFBP5 in human breast cancer are complex and
there are many contradictory findings: some lines of evidence
suggest that IGFBP5 acts as an inhibitor of tumour growth. For
example, Butt et al.18 reported that increased expression of
IGFBP5 inhibits human breast cancer cell growth. Consistent
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Figure 2 | Allele-specific binding of FOXA1 at the rs4442975 site. (a) Epigenetic and transcriptional landscape of the 2q35 risk interval. Coloured

histogram denotes histone modification ChIP-seq data from ENCODE. Data from the UCSC Genome Browser, including epigenetic marks for H3K4me1 in
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SNP rs4442975. (b) Position weight matrix of FOXA1 from JASPAR, with homology to the risk (g) and cancer-protective (t) alleles of rs4442975 coloured

below. (c) IGR histogram for SNP rs4442975 predicting the binding intensity of FOXA1 using a seven-nucleotide affinity model5. The top row of

coloured numbers shows the number of instances for each K-mer found genome wide within H3K4me2 elements in MCF7 cells. The bottom row shows

the averaged binding intensities at the K-mers (50 bp window). Control profiles, shown in grey, are generated by scrambling the probed sequence.

(d) Allele-specific FOXA1 ChIP-qPCR results assessed at the rs4442975 SNP in heterozygous BT474 breast cancer cells. Error bars denote s.d.

P values were determined with a two-tailed t-test. **Po0.01.
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with a pro-apoptotic effect, transgenic mice, expressing IGFBP5
in mammary gland, have impaired mammary development and
increased apoptotic cell death19. Other evidence indicates,
conversely, that IGFBP5 has anti-apoptotic and tumour-
promoting actions; Perks et al.20 reported that exogenous
IGFBP5 inhibits apoptosis of breast cancer cells in vitro. Very
low IGFBP5 expression has been detected in benign breast
epithelium with high expression levels in adjacent breast tumour
tissue21,22.

We propose that the g-allele of SNP rs4442975 (associated with
increased risk) reduces FOXA1 binding and hence results in
reduced chromatin accessibility, cofactor recruitment and long-
range chromatin interactions. Taken together, all these lines of
evidence point to increased breast cancer risk, associated with the
rs4442975 g-allele, being mediated through reduced IGFBP5
expression. The IGF axis is already an important therapeutic
target in other human cancers23, and our findings suggest further
studies on IGFBP5 and breast cancer prevention may be merited.

Methods
Study populations and genotyping. Epidemiological data were obtained from 50
breast cancer case-control studies participating in the Breast Cancer Association
Consortium; these comprised 41 studies from populations of European ancestry
and 9 studies from populations of East Asian ancestry9. Genotyping was conducted
using the iCOGS array, a custom array comprising B200,000 SNPs. Details of the
participating studies, genotyping calling and quality control are given elsewhere9.
After quality control exclusions, we analysed data from 46,451 cases and 42,599
controls of European ancestry and 6,269 cases and 6,624 controls of Asian ancestry.
ER status of the primary tumour was available for 34,539 European and 4,972
Asian cases; of these 7465 (22%) European and 1610 (32%) Asian cases were ER
negative9.

SNP selection and genetic mapping. We first defined a mapping interval of
210,596 bp (positions 217, 732, 119–217, 942, 715; NCBI build 37 assembly) based
on the LD block that included rs13387042 in Hapmap (CEU). We catalogued 1,578
variants in the region using the 1000 Genomes Project (March 2010 Pilot version
60 CEU project data), of which 751 variants had a MAF 42%. Of these, we
selected all SNPs correlated with the rs13387042 at r240.1 (N¼ 150), plus a set of
SNPs designed to tag all remaining SNPs with r240.9 (N¼ 137). All but 11 SNPs
passed a designability score (DS) provided by Illumina (DS40.9) and were
included on the iCOGS array. The 276 SNPs included on the array all passed
quality control and were included in this analysis. The genotype data were then
used to impute genotypes at all additional known SNPs in the interval using
IMPUTE version 2.0 and the 1000 Genome Project data (March 2012 version) as a
reference panel. One thousand two hundred and eighty-four variants were suc-
cessfully imputed, with imputation r240.3 in Europeans.

Statistical analysis. Per-allele ORs and s.e. were estimated for each SNP using
logistic regression, separately for subjects of European and Asian ancestry, and
separately for overall, ER-positive and ER-negative breast cancer. The association
between each SNP and breast cancer risk was tested using a one-degree-of-freedom
trend test adjusted for study and seven principal components. The statistical sig-
nificance of each SNP was derived using a Wald test. To evaluate evidence for
multiple association signals, we performed conditional analyses, in which the
association for each SNP was re-evaluated after including other associated SNPs in
the model. SNPs with a P value o10� 4 and MAF 42% in the single SNP analysis
were included in this analysis9. Differences in the OR between ER-positive and ER-
negative disease were assessed using a case-only analysis, with ER status as the
dependent variable. Haplotype-specific ORs and confidence limits were estimated
using haplo.stats24.

Cell lines and treatments. Breast cancer cell lines MCF7 (ERþ ; ATCC #HTB22),
T47D (ERþ ; ATCC #HTB-133), ZR751 (ERþ ; ATCC #CRL-1500), MDAMB415
(ERþ ; ATCC #HTB-128) and BT474 (ERþ ; ATCC #HTB20) were grown in
RPMI medium with 10% fetal calf serum and antibiotics. MDAMB361 (ERþ ;
kindly provided by Sunil Lakhani, UQCCR, Brisbane) were grown in DMEM with
20% fetal calf serum and antibiotics. Normal breast epithelial cell lines MCF10A
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Figure 3 | Chromatin interactions at the 2q35 risk region with IGFBP5 in breast cell lines. (a) 3C interaction profiles between the PRE (containing

rs4442975) and the IGFBP5 promoter region (grey box). 3C libraries were generated with EcoRI, with the anchor point set at the PRE. A physical map of the
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breast cancer cells shows allele-specific chromatin looping. Chromatograms represent one of the three independent 3C libraries generated and sequenced.

(c) Luciferase reporter assays in breast cell lines demonstrating enhancer activity of the PRE at the 2q35 risk locus. The PRE was cloned upstream of an

IGFBP5 promoter-driven luciferase reporter with and without SNP rs4442975. Cells were transiently transfected with each of these constructs and assayed

for luciferase activity after 24 h. Graphs represent two independent experiments assayed in triplicate. Error bars denote s.d. P values were determined with

a two-tailed t-test. ****Po0.0001.
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(ATCC #CRL 10317) and Bre-80 (kindly provided by Roger Reddel, CMRI,
Sydney) were grown in DMEM/F12 medium with 5% horse serum, 10 mg ml� 1

insulin, 0.5 mg ml� 1 hydrocortisone, 20 ng ml� 1 epidermal growth factor and
100 ng ml� 1 cholera toxin and antibiotics. For oestrogen induction, 24 h after
plating MCF7 or BT474 cells into 24-well plates, medium was replaced with that
containing 10 nM fulvestrant. Cells were incubated for 48 h and then fresh medium
containing either 10 nM oestrogen or DMSO (dimethylsulphoxide; as vehicle
control) was added25. All cell lines were maintained under standard conditions,
routinely tested for Mycoplasma and identity profiled with short tandem repeat
markers.

Chromatin conformation capture (3C). Breast cancer cell lines were grown to
80% confluence, then crosslinked with 1% formaldehyde at 37 �C for 10 min,
quenched with ice-cold 125 mM glycine and collected by cell scraping. Cells were
then washed twice in ice-cold phosphate-buffered saline (PBS), lysed for 30 min on
ice in 10 ml lysis buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 0.2% Igepal, 1�
protease inhibitor cocktail) and homogenized with 15 strokes in a Dounce
homogenizer. Nuclei were then pelleted for 10 min (800g at 4 �C), washed in PBS
and resuspended in 1 ml 1.2� EcoRI restriction buffer and 0.3% SDS for 1 h at
37 �C with shaking. Triton X-100 (2%) was added to sequester SDS, and then each
tube was digested with 1,500 U EcoRI for 24 h at 37 �C with shaking. One aliquot of
digested cells was set aside to assess restriction enzyme efficiency by real-time PCR
(qPCR), the rest was ligated with 4,000 U of T4 DNA ligase for 4 h at 16 �C.
Crosslinks were reversed by proteinase K digestion overnight, and then the 3C
DNA template was purified by phenol–chloroform extraction followed by four
rounds of ethanol precipitation. The final DNA pellet was dissolved in 10 mM Tris
(pH 7.5) overnight at 4 �C, purified through Amicon Ultra 0.5 ml columns (EMD
Millipore) and quantitated by qPCR. 3C interactions were quantitated by qPCR
using primers designed within EcoRI restriction fragments (Supplementary
Table 4). All qPCRs were performed on a RotorGene 6000 using MyTaq HS DNA
polymerase with the addition of 5 mM of Syto9, annealing temperature of 66 �C
and extension of 30 s. 3C analyses were performed in three independent experi-
ments with each experiment quantified in duplicate. BAC clones (RP11-96E20,
RP11-944D16, RP11-14F16, RP11-639B13, RP11-43F9, RP11-22K2) covering the
2q35 region were used to create artificial libraries of ligation products to normalize
for PCR efficiency. Data were normalized to the signal from the BAC clone library

and, between cell lines, by reference to a region within GAPDH. All qPCR products
were electrophoresed on 2% agarose gels, gel purified and sequenced to verify the
3C product.

Plasmid construction and luciferase assays. The IGFBP5 promoter-driven
luciferase reporter construct was generated by inserting a 1,071-bp fragment
containing the IGFBP5 promoter into the KpnI and XhoI sites of pGL3-basic. To
assist cloning, AgeI and SbfI sites were inserted into the BamHI and SalI sites
downstream of luciferase. A 1,296-bp fragment containing the PRE was inserted
into the AgeI and SbfI sites downstream of luciferase. SNP rs4442975 was incor-
porated into the PRE using overlap extension PCR. All constructs were sequenced
to confirm variant incorporation (AGRF, Australia). Primers used to generate all
constructs are listed in Supplementary Table 4. MCF7, BT474, MCF10A and
Bre-80 breast cells were transfected with equimolar amounts of luciferase reporter
plasmids and 50 ng of pRLTK using Lipofectamine 2000. The total amount of
transfected DNA was kept constant per experiment by adding carrier plasmid
(pUC19). Luciferase activity was measured 24 h post transfection using the
Dual-Glo Luciferase Assay System on a Beckman-Coulter DTX-880 plate reader.
To correct for any differences in transfection efficiency or cell lysate preparation,
Firefly luciferase activity was normalized to Renilla luciferase. The activity of each
test construct was calculated relative to IGFBP5 promoter construct, the activity
of which was arbitrarily defined as 1.

Intragenomic replicates. Intragenomic replicates (IGR) predicts the modulation
in affinity produced by a SNP at a TF-binding site4. The affinity of a TF for a
particular DNA sequence of length K (K-mer) is obtained by averaging binding
data across a ChIP-seq data set for that TF. IGR accounts for displacement effects
by computing affinity models over a sliding window of K-mers around the SNP of
interest. Through this process, the collection of affinity models for increasing values
of K is placed in a lattice structure that connects K-mers, which are 1 bp apart. Two
lattices are constructed, one for each of the variants alleles. The maxima among the
affinity models in the lattices is used to calculate the IGR score. T-tests are used to
assess the statistical significance of the affinity modulation between the two K-mers
with the maximum affinities.
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Figure 4 | IGFBP5 expression in breast cancer cell lines and normal breast tissue. (a) Endogenous IGFBP5 expression measured by qPCR in untreated

ERþ human breast cancer cell lines and (b) oestrogen-stimulated breast cancer cell lines. Graphs represent three independent experiments. Error bars
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Allele-specific ChIP-qPCR. Breast cancer cell lines were grown to 95% confluence,
crosslinked with 1% formaldehyde at 37 �C for 10 min, cells were rinsed with ice-
cold PBS plus 5% bovine serum albumin and then with PBS and collected with PBS
plus 1� protease inhibitor cocktail (Roche Molecular Biochemicals, Indianapolis,
IN). Collected cells were centrifuged for 2 min at 3,000 r.p.m. Cell pellet was then
resuspended in 0.35 ml of lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl,
pH 8.1, 1� protease inhibitor cocktail) and sonicated 20 times in 30 s on 30 s off
cycles at the maximum setting (Diagenode Biorupter 300) followed by cen-
trifugation at maximum speed for 15 min. Supernatants were collected and diluted
in dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl,
pH 8.1). Four micrograms of FOXA1 antibody (Acris, AP16139PU-N) was pre-
bound for 6 h to protein A and protein G Dynal magnetic beads (Dynal Biotech,
Norway) and washed three times with ice-cold PBS plus 5% bovine serum albumin
and then added to the diluted chromatin for overnight immunoprecipitation. The
magnetic bead–chromatin complexes were collected and washed six times in RIPA
buffer (50 mM HEPES (pH 7.6), 1 mM EDTA, 0.7% Na deoxycholate, 1% NP-40,
0.5 M LiCl), then washed twice with Tris-EDTA buffer. To reverse the for-
maldehyde crosslinking, decrosslinking buffer (1% SDS, 0.1 M NaHCO3) was
added to the complexes overnight at 65 �C. DNA fragments were purified with a
QIAquick Spin Kit (Qiagen, CA). For PCR, 2.5 ml from a 125-ml immunoprecipi-
tated chromatin extraction and 250-ml input extraction, and 40 cycles of amplifi-
cation were used. To assess differential FOXA1 binding at the heterozygous alleles,
the MAMA (Mismatch Amplification Mutation Assays) PCR-based technique was
used26. Reverse MAMA primers specific to each allele were designed with one
mismatched nucleotide at the 30 end26. The primers are listed in Supplementary
Table 4.

Gene expression analysis. MCF7 and BT474 total RNA was extracted using
Trizol (Life Technologies) from untreated, oestrogen (10 nM)- or vehicle (DMSO)-
treated cells. Residual DNA contaminants were removed by DNAse treatment
(Ambion) and complementary DNA was synthesized using random primers as per
manufacturers’ instructions (Life Technologies). All qPCRs were performed
on a RotorGene 6000 (Corbett Research) with TaqMan Gene Expression assays
(Hs00181213_m1 for IGFBP5 and Hs00907239_m1 for TFF1) and TaqMan
Universal PCR master mix. All reactions were normalized against B-glucuronidase
(MIM 611499; Catalogue No. 4326320E). For in vivo allele-specific gene expression,
a primer outside of the rs4442975 SNP and its closest EcoRI restriction enzyme site
and a primer outside of the SNP pos271557291 and its closest EcoRI site were first
used to PCR amplify the EcoRI 3C product from BT474 cells. PCR-amplified
products were cloned into pBLUNT empty vector (Life Technologies), then
sequenced using the Sanger sequencing, which revealed the linkage between the
two alleles (Supplementary Fig. 10). BT474 genomic DNA was extracted using
Qiagen DNeasy blood and tissue kit. BT474 total nuclear RNA was extracted using
Trizol and cDNA synthesized using a gene-specific primer. PCR-amplified
sequences from BT474 genomic DNA or cDNA were gel purified (Qiagen) and
Sanger sequenced to measure the DNA and RNA levels of each allele. All
experiments were conducted in biological triplicates and qPCR reactions as
technical duplicates. The primers are listed in Supplementary Table 4.

eQTL analysis. eQTL analyses were conducted in two studies: 123 normal breast
tissue and 254 breast tumours from women in the Norwegian Breast Cancer Study
(NBCS); all women were of Caucasian origin. The 123 normal breast tissue is a
cohort of expression data from normal breasts biopsy (n¼ 74), reduction plastic
surgery (n¼ 37) and adjacent normal (n¼ 12) (adjacent to tumour). Correlations
between the two most likely causative SNPs (rs4442975 and rs6721996) and
expression levels of nearby genes (500 kb upstream and downstream of the SNPs)

were assessed using a linear regression model in which an additive effect on
expression level was assumed for each copy of the rare allele. Calculations were
carried out using the eMap library in R (www.bios.unc.edu/Bweisun/software/
eMap).

The second eQTL analysis was based on 135 adjacent normal breast samples
from women of Caucasian origin in the METABRIC study27. Matched gene
expression (Illumina HT-12 v3 microarray) and germline SNP data that were either
genotyped (Affymetrix SNP 6.0) or imputed (1000 Genomes Project, March 2012
data using IMPUTE version 2.0) were used. Statistical methods were identical to
the NBCS analysis.
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Center), Marie-France Valois, Annie Turgeon and Lea Heguy (McGill University Health
Center, Royal Victoria Hospital, McGill University) for DNA extraction, sample man-
agement and skilful technical assistance. J.S. is Chairholder of the Canada Research Chair
in Oncogenetics. The work of MTLGEBCS was supported by the Quebec Breast Cancer
Foundation, the Canadian Institutes of Health Research for the ‘CIHR Team in Familial
Risks of Breast Cancer’ program—grant #CRN-87521—and the Ministry of Economic
Development, Innovation and Export Trade—grant #PSR-SIIRI-701. The MYBRCA
study would like to thank Phuah Sze Yee, Peter Kang, Kang In Nee, Kavitta Sivanandan,
Shivaani Mariapun, Yoon Sook-Yee, Teh Yew Ching and Nur Aishah Mohd Taib for
DNA Extraction and patient recruitment. MYBRCA is funded by research grants from
the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian
Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives
Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research
Institute, which was supported by a grant from the Biomedical Research Council
(BMRC08/1/35/19/550), Singapore and the National medical Research Council, Singa-
pore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian
Research council, 155218/V40, 175240/S10 to A.-L.B.-D., FUGE-NFR 181600/V11 to
V.N.K. and a Swizz Bridge Award to A.-L.B.-D. The NBHS_TN study would like to
thank participants and research staff for their contributions and commitment to this
study. The NBHS was supported by NIH grant R01CA100374. Biological sample
preparation was conducted by the Survey and Biospecimen Shared Resource, which is
supported by P30 CA68485. The OBCS study would like to thank Meeri Otsukka, Kari
Mononen, Mervi Grip and Saila Kauppila. The OBCS was supported by research grants
from the Finnish Cancer Foundation, the Academy of Finland (grant number 250083,
122715 and Center of Excellence grant number 251314), the Finnish Cancer Foundation,
the Sigrid Juselius Foundation, the University of Oulu, the University of Oulu
Support Foundation and the special Governmental EVO funds for Oulu University

Hospital-based research activities. The OFBCR study would like to thank Teresa Selander
and Nayana Weerasooriya. The Ontario Familial Breast Cancer Registry (OFBCR) was
supported by grant UM1 CA164920 from the National Cancer Institute (USA).
The content of this manuscript does not necessarily reflect the views or policies of the
National Cancer Institute or any of the collaborating centres in the Breast Cancer Family
Registry (BCFR), nor does it mention trade names, commercial products or organizations
that imply endorsement by the USA Government or the BCFR. The ORIGO study would
like to thank E. Krol-Warmerdam, and J. Blom for patient accrual, administering
questionnaires and managing clinical information. The LUMC survival data were
retrieved from the Leiden hospital-based cancer registry system (ONCDOC) with the
help of Dr J. Molenaar. The ORIGO study was supported by the Dutch Cancer Society
(RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infra-
structure (BBMRI-NL CP16). The PBCS study would like to thank Louise Brinton,
Mark Sherman, Neonila Szeszenia-Dabrowska, Beata Peplonska, Witold Zatonski, Pei
Chao and Michael Stagner. The PBCS was funded by Intramural Research Funds of
the National Cancer Institute, Department of Health and Human Services, USA. The
pKARMA study would like to thank The Swedish Medical Research Counsel. The
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