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Summary 

 

Background 

Mendelian randomisation studies have so far restricted attention to linear associations relating 

the genetic instrument to the exposure, and the exposure to the outcome. In some cases, 

however, observational data suggest a non-linear association between exposure and outcome. 

For example, alcohol consumption is consistently reported as having a U-shaped association 

with cardiovascular events. In principle Mendelian randomisation could address concerns that 

the apparent protective effect of light-to-moderate drinking might reflect ‘sick-quitters’ and 

confounding.  

 

Methods 

The Alcohol-ADH1B Consortium was established to study the causal effects of alcohol 

consumption on cardiovascular events and biomarkers, using the single nucleotide 

polymorphism rs1229984 in ADH1B as a genetic instrument. To assess non-linear causal 

effects in this study we propose a novel method based on estimating local average treatment 

effects for discrete levels of the exposure range, then testing for a linear trend in those effects.  

Our method requires an assumption that the instrument has the same effect on exposure in all 

individuals.  We conduct simulations examining the robustness of the method to violations of 

this assumption, and apply the method to the Alcohol-ADH1B Consortium data. 

 

Results 

Our method gave a conservative test for non-linearity under realistic violations of the key 

assumption. We found evidence for a non-linear causal effect of alcohol intake on several 

cardiovascular traits.  
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Conclusions 

We believe our method is useful for inferring departure from linearity when only a binary 

instrument is available. We estimated non-linear causal effects of alcohol intake which could 

not have been estimated through standard instrumental variable approaches. 

 

Key words: Mendelian randomisation; Instrumental variables; Causal inference; Local 

average treatment effects; Alcohol consumption; Cardiovascular disease. 
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Key messages 

 

 Mendelian randomisation studies have so far restricted attention to linear associations 

relating the genetic instrument to the exposure, and the exposure to the outcome, but 

this may not always be appropriate. For example, alcohol consumption is consistently 

reported as having a U-shaped association with cardiovascular events in observational 

studies. 

  We propose a novel Mendelian randomisation method based on estimating local 

average treatment effects for discrete levels of the exposure range, then testing for a 

linear trend in those effects. 

 Our method gave a conservative test for non-linearity under realistic violations of the 

key assumption in simulations, and we believe our method is useful for inferring 

departure from linearity when only a binary instrument is available.  

 We found evidence for a non-linear causal effect of alcohol intake on several 

cardiovascular traits in the Alcohol-ADH1B Consortium, using the single nucleotide 

polymorphism rs1229984 in ADH1B as a genetic instrument. 
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Introduction 
 

Recent years have seen an increasing number of Mendelian randomisation (MR) analyses that 

examine causal relationships between heritable exposures, such as levels of circulating 

biomarkers, and outcomes such as multifactorial diseases, for example coronary heart disease 

and type 2 diabetes.1,2,3  In principle MR reduces problems of confounding and abolishes 

reverse causation by using a genetic proxy for the exposure in an instrumental variable (IV) 

analysis.4  

 

To date, applications of MR have been limited to linear (or log-linear) models for the 

associations between gene and exposure, and between exposure and outcome.  In part this is 

because linear models have a natural interpretation which may be useful even if the true 

relationship is non-linear.5  Furthermore, many of the associations between genetic variants 

and complex traits discovered to date have appeared to be linear.6 However in learning about 

causal relationships it is clearly of value to identify and characterise non-linear effects when 

they are present, bearing in mind that the existence and extent of such relationships may 

depend on the measurement scale. In particular, non-linear associations may translate into 

opposing effects (protective as well as harmful) according to the level of the exposure. Such 

opposing effects have been observed in many observational studies examining the 

relationship between alcohol consumption and cardiovascular events.7 Specifically, light-to-

moderate levels of alcohol consumption have been associated with decreased risk of 

cardiovascular events relative to non-drinkers, with increased risk only occurring at higher 

levels of consumption. This apparent protective effect of light-to-moderate alcohol 

consumption could be explained by several different mechanisms, and corresponding ‘J’ or 

‘U’ shaped associations have been observed with cardiovascular risk factors including low-

density lipoprotein particles,8 abdominal adiposity,9 C-reactive protein (CRP),10,11 and 
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triglycerides (TG).12 Similar observational associations were seen in our earlier analyses of 

ADH1B Consortium data (Holmes et al, Supplementary Appendix, Figure S3).13 

 

As these observational findings suggest that light-to-moderate consumption may be cardio-

protective, it is of great interest to consumers, suppliers and policy makers to establish 

whether this pattern is causal. Confounding is plausible, since socio-economic groups that 

drink moderately may have other lifestyle factors that directly lead to lower rates of disease,14 

and the relationship between confounders and alcohol may themselves be non-linear.  

Evidence for reverse causation is also well established, with those developing ill-health or 

commencing medication more likely to reduce or quit alcohol consumption (the ‘sick-

quitters’ phenomenon).15,16 

 

Alcohol consumption is influenced by genetic variants that affect alcohol metabolism.  

Heritability of alcoholism has been estimated at 40-60%, and variants in ALDH2, ADH1B 

and ADH1C that encode for liver enzymes have been associated with decreased intake, via 

increased metabolism of alcohol to acetaldehyde or decreased acetaldehyde clearance, both 

leading to unpleasant side effects.17 In particular, ADH1B has been shown to be robustly 

associated with alcohol consumption18,19 and has been used in MR analyses to explore the 

causal effect of alcohol consumption on coronary heart disease risk factors.20 

 

We recently established a large consortium (the ‘Alcohol-ADH1B Consortium’) of genetic 

association studies of European descent that used a single nucleotide polymorphism (SNP) in 

ADH1B, rs1229984, as the instrument to assess the impact of alcohol consumption on 

cardiovascular events and risk factors.13 This consortium showed that carrying the rs1229984 

A-allele was associated with non-drinking, lower alcohol consumption, and lower incidence 
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of binge drinking, which expands the previous associations of this variant with alcohol 

traits.13 Using a genetic association analysis, the consortium also showed that ADH1B carriers 

had a more favourable cardiovascular profile and a reduced risk of CHD.13 However, because 

of the existing literature on non-linear effects of alcohol consumption on cardiovascular 

events and the lack of appropriate methods to account for non-linear associations within IV 

analyses, we did not initially conduct an MR analysis in the Alcohol-ADH1B Consortium.  

 

Approaches have been proposed for non-linear IV analysis in the econometric 

literature,21,22,23 but they cannot be used in this context because we use a single SNP as the 

IV. In the present paper, we develop new methods to conduct non-linear IV analysis using a 

single binary instrument, and also evaluate the impact of the key assumption of our method. 

We then apply our method to the data from the Alcohol-ADH1B Consortium to assess 

whether the causal effect of alcohol on cardiovascular traits is indeed non-linear and whether 

this implies a non-zero optimal level of consumption for cardiovascular health, which has 

clear implications for public health. 

 

 

Material and methods 

Data 

The Alcohol-ADH1B Consortium is a collaboration of studies in which the associations 

between an allele of the ADH1B gene and twenty-two cardiovascular biomarkers, risk of 

coronary heart disease, stroke and type 2 diabetes have been examined.13 Here our analyses 

are restricted to the 22 studies (18 cohorts, 2 nested case-control studies, 1 randomized trial 

and 1 case-control study) with individual participant data originating from Europe (n = 16) 

and North America (n = 6).  Analysis was restricted to individuals of European descent.13 
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The principal alcohol trait was weekly volume of alcohol in British units (1 British unit is 

equivalent to 0.57 US units or 10 ml [7.9g] ethanol), which we derived using questionnaire 

data from each study. For studies in which this variable was not already present, we either 

calculated weekly volume of alcohol by summing over the individual components of 

beverage-specific drink questions (available in 20 of the 22 studies), or by converting alcohol 

recorded in grams/week into British units.13  The units/week were log transformed, after 

incrementing by one to allow for individuals reporting zero weekly alcohol consumption, 

resulting in a normally distributed phenotype that had homoscedastic residual error after 

regressing on the ADH1B genotype. 

 

Here we considered a subset of outcomes for which a non-linear causal association was either 

postulated from subject-matter knowledge, or suggested by the observational data available 

from the Alcohol-ADH1B Consortium (all P < 0.001 for the quadratic term in a quadratic 

model): systolic blood pressure (SBP), non-high density lipoprotein cholesterol (non-HDL-

C), TG, high density lipoprotein cholesterol (HDL-C), body mass index (BMI), waist 

circumference (WC), CRP and interleukin 6 (IL-6).  Outcomes were log transformed towards 

normality when appropriate (TG, CRP and IL-6). 

 

The rs1229984 polymorphism in ADH1B was directly genotyped in all studies and coded as 

0/1 according to the carriage of at least one minor allele.  This coding was adopted owing 

both to the low prevalence of the rs1229984 A-allele ( average carriage of rs1229984 A-

alleles in the analysis sample: 7.7%) and the stronger association observed with alcohol 

dependence and other alcohol-related traits under a dominant model compared to a recessive 

model.24 
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Full details of participating studies, phenotype definition and genotyping are reported 

elsewhere13 and are summarised in Table S1 in the Supplementary Data. 

 

Linear instrumental variable analysis 

We used standard two-stage least squares (2SLS) to estimate a linear causal effect of 

log(weekly units of alcohol + 1) (hereafter,  log-alcohol) on continuous cardiovascular 

outcomes.  That is, we fitted the first stage linear regression 

 

XiiXZiXGi zgx   '  

 

where ix  is log-alcohol for subject i , ig  is a binary code for the  rs1229984 genotype, iz  is 

a vector of covariates and Xi  are residual errors assumed to be independent and identically 

distributed with mean zero.  Regression coefficients XG  and XZ  were estimated as fixed 

effects.  We used the fitted model to predict ix̂  then estimated the alcohol-outcome 

association YX  from the regression 

 

YiiYZiYXi zxy   'ˆ  

 

where iy  is the continuous cardiovascular outcome for subject i  and Yi  are residual errors 

assumed to be independent and identically distributed with mean zero. A 95% confidence 

interval for YX̂  was derived by nesting the 2SLS within a bootstrap resampling procedure 
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using 10 000 bootstrap samples.  As covariates we included in both regressions a fixed effect 

for each study, and fixed effects for age and sex.  

 

Non-linear causal effects 

To test for non-linearity of the causal X-Y association we consider local average treatment 

effects (LATEs) in subgroups of X.25 First we coarsen X into a discrete and rescaled variable 











XG

X
X



*  with finite support, assumed without loss of generality to be },,0{ J  for fixed 

J.  G is an instrument for *X  if it is independent of the remainder *XX   (see Figure 1); 

this is not generally true but it can be tested in applications.  Under linear models we can 

obtain an estimate of the causal effect of *X  on Y , but this effect can also be represented as 

a weighted sum of LATEs,25,26 which are causal effects among the individuals whose 

exposures *X  are changed from one level to the next by the genetic instrument. 

 

More precisely, let )( jYi  denote the potential outcome for subject i obtained by setting, 

possibly contrary to fact, the exposure jX i 
* .  Moreover let )0(*

iX  and )1(*

iX  be the 

possibly counterfactual values of the exposure obtained by setting the binary instrument to 0 

and 1 respectively.  Then the LATE at exposure level j is defined as 

 

)]0()1(|)1()([ **

iiiij XjXjYjYE   

 

that is, the average treatment effect among those whose exposure would be at least j if their 

instrument were set to 1, and whose exposure would be less than j if their instrument were set 

to 0.  Identification of LATEs requires the further assumption of monotonicity, that is either 
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0)0()1( **  ii XX  or 0)0()1( **  ii XX  for all subjects i, implying that the instrument either 

does not decrease the exposure in all subjects, or does not increase it in all subjects. 

 

[Figure 1 here] 

 

If we could estimate the LATEs j  then testing them for equality would provide a direct test 

of linearity of the causal effect.  Here we propose an assumption that allows this to be 

performed.  Assume that the causal effect of the instrument on the discretised exposure is 

exactly 1 in each subject: 

 

iXX ii  1)0()1( **  

 

This is a stronger version of the monotonicity assumption.  In fact, this assumption will hold 

if the first stage linear model is a true structural model for X, with no unmeasured 

confounders of the G-X association, or modifiers of the effect of G on X.  Under this 

assumption (and noting that X  has been rescaled so that a one unit change in 
*X  corresponds to 

the expected exposure change with genotype), every subject contributes to a LATE, since for 

every i there is a j such that )0()1( **

ii XjX  , in fact 1)0()1( **  ii XjX .  That is, the 

instrument moves each subject from one level of *X  to the next: in the randomised trials 

terminology, all subjects are compliers. 

 

It is now possible to assign each subject to the estimation of a LATE, based on the observed 

data.  Since 1)0()1( **  ii XjX
 
if and only if jX i 

*  and  1iG  or 1*  jX i  and  

0iG , we can write the LATE as 
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which may be estimated using ordinary linear regression (possibly with adjustment for 

relevant covariates) restricted to the subjects having jX i 
*  and  1iG  or  1*  jX i  and  

0iG . 

 

Having estimated a LATE (with its standard error) for each level of *X , the estimates may 

be tested for equality using standard methods of meta-analysis.  In particular, we use meta-

regression to test for a linear trend in the LATEs.  A linear model relating LATEs to the 

exposure levels 

 

jE j 21)(    

 

would apply if the underlying causal model were quadratic 

 

2

22
1

10)( jjYE    

 

The coefficient 2  is zero if the LATEs are equal, which is the case when the causal effect of 

X on Y is linear. Then the mean LATE, calculated by fixed-effects meta-analysis of the 

estimated LATEs, is an alternative measure of the linear causal effect of X.  Rejection of 

02   implies a non-linear causal effect; a quadratic form is not directly implied but such a 

model could be hypothesised, up to its intercept term, from the fitted meta-regression. The 
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estimation of a linear model relating LATEs to the exposure levels is a simple but powerful 

way to investigate departures from linearity, as any such departures are captured by a single 

parameter. However, alternative models could be fitted to characterise the dose-response 

relationship more flexibly. For example, a piecewise constant model relating the LATEs to the 

exposure levels would correspond to a linear spline model relating the exposure to the outcome.  

This could be detected by a test of Cochran’s Q on the estimated LATEs. 

 

This procedure requires rescaling of X by the effect size XG  of the instrument.  However the 

true value of XG  is unknown and it must be estimated.  To account for sampling uncertainty 

in XG̂  we nest the entire LATE and meta-regression procedure within a bootstrap 

resampling procedure, using 10 000 bootstrap samples, to obtain proper confidence intervals 

on the meta-regression estimates 21
ˆ,ˆ  .  Our procedure for testing departure from linearity of 

the causal effect of X on Y is summarised in Box 1.  

 

[Box 1 here] 

 

Beyond a test for departure from linearity, we are interested in identifying the way the causal 

effect changes with increasing alcohol consumption and, in particular, the nadir of the curve 

which could be conceived as an ‘optimal’ level of consumption regarding cardiovascular 

traits. As we cannot estimate the intercept term in the fitted quadratic model, we cannot 

predict the absolute value of the outcome for a given level of alcohol consumption, so we 

focus on the difference in outcome relative to zero alcohol consumption. For those outcomes 

with evidence of non-linearity we predict this at four values of alcohol consumption (3.04, 

12.15, 31.90 and 84.52 units/week), which are the medians of observed values in the 

categories representing low (>0-7 units/week), moderate (7-21 units/week), heavy (21-70 
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units/week) and very heavy (70+ units/week) alcohol consumption in the analysis of Holmes 

et al.9 By differentiation of the hypothesised quadratic function we estimate three additional 

features of the curve: i) the ‘optimal’ level of alcohol consumption; ii) the difference in 

outcome at the optimal alcohol consumption relative to zero alcohol consumption; iii) the 

level of alcohol consumption required to have an outcome level equivalent to that at zero 

alcohol consumption. Confidence intervals for all the estimates are obtained by nesting the 

estimation within the bootstrap resampling procedure outlined above. In the bootstrap 

samples we left truncated the nadir of alcohol consumption at zero. 

 

All analyses were conducted using R version 2.13.27 

 

 

Simulations 

We conducted simulations to assess the proposed approach in terms of bias and coverage 

under various data generating models. Full details and results are given in the Supplementary 

Data. In brief, we simulated data in which there was no causal X-Y association, in which the 

association was linear, and in which there was a quadratic causal association, allowing 

throughout for quadratic effects of confounders.  We assessed robustness to the assumption of 

individual level homogeneity of the genetic effect using additional simulations of XG
 

heterogeneity and G-U interaction at both the individual and subgroup level. 

 

 We observed that the LATE estimates were essentially unbiased with generally good 

coverage properties under null, linear and quadratic models, and that the test for a non-linear 

effect was slightly conservative.  Together the results suggest that this method is a useful 

extension to standard approaches in the non-linear setting. Reasonable levels of individual-
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level heterogeneity in XG  or between-subgroup heterogeneity in XG  were not found to lead 

to significant bias in the estimates. High levels of interaction between G  and U  led to bias in 

the estimates, but such interactions may be unlikely in practice. 

 

 

Results 
 

We investigated the potential non-linear effects of log-alcohol on each of the outcomes in the 

Alcohol-ADH1B Consortium using the proposed procedure.  Some issues relating to the 

inclusion of multiple studies in the Consortium are discussed in the Supplementary Data. 

 

Age- and sex-adjusted study-specific estimates of the association between rs1229984 and 

log-alcohol are presented in Figure S17 of the Supplementary Data. These study-specific 

estimates have (inverse-variance-weighted) mean -0.235 and SD 0.121, indicating some 

degree of between-study variability. However, in our simulations (see Supplementary Data) a 

similar degree of heterogeneity between known subgroups (scenario ‘f’ with 𝛾 = 0.1) was 

not found to result in bias to either the LATE intercept or slope, with slightly conservative 

confidence intervals for each. 

 

To examine whether G = rs1229984 is a valid instrument for discretised *X , assuming that it 

is valid for the continuous measure X =  log-alcohol, we examined the correlation between G 

and the remainder *XX  ; these should be independent for G to be a valid instrument for 

*X .  We observed a weak but significant correlation (Pearson’s r = -0.013, 95% CI: -0.020, -

0.006).  We hypothesised that this residual correlation was due to the large number of 

individuals reporting drinking zero weekly units of alcohol (log-alcohol = 0), because these 



17 

 

individuals have a residual *XX  = 0 and are also more likely to have G = 0. When 

individuals with log-alcohol = 0 were excluded from the analysis the correlation between G 

and the remainder *XX   was close to zero (Pearson’s r = 0.001, 95% CI: -0.007, 0.009).  

We therefore re-analysed the data after excluding individuals with log-alcohol = 0, but 

obtained very similar results to those from the full sample. Because it is necessary to retain 

individuals reporting zero drinking to meet the objectives of the analysis, we only report 

results using the full sample.  

 

The results of the LATE-based analysis for each of the outcomes are presented in Table 1 

along with the standard linear IV analysis. We illustrate our approach in more detail using 

SBP as an example, following the steps in Box 1. We estimated 244.0ˆ XG  assuming a 

common genetic effect across all studies. Discretising log-alcohol into units of -0.244 gave an 

integer exposure *X  with range [-26, 0].  We then estimated the LATE at each value of *X . 

For example, for 11j  (corresponding to a log-alcohol of -11 × -0.244 = 2.684, or 

exp(2.684) – 1 = 13.6 units/week) we selected the subjects with 11* X  and rs1229984 = 

1, or 12* X  and rs1229984 = 0.  Linear regression of SBP on *X , on these subjects only, 

and adjusting for study, age and sex, gave 55.111  . That is, in subjects whose *X  was 

changed from -12 to -11 by the SNP, their SBP was decreased by 1.55 mmHg. 

 

[Table 1 here] 

 

Rescaling by 244.0ˆ XG , subjects whose log-alcohol was changed from  

928.2244.012   to 684.2244.011  (i.e. whose weekly units of alcohol 

consumption was changed from exp(2.928) – 1 = 17.7 to exp(2.684) – 1 = 13.6) by the SNP 
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have their SBP decreased by 1.55 mmHg.  Alternatively, a one unit increase in log-alcohol at 

this level of alcohol consumption (e.g. from 2.684 to 3.684, or from exp(2.684) – 1 = 13.6 to 

exp(3.684) – 1 = 38.8 units/week – a considerable increase) was associated with an increase 

in SBP of 35.6244.0/55.1   mmHg. 

 

The full graph of estimated LATEs for SBP is shown in Figure 2. Negative LATEs represent 

decreasing SBP with log-alcohol whilst positive LATEs represent increasing SBP, so a 

LATE trend crossing zero from negative to positive indicates a nadir. Fixed effects meta-

analysis of these effects gave a mean LATE of 4.9 (95% CI: 2.6, 7.5), which is effectively a 

complier average treatment effect and similar to the linear IV estimate of 5.2 (95% CI:  3.2, 

7.3).  Meta-regression of the estimated LATEs on *X  gave a slope of 3.3 (95% CI: 1.0, 5.5). 

This provided strong evidence (Z-test p = 0.004) that the LATEs were not constant across 

values of log-alcohol; that is, there was a non-linear association between log-alcohol and 

SBP. 

 

[Figure 2 here] 

 

Full results for the remaining outcomes are provided in Table 1. As indicated by the LATE 

slope there was evidence of a non-linear causal effect for SBP, non-HDL-C, BMI, WC and 

CRP (all P ≤ 0.01). For other outcomes there was no evidence of a non-linear causal effect 

(HDL-C, IL-6 and triglycerides, all P > 0.4, though note that power is lower for IL-6 due to 

the relatively smaller sample size). In these cases we recommend that the linear IV results are 

employed as fewer assumptions are required in their estimation. It should also be noted that 

the linear IV estimates and the mean LATEs were similar for each of the outcomes, albeit 

with the latter having wider CIs.  
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Table 2 shows the predicted difference in each outcome relative to zero alcohol consumption 

for 3.04, 12.15, 31.90 and 84.52 units/week of alcohol consumption under the fitted quadratic 

functions. All outcomes, with the exception of SBP, were predicted to be lower at 3.04 

units/week (‘low’ alcohol consumption) than at zero alcohol consumption, though each 

confidence interval included the possibility of no true difference. By 31.90 units/week 

(‘heavy’ alcohol consumption) all outcomes were predicted to be higher than at zero alcohol 

consumption, though each confidence interval, with the exception of SBP, again included the 

possibility of no true difference. By 84.52 units/week (‘very heavy’ alcohol consumption) all 

the confidence intervals excluded the possibility of no true difference. 

 

[Table 2 here] 

 

Table 2 also shows the additional estimated features of the hypothesised quadratic functions. 

For all outcomes the optimal level of alcohol consumption was estimated to be greater than 

zero, ranging from 1.0 units/week (SBP) to 3.5 units/week (CRP). However, only for non-

HDL-C did the confidence interval exclude the possibility that zero consumption may be 

optimal. Correspondingly, the estimated difference in outcome at the optimal alcohol 

consumption level relative to zero consumption was negative for each outcome, though only 

for non-HDL-C did the confidence interval exclude the possibility of no true difference. The 

level of alcohol consumption required to have an outcome level equivalent to that at zero 

consumption was estimated as ranging from 2.8 units/week (SBP) to 19.4 units/week (CRP), 

though for all outcomes the confidence intervals were very wide. These results are illustrated 

for non-HDL-C, for which the strongest evidence of non-linearity was observed, in Figure 3. 

However, the precise values of our quantitative results should be interpreted with some 
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caution as the quadratic causal model that we fit may not be sufficiently flexible to fully 

characterise the dose-response relationship. 

 

[Figure 3 here] 

 

 

Discussion 

 

We have proposed a method based on estimating LATEs that allows a basic estimation of 

local causal effects of a continuous exposure when using a binary instrument.  Our method 

requires an assumption of homogeneous individual treatment effects of the instrument on the 

exposure, but our simulations found the estimates obtained under our approach to be largely 

unbiased and with good coverage properties under a variety of heterogeneous effects of 

instrument on exposure.  

 

The local effects we estimate are within discretised units of the exposure, with the size of 

those units depending on the gene-exposure association. This is not a scale with a generally 

useful interpretation, and different genetic instruments could lead to different discrete units 

with different definitions of local causal effects. We therefore emphasise the ability to test for 

a non-linear causal effect and draw qualitative conclusions about the shape of that effect, and 

we suggest that a strictly quantitative interpretation of the estimated parameters should be 

viewed with some caution. Further work is required in investigating alternative models 

relating the LATEs to the exposure levels in order to provide greater flexibility for 

characterising the dose-response relationship. 
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Using this approach we detected evidence for a non-linear causal effect of log-alcohol on 

several cardiovascular traits in a large collaborative study, which would not have been 

possible using standard IV approaches. For each outcome that exhibited evidence of a non-

linear causal effect, our results suggested that the level of alcohol consumption associated 

with the lowest value of the cardiovascular traits to lie between 1.0 and 3.5 units/week. 

However, only for non-HDL-C do we have strong evidence that the optimal level of 

consumption truly differs from zero. 

 

As the cardiovascular traits considered in this analysis were observed concurrently with the level of 

alcohol consumption in many of the studies within the ADH1B Consortium, a conventional analysis 

would be at risk of bias due to reverse causality (for example, someone with high SBP reducing their 

alcohol intake so that they are observed to have a low level of consumption). A Mendelian 

randomisation analysis removes the possibility of such reverse causality, which is a significant 

strength of the present study. 

For our estimated effects to be interpreted causally we need the standard assumptions 

underlying MR analysis to hold. Of particular concern in the present application is the 

exclusion restriction that G has no effect on Y other than through X. We have only considered 

one aspect of alcohol consumption (weekly units), but if the polymorphism in ADH1B 

reduces alcohol consumption generally then other aspects, such as frequency of binge 

drinking, may also be associated with the instrument.19 If such other aspects have a causal 

effect on the outcome independently of weekly units then the exclusion restriction would not 

hold. The strong correlation between weekly units and other aspects of alcohol consumption 

makes a significant violation of this assumption unlikely. However, further research is 

required in this area.  
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Although we limited our analyses to individuals of European descent and adjusted for study 

in all our analyses, there may be residual population stratification of the variant which could 

lead to backdoor pathways from the instrument to the outcome. The restriction to individuals 

of European descent may also reduce the generalisability of our findings beyond such populations. 

 

An inherent aspect of our approach is the need for a large sample with a sufficiently strong 

association between the gene and the exposure. If the gene-exposure association is very weak 

then the exposure will be discretised into many bins, none of which will contain sufficient 

subjects for the LATEs to be estimated.  Many MR studies are now conducted on large 

samples in order to improve power to detect causal effects, but our approach requires large 

samples across a sufficient range of the exposure in order to detect non-linearities. This 

problem is compounded when studying binary outcomes, as each bin should contain a 

sufficient number of events. Therefore we have restricted our attention to continuous 

outcomes in this paper, but we recognise that here the key interest is in the nature of the 

causal relationship with cardiovascular disease events, which cannot be readily deduced from 

the associations with different risk factors. Further work in this area is required. 

 

We believe our method is useful for inferring departure from linearity when only a binary 

instrument is available. Although there is clearly greater scope for bias than in standard IV 

analysis, we did not infer non-linear effects for several of the cardiovascular outcomes we 

considered, suggesting some degree of specificity using our method. More robust inference of 

non-linear causal effects may be possible from polychotomous or continuous instruments, 

such as gene scores constructed from multiple SNPs.28,29 Such instruments will allow the 

identification of non-linear models with many parameters, though IV estimation of parametric 

non-linear models has been found to be dependent on the choice of parametric model.23 A further 
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key issue is whether the exposures predicted by those instruments cover a sufficient range to 

capture the non-linear features of the causal effects.  If this is not the case, then it may be 

necessary to pursue approaches based on local effects similar to the one for binary 

instruments that we have discussed here. 
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Table 1. Comparison of linear and non-linear instrumental variable estimates for selected cardiovascular traits in the Alcohol-ADH1B Consortium. 

Outcome n 

Linear IV approach 

 Non-linear IV approach 

 Mean LATE  LATE intercept  LATE slope 

Estimate 95% CIA  Estimate 95% CIA  Estimate 95% CIA Estimate 95% CIA PB 

SBP (mmHg) 78172 5.2 3.2, 7.3  4.9 2.6, 7.5  -2.2 -7.5, 3.4  3.3 1.0, 5.5 0.004 

Non-HDL-C (mmol/L) 60140 0.13 -0.02, 0.28  0.25 0.06, 0.45  -0.54 -0.94, -0.120  0.37 0.19, 0.55 <0.001 

HDL-C (mmol/L) 60227 -0.02 -0.07, 0.03  -0.01 -0.07, 0.06  -0.02 -0.15, 0.14  0.00 -0.06, 0.06 0.91 

BMI (kg/m2) 79454 0.7 0.2, 1.2  1.0 0.4, 1.5  -1.0 -2.5, 0.3  0.9 0.3, 1.4 0.002 

WC (cm) 57172 2.8 1.3, 4.4  2.7 1.1, 4.5  -1.8 -5.8, 1.9  2.0 0.6, 3.6 0.01 

CRPC (mg/l) 63367 0.17 0.03, 0.31  0.18 0.03, 0.38  -0.39 -0.77, 0.03  0.26 0.10, 0.43 0.001 

IL-6C (pg/ml) 23535 0.30 0.16, 0.45  0.35 0.10, 0.53  0.10 -0.24, 0.85  0.13 -0.34, 0.29 0.41 

TGC (mmol/L) 63667 0.01 -0.06, 0.07  0.01 -0.09, 0.07  0.04 -0.15, 0.21  -0.02 -0.10, 0.06 0.67 

SBP, systolic blood pressure; Non-HDL-C, non-high density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; BMI, body mass index; WC, 

waist circumference; CRP, C-reactive protein; IL-6, interleukin 6; TG, triglycerides. 

ADerived using 10,000 bootstrap samples. BApproximate Z-test using the bootstrap standard error. CLog transformed prior to analysis. 
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Table 2. Predicted difference in cardiovascular traits relative to zero alcohol consumption at several levels of alcohol consumption and predicted curve features in the Alcohol-

ADH1B Consortium. Only calculated for traits with evidence of non-linearity. 

Outcome 

Difference in outcome (95% CIA) Level of alcohol 

consumption  

at nadir 

(units/weekC)  

(95% CIA) 

Difference in outcome at optimal 

alcohol consumption(95% CIA) 

Level of alcohol 

consumption with 

outcome equal to that 

at zero  

(units/weekC) (95% 

CIA) 

3.04 

units/weekC 

12.15 

units/weekC 

31.90 

units/weekC 

84.52 

units/weekC 

SBP (mmHg) 0.1 (-5.5, 6.1) 5.2 (-2.6, 

13.9) 

12.4 (3.4, 

22.1) 

22.8 (12.2, 

34.6) 

1.0 (0.0, 3.6) -0.7 (-5.4, 0.0) 2.8 (0.0, 19.6) 

Non-HDL-C 

(mmol/L) 

-0.39 (-0.79, 

0.06) 

-0.15 (-0.72, 

0.47) 

0.40 (-0.28, 

1.10) 

1.30 (0.45, 

2.16) 

3.2 (0.7, 6.0) -0.39 (-0.85, -0.03) 16.9 (2.1, 48.2) 

BMI (kg/m2) -0.6 (-2.2, 0.8) 0.2 (-2.0, 2.1) 1.6 (-0.8, 3.8) 3.9 (1.2, 6.3) 2.3 (0.0, 6.0) -0.6 (-2.3, 0.0) 10.1 (0.0, 48.4) 

WC (cm) -0.6 (-4.7, 3.5) 1.9 (-3.9, 7.8) 5.7 (-0.6, 

12.5) 

11.5 (4.5, 

19.2) 

1.5 (0.0, 5.4) -0.8 (-4.9, 0.0) 5.3 (0.0, 37.4) 

CRPB (mg/l) -0.29 (-0.68, 

0.15) 

-0.15 (-0.68, 

0.50) 

0.22 (-0.37, 

0.95) 

0.83 (0.15, 

1.69) 

3.5 (0.0, 7.2) -0.30 (-0.75, 0.00) 19.4 (0.0, 66.0) 

SBP, systolic blood pressure; Non-HDL-C, non-high density lipoprotein cholesterol; BMI, body mass index; WC, waist circumference; CRP, C-reactive 

protein. 
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ADerived using 10,000 bootstrap samples. BLog transformed prior to analysis. CWeekly units of alcohol values are medians of observed values in categories 

representing low (1-7 units/week), moderate (7-21 units/week), heavy (21-70 units/week) and very heavy (70+ units/week) alcohol consumption in the analysis 

of Holmes et al.13
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Box 1.  Summary of proposed method for testing for a non-linear causal effect. 

1. For the observed data and for each of K bootstrap samples: 

1.1. Regress X on G for all subjects, giving estimated regression coefficient XG̂  

1.2. Discretise X into units of XG̂ , that is derive the discrete variable 













XG

X
X

̂

*
 

1.3. For each discrete value of j: 

1.3.1. Regress Y on *X  using only the subjects for which jX i 
*  and 1iG , or 1*'  jX i  and 0iG .  Among these subjects there is no variation 

in *X  that is not explained by G. 

1.3.2. This yields j̂ , the estimated local average treatment effect (LATE) for level j of *X  

1.3.3. Rescale j̂  
by XG̂  to the original scale of X 

1.4. Obtain the mean LATE by fixed-effects meta-analysis of j̂  

1.5. Meta-regress j̂  on j to obtain the intercept and slope of the LATEs, corresponding to a quadratic causal model 

2. Obtain empirical confidence intervals on the mean LATE and the LATE intercept and slope from the bootstrap samples 
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Figure legends 

 

Figure 1. Directed acyclic graphs encoding a) the standard Mendelian randomisation assumptions: (i) G is 

associated with X, ii) G is not associated with confounders U of the X-Y association, and iii) G affects Y 

only via its association with X;  b) how these are assumptions are affected by the discretisation of X in the 

proposed non-linear Mendelian randomisation approach. 

 

Figure 2. Local average treatment effects (LATEs) of log(weekly units of alcohol + 1) on systolic blood 

pressure. Circular markers are LATEs; bars are 95% pointwise confidence intervals; dashed line is estimated 

mean LATE; solid line is estimated linear LATE trend; dotted line is linear IV estimate using the ratio 

method (virtually indistinguishable from the estimated mean LATE). 

 

Figure 3. Predicted difference in non-high density lipoprotein cholesterol (non-HDL-C) relative to zero 

alcohol consumption across the range of values of observed alcohol consumption, with estimated optimal 

level of alcohol consumption (3.2 (95% confidence interval (CI): 0.7, 6.0) units/week), estimated difference 

in non-HDL-C relative to zero alcohol consumption at optimal level (-0.39 (95% CI: -0.85, -0.03) mmol/L), 

and estimated level of alcohol consumption with the same level of non-HDL-C as at zero (16.9 (95% CI: 

2.1, 48.2) units/week) indicated. 
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Supplementary material 

 

Simulations – Methods 

We conducted simulations to assess the proposed approach in terms of bias and coverage at a 

variety of sample sizes and under different X-Y associations. We performed additional 

simulations to explore the effects of XG
 
heterogeneity and G-U interaction at both the 

individual and subgroup level. 

 

The simulation parameters were chosen to resemble those observed in the Alcohol-ADH1B 

Consortium, and a plausible degree of confounding was applied. In each simulation the data 

were generated according to 

 

)5,2(~ 222

21 UUXXNY    

 

with the following specifications remaining constant: 
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)1,0(~);3.0,1(Bin~ NUG  

 

Thus, we allow for a quadratic causal effect of X on Y, but also for quadratic effects of 

confounders.  The following simulations were conducted: 

 

a) Sample size. The effect of sample size was examined using the null model with 

)0,0(),( 21  . Sample size was varied within }100000,50000,10000,5000{ . X was 

simulated using )1,5.02.0(~ UGNX  . 

b) X-Y associations. A variety of X-Y associations were explored using a sample size of 

10000.  Linear associations were generated using 

)}0,5(),0,2(),0,1(),0,1(),0,2(),0,5{(),( 21  ; quadratic associations were 

generated using )}5,2(),2,1(),1,2(),1,2(),2,1(),5,2{(),( 21  .  X was 

again simulated using )1,5.02.0(~ UGNX  . 

c) Individual-level XG  heterogeneity. The key assumption of our approach is that XG
 

is constant for all individuals.  The degree of variability introduced into these 

simulations regarding individual-level XG  heterogeneity was informed by the 

observation that within the ADH1B Consortium the study-specific estimates of the 

association between rs1229984 and log-alcohol had mean -0.235 and SD 0.121, along 

with the assumption that individual-level heterogeneity is likely to be somewhat 

greater than this. We defined X using )1,5.0)2.0((~ UGNX   where 

),0(~ 2 N  was simulated independently for each subject within a sample size of 

10,000 and 𝛾 varied within }1,5.0,3.0,2.0,1.0,0{ . Thus, for 1.0  XG  is expected 

to lie between -0.4 and 0 in 95% of subjects, and approximately 61% of subjects are 
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expected to be compliers in the sense that they are moved by the instrument to the 

adjacent bin of size 2.0XG . Simulations were conducted using the quadratic 

data generating model with )2,1(),( 21  .  

d) Individual-level G -U  interaction. We defined X using 

)1,5.02.0(~ GUUGNX  where  varied within }1,5.0,3.0,2.0,1.0,0{ in a 

sample of size 10,000. This means that the effect of G on X is allowed to vary by 

levels of the confounder U. Simulations were conducted using the quadratic data 

generating model with )2,1(),( 21  . 

e) XG
 
heterogeneity between unknown subgroups. The degree of variability introduced 

into these and subsequent simulations regarding XG  heterogeneity between known or 

unknown subgroups were informed by the observation that within the ADH1B 

Consortium the study-specific estimates of the association between rs1229984 and 

log-alcohol had mean -0.235 and SD 0.121. We defined X using 

)1,5.0)2.0((~ UGNX   where ),0(~ 2 N  took the same value within 

subgroups of 1000 subjects within an overall sample size of 10,000 and 𝛾 varied 

within }1.0,05.0,03.0,02.0,01.0,0{ . Thus, for 1.0  XG  is expected to lie between 

--0.4 and 0.0 in 95% of subgroups. Simulations were conducted using the quadratic 

data generating model with )2,1(),( 21  .  Data were analysed as previously 

described, with all subgroups pooled together. 

f) XG  heterogeneity between known subgroups. X was again defined using 

)1,5.0)2.0((~ UGNX   where ),0(~ 2 N  now took the same value within 

subgroups of 10,000 subjects within an overall sample size of 100,000 and 𝛾 varied 
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between }1.0,05.0,03.0,02.0,01.0,0{ . Simulations were again conducted using the 

quadratic data generating model with )2,1(),( 21  . Data were analysed with all 

subgroups pooled together and adjustment for subgroup using indicator variables..  

 

g) G-U interaction which varies between unknown subgroups. In addition to individual-

level G-U interaction, the degree of interaction may also vary between subgroups in a 

population. We investigated this issue in the situation where the subgroups between 

which the G-U interaction varied are unknown. We defined X using 

)1,5.02.0(~ GUUGNX  where ),0(~ 2 N  took the same value within 

subgroups of 1000 subjects within an overall sample size of 10,000 and 𝛾 varied 

within }1.0,05.0,03.0,02.0,01.0,0{ . Simulations were conducted using the quadratic 

data generating model with )2,1(),( 21  .  Analysis proceeded as previously 

described, with data from all subgroups pooled together. 

 

When regressing Y on *X  we only estimated a LATE if there were at least 5 subjects with 

jX i 
*  and  1iG  and 5 subjects with  1*  jX i  and  0iG , as regressions using 

smaller numbers of subjects were found to lead to anomalous estimated LATEs with 

spuriously high precision. A thousand simulations of each specification were conducted, with 

percentile bootstrap confidence intervals derived using 1000 bootstrap samples within each 

simulation. Standard 2SLS and quadratic OLS estimates were also calculated for comparison.  

 

The analysis was conducted using R version 2.13.1 
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Simulations - Results 

a) Sample size. Results for varying sample size are presented in Figure S1. The linear IV 

estimate, mean LATE, LATE intercept and LATE slope were unbiased even with a 

sample size of 5000. The variability in the mean LATE and LATE slope was similar 

to that of the linear IV estimate. The quadratic OLS estimates were significantly 

biased at all sample sizes. The corresponding coverages are shown in Figure S2. The 

linear IV estimate, mean LATE and LATE intercept coverages varied between 94% 

and 96%, even at smaller sample sizes. The coverage of the LATE slope was 

somewhat conservative (around 97%) at smaller sample sizes. 

b) X-Y associations. In the linear data generating models the linear IV estimate, mean 

LATE, LATE intercept and LATE slope were all unbiased (Figure S3). The mean 

LATE and LATE slope again had similar variability to the linear IV estimate. The 

quadratic OLS estimates were biased in all scenarios. The coverages of the linear IV 

estimate, mean LATE, and LATE intercept were generally between 94% and 96%, 

but the coverage of the LATE slope was approximately 96% across the range of linear 

coefficients (Figure S4).  This suggests that our procedure gives a slightly 

conservative test of no non-linear effect.  In the quadratic data generating models the 

LATE intercepts and LATE slopes were unbiased for all combinations of coefficients 

but the quadratic OLS estimates were again heavily biased (Figure S5). The coverages 

of the LATE intercept and LATE slope were generally between 94% and 96%, though 

the LATE slope coverage was as high as 97.5% for )5,2(),( 21   (Figure S6). 

c) Individual-level XG  heterogeneity. For small values of   the LATE intercept and 

LATE slope displayed little bias (Figure S7). However, for values of  of 0.2 and 

greater noticeable bias began to appear, particularly in the LATE slope. By 1  the 
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bias was so great that the 95% range of estimates of the LATE slope did not include 

the target value. Both the LATE intercept and LATE slope had acceptable levels of 

coverage for values of   up to 0.3 (Figure S8). For values of   larger than 0.5 the 

coverage of the LATE slope was drastically reduced. However, it should be noted that 

the larger values of   in these simulations do represent very extreme cases (e.g. for 

1  XG  is expected to lie between -2.2 and 1.8 in 95% of subjects, so in almost 

50% of subjects the gene would have an effect on alcohol consumption in the opposite 

direction to that assumed). Thus, given the reliance of our method on the assumption 

of XG  homogeneity, the observed bias and reduced coverage is not unexpected. 

d) Individual-level G -U  interaction. Bias was observed for all values of   greater than 

zero for both the LATE intercept and the LATE slope (Figure S9). The bias in the 

LATE intercept increased as   increased, but the bias in the LATE slope decreased 

slightly at 1 . The coverage of the parameters correspondingly generally deviated 

further from 95% as  increased (Figure S10), reaching 74% for the LATE intercept 

and 59% for the LATE slope at 5.0 . Coverage for the LATE intercept reduced 

further to 14% at 1 , but improved slightly for the LATE slope. 

e) XG  heterogeneity between unknown subgroups. At no values of   was there any 

appreciable bias in either the LATE intercept or the LATE slope (Figure S11). For all 

values of   the LATE intercept had coverage close to 95%, but there was again some 

evidence that the coverage of the LATE slope was slightly conservative (Figure S12). 

f) XG  heterogeneity between known subgroups.  At no values of   was there any 

evidence of bias in either the LATE intercept or the LATE slope (Figure S13). 
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Coverage was approximately 96% for the LATE intercept and 97-99% for the LATE 

slope (Figure S14). 

g) G-U  interaction which varies between unknown subgroups. There was no bias in 

either parameter at 1.0 , but bias in both parameters, most noticeably in the LATE 

slope, increased as   increased further (Figure S15). Coverage was approximately 

appropriate for the LATE intercept as far as 5.0 , though it was <90% for the 

LATE slope from 3.0  onwards (Figure S16). By 1  the coverages of the LATE 

intercept and slope were 84% and 23% respectively. 

 

These results suggest that the LATE estimates are essentially unbiased with generally good 

coverage properties under null, linear and quadratic models. Reasonable levels of individual-

level heterogeneity in XG  were not found to lead to significant bias in the estimates. Low 

levels of between-subgroup heterogeneity in XG  were also not found to lead to significant 

bias, whether or not the heterogeneity was adjusted for in the analysis. High levels of 

interaction between G  and U  led to bias in the estimates, but such interactions may be 

unlikely in practice. For example, in simulation d) a   of 0.2 biased the LATE intercept 

upwards by 30% and the LATE slope upwards by 16%. This level of interaction means that 

the effect of G  on X can be expressed as -0.2 + 0.2U . As )1,0(~ NU , 95% of the values of 

U will lie between -2 and 2 (approximately). Thus the effect of G  on X will lie between -0.6 

and 0.2 approximately 95% of the time, depending on the value of U . Such a wide range of 

genetic effects, including a reversal of sign, may well be deemed implausible. 

 

Overall, our simulations indicate that the LATE method is a useful extension to standard 

approaches in the non-linear setting.   
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Multiple studies 

When data from multiple studies are available we must decide whether to estimate LATEs 

within each study, combining them to draw an overall conclusion, or to estimate LATEs on 

the combined data.  In general, weak instrument bias is reduced by performing the MR 

analysis on the combined data.2  But because our approach relies on the genetic effect size 

XG  being constant for all individuals, we need to consider whether this assumption is 

tenable across studies as well as within each study. 

 

If XG  varies across studies then clearly we should perform the procedure separately in each 

study.  This however raises two problems.  Firstly, the restriction to subjects having particular 

genotype-exposure combinations in each bin of *X  leads to small sample sizes for estimating 

some LATEs, leading to large standard errors  on some j̂  and considerable uncertainty on 

the final inference of non-linearity.  This problem occurs particularly when one genotype is 

rare, or when XG  is small, leading to narrow bin definitions, both of which apply to the 

Alcohol-ADH1B Consortium.  Secondly, different XG  across studies leads to different bin 

sizes across studies and different local causal effects being estimated.  It is not clear how such 

effects should be combined into an overall inference on non-linearity. 

 

For these reasons we assumed that XG  is constant within and between studies and performed 

simulations to assess robustness to that assumption.  As in the standard IV analysis, 

covariates for study, age and sex were included in both the estimation of XG  and the LATEs 

in order to reduce the potential for confounding of XG  and the LATEs. 
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Table S1. Design and genotyping characteristics of the studies included in the analysis. 

Study Study 

design 

Sampling Frame Number 

with 

DNA in 

this 

analysis 

Number 

contributing to 

one or more of 

our analysesA 

Year of blood 

sampling 

used for 

DNA 

extraction 

Genotyping 

method 

Country HWE P value 

(exact 

significance 

probability) 

Call 

rate 

(%) 

ARIC Cohort Community 9557 9532 
1987-89 

IBC 50k 

CardioChip 

USA 0.705 
97.8 

BRHS Cohort General 

practices 

3843 3789 1998-2000 KASPar UK 0.42 100 

BWHHS Cohort General 

practices 

3412 3407 1999-2001 Illumina 

HumanCVD 

array 

UK 0.912 99.7 

CaPS Cohort Electoral 

register & 

General 

practices 

1102 1061 1993-1994 KASPar UK 0.460 98.4 

CARDIA Cohort Community 1433 1433 
1995-1996  

IBC 50k 

CardioChip 

USA 4.97E-04 
97.3 

CCHS Cohort Population 9081 8985 
1991-94 Nanogen 

Denmark 0.522 
99.6 

CHS Cohort Community 3936 3919 
1992–1993 

IBC 50k 

CardioChip 

USA 0.001 
97.9 

CYPRUS Cohort Community 730 729 2003-2008 TaqMan Cyprus 0.081 99.9 

Czech post-MONICA Cohort Administrative 

districts 

2558 2555 2000-2001 PCR-RFLP Czech Republic 0.801 97.9 

DCH Nested 

case 

cohort 

General 

population (born 

in Denmark) 

2736 2735 1993-97 TaqMan Denmark 0.203 91.8 

EAS Cohort General 

practices 

873 873 2004 TaqMan UK 0.693 95.6 
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ELSA Cohort Respondents of 

HSE 

5450 5449 2004 KASPar UK 0.263 98.8 

EPIC Turin Cohort Population 

(Torino area) 

4526 4314 2008 TaqMan Italy 0.362 99 

FHS Cohort Community 1082 312 1948-present IBC 50k 

CardioChip 

USA 0.002 99 

HAPIEE Czech Cohort City districts 6678 6553 2003-2005 KASPar Czech Republic 0.745 98.6 

Inter99 RCT Population 6332 6025 1999-2001 KASPar Denmark 6.16E-27 97.6 

Izhevsk Case 

control 

Population-

based controls 

from CC 

653 642 2008-2009 PCR + 

electrophoresis 

Russia 0.192 >99 

MESA Cohort Population 2293 2054 2000-2002 IBC 50k 

CardioChip 

USA 0.012 97 

NPHS II Cohort General 

practices 

2659 2659 2000 TaqMan UK 0.874 96.1 

ULSAM Cohort General 

population 

(Uppsala 

County) 

453 421 2004 Illumina 

Golden Gate 

Sweden 0.775 98.91 

Whitehall II  Cohort Workplace (civil 

servants) 

5029 4990 2002-2004 IBC 50k 

CardioChip 

UK 0.106 99.3 

WHI  Nested 

case 

control 

Community 7882 7620 1993-1998 IBC 50k 

CardioChip 

USA 3.15E-25 99.2 

ANumber of study members non-missing for weekly volume of alcohol, rs1229984 polymorphism in ADH1B, age, sex, and one or more of the outcomes 

(systolic blood pressure, non-high density lipoprotein cholesterol, high density lipoprotein cholesterol, body mass index, waist circumference, C-reactive 

protein, interleukin 6 and triglycerides).  
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Figure S1. Observational quadratic model linear parameter estimates (brown) and quadratic parameter 

estimate (purple), two-stage least squares estimates (red), mean local average treatment effects (LATEs) 

(blue), LATE intercepts (green) and LATE slopes (orange) for different sample sizes in the null data 

generating model. Points represent means and bars represent 95% of the data. Horizontal solid lines 

represent target values. 
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Figure S2. 95% confidence interval coverage for the two-stage least squares estimates (red), mean LATEs 

(blue), LATE intercepts (green) and LATE slopes (orange) for different sample sizes in the null data 

generating model. Horizontal solid line represents the target value (95%). 
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Figure S3. Observational quadratic model linear parameter estimates (brown) and quadratic parameter 

estimate (purple), two-stage least squares estimates (red), mean LATEs (blue), LATE intercepts (green) 

and LATE slopes (orange) for different linear coefficients in the linear data generating model. Points 

represent means and bars represent 95% of the data. Horizontal solid lines represent target values. 
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Figure S4. 95% confidence interval coverage for the two-stage least squares estimates (red), mean LATEs 

(blue), LATE intercepts (green) and LATE slopes (orange) for different linear coefficients in the linear 

data generating model. Horizontal solid line represents the target value (95%). 
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Figure S5. Observational quadratic model linear parameter estimates (brown) and quadratic parameter 

estimate (purple), two-stage least squares estimates (red), mean LATEs (blue), LATE intercepts (green) 

and LATE slopes (orange) for different combinations of linear and quadratic coefficients in the quadratic 

data generating model. Points represent means and bars represent 95% of the data. Horizontal solid lines 

represent target values. 
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Figure S6. 95% confidence interval coverage for the LATE intercepts (green) and LATE slopes (orange) 

for different combinations of linear and quadratic coefficients in the quadratic data generating model. 

Horizontal solid line represents the target value (95%). 
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Figure S7. LATE intercepts (green) and LATE slopes (orange) for different degrees of individual-level 

heterogeneity of 𝜷𝒙𝒈 in the quadratic data generating model with linear coefficient = -1 and quadratic 

coefficient = 2. Points represent means and bars represent 95% of the data. Horizontal solid lines 

represent target values. 
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Figure S8. 95% confidence interval coverage for LATE intercepts (green) and LATE slopes (orange) for 

different degrees of individual-level heterogeneity of 𝜷𝒙𝒈 in the quadratic data generating model with 

linear coefficient = -1 and quadratic coefficient = 2. Horizontal solid line represents the target value 

(95%). 
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Figure S9. LATE intercepts (green) and LATE slopes (orange) for different degrees of individual-level G-

U interaction in the quadratic data generating model with linear coefficient = -1 and quadratic coefficient 

= 2. Points represent means and bars represent 95% of the data. Horizontal solid lines represent target 

values. 
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Figure S10. 95% confidence interval coverage for LATE intercepts (green) and LATE slopes (orange) for 

different degrees of individual-level G-U interaction in the quadratic data generating model with linear 

coefficient = -1 and quadratic coefficient = 2. Horizontal solid line represents the target value (95%). 
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Figure S11. LATE intercepts (green) and LATE slopes (orange) for different degrees of heterogeneity of 

𝜷𝒙𝒈 in unknown subgroups in the quadratic data generating model with linear coefficient = -1 and 

quadratic coefficient = 2. Points represent means and bars represent 95% of the data. Horizontal solid 

lines represent target values. 
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Figure S12. 95% confidence interval coverage for LATE intercepts (green) and LATE slopes (orange) for 

different degrees of heterogeneity of 𝜷𝒙𝒈 in unknown subgroups in the quadratic data generating model 

with linear coefficient = -1 and quadratic coefficient = 2. Horizontal solid line represents the target value 

(95%). 
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Figure S13. LATE intercepts (green) and LATE slopes (orange) for different degrees of heterogeneity of 

𝜷𝒙𝒈 in known subgroups in the quadratic data generating model with linear coefficient = -1 and quadratic 

coefficient = 2. Points represent means and bars represent 95% of the data. Horizontal solid lines 

represent target values.  
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Figure S14. 95% confidence interval coverage for LATE intercepts (green) and LATE slopes (orange) for 

different degrees of heterogeneity of 𝜷𝒙𝒈 in known subgroups in the quadratic data generating model 

with linear coefficient = -1 and quadratic coefficient = 2. Horizontal solid line represents the target value 

(95%).  
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Figure S15. LATE intercepts (green) and LATE slopes (orange) for different degrees of G-U interaction 

which varies between unknown subgroups in the quadratic data generating model with linear coefficient 

= -1 and quadratic coefficient = 2. Points represent means and bars represent 95% of the data. Horizontal 

solid lines represent target values. 
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Figure S16. 95% confidence interval coverage for LATE intercepts (green) and LATE slopes (orange) for 

different degrees of G-U interaction which varies between unknown subgroups in the quadratic data 

generating model with linear coefficient = -1 and quadratic coefficient = 2. Horizontal solid line 

represents the target value (95%). 
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Figure S17. Study-specific estimates of the association between rs1229984 and log-alcohol.  
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