
The impact of heat waves on mortality

Antonio Gasparrini and Ben Armstrong
Department of Social and Environmental Health Research, London School of Hygiene and
Tropical Medicine, 15-17 Tavistock Place, WC1H 9SH London, UK

Abstract
Background—Heat waves have been linked with an increase in mortality, but the associated risk
has been only partly characterized.

Methods—We examined this association by decomposing the risk for temperature into a “main
effect” due to independent effects of daily high temperatures, and an “added” effect due to
sustained duration of heat during waves, using data from 108 communities in USA during
1987-2000. We adopted different definitions of heat-wave days based on combinations of
temperature thresholds and days of duration. The main effect was estimated through distributed
lag non-linear functions of temperature, which account for non-linear delayed effects and short-
time harvesting. We defined the main effect as the relative risk between the median city-specific
temperature during heat-wave days and the 75th percentile of the year-round distribution. The
added effect was defined first using a simple indicator, and then a function of consecutive heat-
wave days. City-specific main and added effects were pooled through univariate and multivariate
meta-analytic techniques.

Results—The added wave effect was small (0.2%-2.8% excess relative risk, depending on wave
definition) compared with the main effect (4.9%-8.0%), and was apparent only after 4 consecutive
heat wave days.

Conclusions—Most of the excess risk with heat waves in the USA can be simply summarized
as the independent effects of individual days’ temperatures. A smaller added effect arises in heat
waves lasting more than 4 days.

Heat is a well-known public health hazard.1 The relationship between high temperatures and
a number of health outcomes, in particular mortality, has been documented in many
epidemiologic studies.2-5 Extended periods of extreme heat, usually defined as heat waves,
have been linked with a substantial increase in mortality,6 and specific events have been
reported as public health disasters—such as in Chicago during July 19957 and in France
during August 2003.8-9 The characterization of the relationship of heat and heat waves with
health assumes a particular importance given the predicted increase in their frequency and
intensity based on climate change scenarios.10-11

Past approaches to investigate the health effects of heat are of 2 types—episode analysis and
continuous-temperature time-series analyses.12 In episode analysis a heat wave is considered
as a distinct event (episode), and excess risk associated with it is estimated by comparison
with not-heat wave periods.13-15 A time-series analysis usually considers temperature as a
continuous risk factor, using linear threshold parameterization,16-17 or smooth functions18-19

to specify its exposure-response relationship, sometimes allowing for lagged effects.
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A few studies have recently brought these two approaches together, investigating the
increase in risk during heat waves in a time-series regression model that also includes daily
temperature as a numeric explanatory variable, possibly allowing for lagged effects. This
method has been used to quantify harvesting during single events, as in August 2003 in
Europe8,20 and July 1995 in Chicago,21 and also extended in studies with multiple heat wave
periods.2,22 The rationale under this methodology assumes that the effect of heat may be
described as the sum of two contributions: an increased risk due to the independent effects
of daily temperature levels, and an additional risk due to duration of heat sustained for
several consecutive days. The former is predicted by the usual exposure-response function
for the temperature-health relationship, characterizing both heat wave and non-heat wave
days, while the latter is commonly estimated by an indicator, usually defined as two or more
consecutive days above a specified temperature. Here we refer to these contributions as
main and added effect of heat, respectively.

This approach entails a more developed definition of heat-wave effects, identified as that not
merely due to a series of days with extremely hot temperature, but due to periods when
sustained heat produces an excess mortality beyond that predicted by independent
contributions of daily temperature occurrences. In consequence, this method allows a more
accurate prediction of the effect of heat on health by distinguishing between impacts from
isolated days of heat and from sustained days of heat in waves. A substantial added effect
implies the presence of additional patho-physiologic mechanisms that arise when the
exposure to hot temperatures is protracted for several days, not occurring in single sporadic
days of extreme heat. In contrast, a weak (if any) added effect would suggest that the
increased risk during waves may be explained by the sole main effect, estimated by simpler
models based on temperature-mortality exposure-response functions. Such evidence has a
clear implication in order to plan public health interventions or to estimate the future burden
of heat-related deaths under predicted climate change scenarios.

Studies on multiple heat-wave periods have indeed shown a substantial added effect.2,22

However, the extent of the wave effect appears to be sensitive to model features, in
particular the specific function used to model the main exposure-response relationship.22 In
this paper we seek to characterize more clearly the relationship between heat and mortality,
analyzing the excess risks in heat-wave periods, by comparing the contributions of main and
added effects, as defined above, under different wave definitions. In addition, we propose a
new, more flexible model to describe the added effect in terms of duration, allowing the risk
to vary smoothly by the number of consecutive heat wave days.

Methods
Data

The analysis includes the data for 108 urban communities in the U.S.A. during the period
1987-2000. The series for mortality, weather and pollution data were assembled from
publicly available data sources as part of the National Morbidity, Mortality, and Air
Pollution Study.23-24 Daily overall mortality consists of death counts among residents,
excluding injuries and external causes (International Classification of Diseases, 9th revision
(ICD-9) codes 800 and above, ICD-10 codes S and above). Maximum and minimum
temperatures are computed as the highest and lowest hourly measurements registered within
each day, with mean temperature as the average between them. General information about
how the data were collected and assembled have been previously reported, together with a
detailed summary of descriptive statistics for each community
(http://www.ihapss.jhsph.edu). For the current analyses we restrict the period to summer
months (June-September), to avoid the complexities of having to model cold as well as heat
effects.3,22,25
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Statistical analysis
The analytic strategy follows a scheme already proposed for multi-city studies, with a
common model applied to each community and then the use of meta-analytic procedures to
derive the pooled estimates.26 Here the effect of heat is decomposed into the main and added
effects introduced above, by including two terms for mean temperature in the city-specific
model. An algebraic representation is given by:

where Yi is the mortality count, assumed to follow an overdispersed Poisson distribution for
each day i . The covariates xj , with effects expressed by the functions gj , include an
indicator for day of the week and spline functions for dew point temperature, day of the year
and time. These last two terms describe a regular seasonal trend, forced to be identical each
year, and a smooth long-time trend, using 5 and 3 degrees of freedom (df), respectively,
following a parsimonious approach previously applied for analyses restricted to summer
months.3,22,25

The main effect of heat on day i is described by the function m of the series of lagged
temperatures ti–ℓ , with ℓ = 0,…, Lm and Lm as maximum lag. To allow flexibility, m is
specified as a two-dimensional spline function, defining a distributed lag non-linear model
that allows the main effect to vary smoothly along both dimensions of temperature and
lags.18,27 The relationship in the temperature space is modelled by a cubic spline with 6
degrees of freedom (df). Changes in the shape along lags is modelled by a natural cubic
spline with 5 df, up to a maximum lag Lm = 10 . This flexible model accounts
simultaneously for non-linear and lagged effects and short-time harvesting. In spite of this
flexibility, the relationship specified by the term m still assumes that effects of temperature
at each lag are independent. We summarize the main effect from each city-specific model
from the term m(t) , predicting the relative risk between the median temperature among heat
wave days versus the 75th percentile of annual temperature distribution. This reference was
chosen as a temperature at which little if any adverse effect of temperature on mortality is
expected.19

The pooled main effect across cities is computed through a random effect meta-analysis
based on restricted maximum likelihood.28

The additional risk of sustained heat is left to the added effect described by the function w .
The choices for this function are introduced below.

Heat wave indicator
In a first analysis, we specify w t(i) with:

where I is an indicator which assumes value 1 if ti–ℓ is higher than a threshold level τ . In
practice, in this first analysis w(t) is the usual indicator defining heat wave days as those
with temperature above an intensity criterion τ for at least Lw + 1 days of duration.
Following the definitions already proposed in literature,2,22 we set τ equal to the 97th, 98th
or 99th percentiles of the year-round city-specific distribution, and Lw equal to 1 or 3 (2 or 4
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days of duration). The city-specific added effect is estimated as the exponential of the
coefficient for the indicator variable.

The same meta-analytic techniques used for the main effect were applied to estimate the
pooled added effect across cities.

Numeric measure of heat wave duration
The second approach to characterize the added effect retains the temperature dichotomy (at
the 97th percentile), but replaces the duration dichotomy by allowing risk to depend on how
many consecutive days there have been above the threshold. In this case, w(t) = f (d) ,
where:

Here di is defined as the consecutive day the temperature has by date i exceeded the
threshold τ . The product term in the equation above ensures that all the preceding days
show a temperature above τ . Note that, d is 0 for non-heat wave days and for the first day
above the threshold τ , then 1 for the second day and so on, up to the day the temperature
comes back below the limit, with a maximum of Lw days. Here we set τ equal to the 97th

city-specific percentile and a maximum duration Lw of 10 days. The function f describing
the added effects in terms of consecutive heat wave days d is specified in two ways: through
a step function (strata: 1, 2-3, 4-5, 6-7, 8-10), or through quadratic splines with 5 df (without
natural constraints, 3 knots at 2, 5, 8 days).

The estimates and variance-covariance matrix for the 5 parameters of the function f (d) are
then included in a multivariate meta-analysis,29 in order to obtain the pooled added effect
along consecutive heat-wave days. The maximum heat-wave length is different in each city,
and those with maximum duration less than 10 days may contribute only to a subset of
parameters. This is handled by the meta-analytic procedure allocating very large variances to
the missing parameters, so that they will receive very small weight and not contribute to the
average estimate.29-30 The limit of 10 consecutive days was set in order to retain enough
cities in the analysis actually contributing to the estimates.

Sensitivity analysis
Given the complex statistical approaches adopted in the analyses above, involving several
assumptions and a-priori choices, a sensitivity analysis was carried out on the parameters for
the city-specific model for functions gj and m . Specifically, we modified the degree of
smoothing for seasonality and the complexity of the distributed lag functions, varying the df
and type for the splines for day of the year, temperature and lag dimensions in the models
with the mildest (97th percentile, 2 days of duration) and strictest (99th percentile, 4 days of
duration) wave definitions.

We also carried out some analyses to elucidate whether the main and added terms are too
correlated for their effects to be disentangled. Fist we computed the simple correlations
between mean temperature and both indicators and continuous measure of consecutive heat
wave days. Then, we more generally assessed the multi-collinearity between the full set of
main effect terms and the added wave term. Specifically, we computed the R2 of a model
regressing each heat-wave term on the cross-basis variables: a high R2 indicates that the
heat-wave term is almost perfectly predicted by the variables for the main effect, potentially
inducing problems of multi-collinearity in our regression model.
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Further information on modelling choices and residual, correlation and additional sensitivity
analyses are provided in eAppendix (http://links.lww.com), Sections S1-S3.

Software
The main analyses and graphical representation are performed in the statistical environment
R version 2.11.1.31 Distributed lag non-linear models are specified through the package
dlnm (version 1.2.3), while univariate meta-analyses are carried out through the package
metafor (version 1.1-0). Multivariate meta-analytical estimates are obtained by Stata 11,32

using the command mvmeta.

The main results included in the paper are entirely reproducible.33 The data are freely
available using the R package NMMAPSlite (version 0.3-2). The R code to run the main
analysis, plus the Stata code for multivariate meta-analysis are available in eAppendix
(http://links.lww.com), Sections S4.

Results
Mean summer temperature shows a high variability in the 108 communities, ranging from
12.8°C in Anchorage to 33.0°C in Phoenix, with an average of 23.5°C. The number of heat-
wave days during the 14-year period, defined by the indicator variable used in the first
analysis, varies depending on wave definitions. The average number of heat-wave days in
each community is 90.0 (range: 38-129) when using the 97th percentile and 2 days duration,
and 7.2 (range: 0-21) using the 99th percentiles and 4 days.

Table 1 shows the estimated increase in risk due to main and added effects in those days
matching the 6 definitions. The average main effect is similar between definitions based on
2 or 4 days of duration, and increases proportionally to the intensity criterion (97th, 98th,
and 99th percentiles), being computed on the median temperature among heat-wave days,
which increases accordingly. In contrast, the duration criterion plays an important role for
the added effect: the models using 2 days of minimum duration show very small increases in
risk; if the minimum duration period is extended to 4 days, the average added effect
increases proportionally to the selected percentile. Only the strictest definition of days
showing a temperature above the 99th percentile for at least 4 past days provides an increase
of 2.8% (95% confidence interval [CI]: 0.4% to 5.3%) in mortality. The contribution of the
main effect substantially exceeds the added effect during heat wave days in all the 6
definitions.

Communities show some variability in the length of wave periods, when specified as 2
consecutive days with temperature above the 97th city-specific percentile, with an average
maximum length of 9.5 days (range: 4-20 days). Heat waves of at least 10 and 7 days long,
were experienced respectively, by 45.4% and 81.5% of communities. Heat wave periods are
usually short, with 76.3% of days within the first 3 of heat wave. The average added effect,
specified by increase in risk for consecutive heat wave days and modelled alternatively by
both quadratic spline and a step functions, is depicted in the Figure. The analysis shows no
effect during the beginning of a wave period, then an increase when the heat is sustained for
longer than 4 uninterrupted days. The plot also displays a decrease after a peak at around 7
consecutive days, although wide confidence intervals.

The results of sensitivity analysis are illustrated in Table 2. The estimated added effect
(0.3% and 2.8% in the original models, respectively) was robust to most of the changes. The
most notable exceptions are the results reported in the last three rows of Table 2, which
showed considerably higher wave effects (up to 3.7% and 7.0%). These models were
characterized by either relatively inflexible splines for temperature, inflexible lag structure
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or both. The 2 df spline with “natural” constraints is forced to be linear beyond the
boundaries, further limiting its flexibility to model non-linear effects for extremely hot days.
Because extremely hot days are also likely to be labelled as heat-wave days, this would
produce an inflated added effect. The same happens when applying a very simple model
with 1 df to describe lagged effect, corresponding approximately to a simple moving
average of the temperatures in the lag period of ten days.

The correlation between mean temperature and heat-wave terms is not high: the average
correlation coefficient r across cities is 0.40 (range, 0.29-0.51) for the indicator variable
based on 97th percentile and 2 days of duration and 0.32 (range, 0.24-0.43) for continuous
measure of consecutive heat wave days. The R2 of the regression of wave terms on the
cross-basis variables for the main effect, an index of multi-collinearity, shows an average of
0.63 (range, 0.43-0.76) for the same indicator and of 0.56 (range, 0.38-0.72) for the
continuous variable. These results demonstrate that, although the main and added effects are
correlated, the model and data still have power to separate these 2 effects.

Discussion
Our approach seeks to characterize the excess risk during heat-wave periods, quantifying
how much of this additional burden is simply explained by the increase in temperature and
how much is attributable to the heat continuing over several consecutive days. Furthermore,
this additional risk during waves is described in terms of duration, proposing a new
definition based on consecutive heat wave days.

This analysis addresses important epidemiologic and public health questions: the
implementation of adequate preventive measures such as heat-wave plans (in the short-to-
medium term) and the prediction of the burden of future events under the suggested climate
change scenarios (in the long term) require a detailed characterization of the association
between heat, heat-waves and mortality. The results suggest that most of the excess risk
during waves is attributable to (and predictable by) the increase in daily temperatures
whether isolated or occurring with other hot days, the effect of which is larger than any
added effect. The latter is negligible for short heat-wave periods, although it does bring
some additional risks after 4 days of uninterrupted heat.

Our analytic design offers several advantages. First, the choice of flexible distributed lag
non-linear functions gives greater assurance than simpler models that the main effect is
adequately accounted for, reducing the risk of confounding of the added effect by a residual
main effect of heat. In addition, the analysis takes into account the adaptation of each
population to its own climate,3,19 by allowing community-specific exposure-response
functions for the main effect, and wave definitions based on community-specific percentiles.
Finally, by modelling the heat-wave effect as a continuous function of duration, we avoid
arbitrary duration criteria and allow direct estimation of the duration at which such effect
become apparent.

Our findings from the first analysis using an indicator for heat-wave days, as described in
Table 1, are rather different from some others previously reported in the literature. An
analysis of London, Milan, and Budapest by Hajat and colleagues,22 with a wave definition
based on the 99th percentile for at least 2 days and a natural cubic spline with 3 df to specify
the un-lagged main exposure-response relationship, showed a percentage increase in
mortality from 4.3% to 8.3%. Anderson and Bell,2 analyzing the whole year data on the
same dataset considered here and a natural cubic spline with 3 df for lag 0-1, found an
average increase of 6.5% for a definition based on 99th percentile and 4 days of duration.
These results are comparable in magnitude to our estimates for similar models reported in
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the last 3 rows of Table 2, and can be probably explained by the limited flexibility of the
functions used to account for the main effect, a pattern also reported by Hajat and
colleagues.22 The results on the effect of wave duration are consistent with some findings
already reported in the literature.34-35

We estimated the proposed association between heat, heat waves and mortality by averaging
the effects across different cities and different wave periods, and this average relationship
might not accurately represent every specific heat-wave event. The approach we propose
showed quite good performance when applied to predict mortality during the extreme heat
wave in Chicago in 1995 (eAppendix [http://links.lww.com], Section S3), but might be
biased in describing some waves in some cities if these heat eaves are unusual with respect
to variables not included in the analytic model and acting as modifiers of the temperature-
health association. For instance, a potential synergistic effect between air pollution and heat
has been suggested, although specific analyses have reported conflicting results.2,36-37 The
evidence is unclear also for an effect modification by socio-economic characteristics,16,38-40

while more robust for the prevalence of air conditioning.2,41-42 These issues may be
addressed in further research.

In this paper we provide a novel analysis of the impact of heat waves on mortality. Our
results suggest that the excess risk during heat-wave periods is largely explained by the
immediate and lagged effect of daily temperatures, with just a small added impact due to
sustained heat limited to waves lasting more than 4 days.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIGURE.
Average wave effect of consecutive heat wave days (above 97th percentile), as estimated by
quadratic spline (continuous line) with 95%CI (grey area), and by a step function (dashed
line)
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Table 2

Sensitivity analysis on the degrees of freedom (df) and spline type for seasonality and temperature-lag
functions on the pooled added effect across cities, under 2 different heat wave definitions.

df for specific functions ≥2 days
≥97th percentile

≥4 days
≥99th percentile

Seasonality Temperature Lag % Increase (95% CI) % Increase (95% CI)

4 6 5 0.3(−0.5 to 1.1) 2.8(0.4 to 5.3)

2 6 5 0.3(−0.4 to 1.1) 2.8(0.4 to 5.2)

6 6 5 0.3(−0.4 to 1.1) 2.8(0.4 to 5.3)

4 4 5 −0.1(−0.9 to 0.7) 3.0(0.3 to 5.8)

4 7 5 0.1(−0.7 to 0.9) 2.5(0.1 to 5.0)

4 6 3 0.8(0.0 to 1.6) 3.0(0.2 to 5.8)

4 6 6 0.3(−0.5 to 1.1) 2.8(0.4 to 5.2)

4 2a 5 1.0(0.3 to 1.8) 4.8(1.4 to 8.3)

4 6 1 3.6(2.8 to 4.4) 6.7(3.5 to 10.1)

4 2a 1 3.7(2.8 to 4.5) 7.0(3.3 to 10.8)

a
A natural cubic spline is used here instead than a simple B-spline.
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