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Voice processing in neurodegenerative disease is poorly understood. Here we undertook a systematic investigation of voice

processing in a cohort of patients with clinical diagnoses representing two canonical dementia syndromes: temporal variant

frontotemporal lobar degeneration (n = 14) and Alzheimer’s disease (n = 22). Patient performance was compared with a healthy

matched control group (n = 35). All subjects had a comprehensive neuropsychological assessment including measures of voice

perception (vocal size, gender, speaker discrimination) and voice recognition (familiarity, identification, naming and cross-modal

matching) and equivalent measures of face and name processing. Neuroanatomical associations of voice processing per-

formance were assessed using voxel-based morphometry. Both disease groups showed deficits on all aspects of voice recog-

nition and impairment was more severe in the temporal variant frontotemporal lobar degeneration group than the Alzheimer’s

disease group. Face and name recognition were also impaired in both disease groups and name recognition was signifi-

cantly more impaired than other modalities in the temporal variant frontotemporal lobar degeneration group. The Alzheimer’s

disease group showed additional deficits of vocal gender perception and voice discrimination. The neuroanatomical analysis

across both disease groups revealed common grey matter associations of familiarity, identification and cross-modal recognition

in all modalities in the right temporal pole and anterior fusiform gyrus; while in the Alzheimer’s disease group, voice discrim-

ination was associated with grey matter in the right inferior parietal lobe. The findings suggest that impairments of voice

recognition are significant in both these canonical dementia syndromes but particularly severe in temporal variant frontotem-

poral lobar degeneration, whereas impairments of voice perception may show relative specificity for Alzheimer’s disease. The

right anterior temporal lobe is likely to have a critical role in the recognition of voices and other modalities of person

knowledge.
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Introduction
Disorders of face processing are well recognized and widely stu-

died, but much less attention has been paid to disorders of voice

processing. From a neurobiological perspective this is somewhat

surprising, since human voices can be considered ‘auditory faces’

in several important respects (Schweinberger et al., 1997a; Belin

et al., 2004). Ethologically, voices are the second major channel

via which we identify other people, while perceptually, individual

voices (like faces) present the brain with a formidable problem of

precise differentiation and identification within a class of complex

sensory objects. The relative neglect of voice processing in the

clinical literature is likely to reflect a lack of theoretical frameworks

for understanding voice analysis, the comparative difficulty of

working with vocal stimuli and the scarcity of symptomatic deficits

of voice processing (phonagnosia), in turn partly attributable to

the primacy of the face as a source of person knowledge in

daily life. However, this situation has been transformed recently

with the development of cognitive models of voice processing

(Belin et al., 2000, 2004; von Kriegstein et al., 2005, 2006;

Campanella and Belin, 2007; Goll et al., 2010), the availability

of sophisticated stimulus synthesis and delivery systems, functional

imaging studies in the healthy brain and the detailed characteriza-

tion of phonagnosias. Cognitive models of voice processing have

been influenced by face processing models (Bruce and Young,

1986; Burton et al., 1990; Ellis et al., 1997). In the voice process-

ing model proposed by Belin et al. (2004), voice identification

occurs via serially and hierarchically organized processing stages:

perceptual representations or templates derived from modality-

specific (voice and face) recognition units feed into amodal

‘person identity nodes’, evoking a sense of familiarity that gates

access to biographical information (including personal names) and

leads to recognition of the speaker. These putative processing

stages map onto an anatomical hierarchy in which perceptual ana-

lysis of voices occurs in temporoparietal cortices with associative

processing of voices and other modalities of person knowledge in

more anterior temporal lobe areas, delineated using functional

brain imaging (Imaizumi et al., 1997; Nakamura et al., 2001;

Belin et al., 2002; von Kriegstein et al., 2006; Warren et al.,

2006; Bishop and Miller, 2009). However, the cognitive and neural

architecture of voice processing and its relations to other modal-

ities of person knowledge continue to be defined. Phonagnosia

has been described as a developmental disorder (Garrido et al.,

2009) and, more commonly, in association with focal damage

involving the right or left temporal lobe or the right parietal lobe

(Van Lancker and Canter, 1982; Van Lancker and Kreiman, 1987;

Van Lancker et al., 1988, 1989; Ellis et al., 1989; Hanley et al.,

1989; Neuner and Schweinberger, 2000; Belin et al., 2004; Lang

et al., 2009).

There are both clinical and neurobiological grounds for a sys-

tematic analysis of voice processing in the degenerative dementias.

Clinically, voice processing impairments are likely to be under-

recognized in these diseases yet may constitute a significant and

disabling symptom (Hailstone et al., 2010), especially in situations

where additional cues to speaker identity are reduced or unavail-

able. Neurobiologically, the common dementias collectively affect

distributed areas in the temporal, parietal and frontal lobes that

have been implicated in voice processing in functional imaging

studies of healthy subjects (Seeley et al., 2009). In particular,

the brunt of tissue damage in Alzheimer’s disease and several

diseases in the frontotemporal lobar degeneration (FTLD) spec-

trum initially falls on the temporal lobes, which are likely to con-

tain mechanisms integral for voice analysis and recognition (Belin

et al., 2004). The syndrome of progressive prosopagnosia is well

recognized in association with right temporal lobe atrophy (Evans

et al., 1995; Joubert et al., 2003, 2004; Josephs et al., 2008; Chan

et al., 2009) and is dominated by deficits of non-verbal know-

ledge, in particular knowledge of familiar people (Hanley et al.,

1989; Gentileschi et al., 1999, 2001; Snowden et al., 2004;

Thompson et al., 2004; Gainotti, 2007, 2008). While voice recog-

nition commonly becomes affected with evolution of the progres-

sive prosopagnosia syndrome (Gentileschi et al., 2001; Gainotti

et al., 2003, 2008), selective phonagnosia has seldom been re-

ported. However, progressive associative phonagnosia with

relatively-preserved voice discrimination, face and proper name

recognition has recently been described in association with fron-

totemporal atrophy involving the right anterior temporal lobe

(Hailstone et al., 2010). Neurodegenerative diseases offer a per-

spective on voice processing that is complementary both to studies

in normal subjects and in patients with focal brain lesions: the

breakdown of voice processing in dementia would potentially

allow identification of critical nodes in a functional and anatomical

cerebral network, and inform cognitive models of voice

processing.

In this study, we investigated neuropsychological and neuroana-

tomical signatures of voice processing in two canonical dementias,

FTLD and Alzheimer’s disease. In targeting these disease groups

we recognized that, whereas Alzheimer’s disease typically presents

with a relatively uniform clinical and anatomical profile, FTLD is

clinically and anatomically heterogeneous. In particular, patients

with FTLD who have predominant temporal lobe atrophy (i.e.

those predicted a priori to develop voice processing deficits)

have heterogeneous clinical presentations, including both semantic

dementia (progressive semantic aphasia or progressive prosopag-

nosia) and progressive behavioural decline [(behavioural variant

frontotemporal dementia (FTD)]. For the purposes of the present

‘lesion-led’ study, we selected patients with FTLD based on the

presence of predominant temporal lobe atrophy: we term this

non-canonical, anatomically defined subgroup ‘temporal lobe vari-

ant FTLD’ (Brambati et al., 2009). In line with current cognitive

models and previous neuropsychological evidence concerning the

organization of voice processing (Van Lancker et al., 1988; Ellis

et al., 1997; Schweinberger et al., 1997b; Neuner and

Schweinberger, 2000; Belin et al., 2004; Lucchelli and Spinnler,

2008; Garrido et al., 2009; Hanley and Damjanovic, 2009), we

designed a series of neuropsychological experiments incorporating

subtests to assess early perceptual encoding, discrimination and

recognition of voices in the target clinical groups. Processing of

voices was assessed in relation to processing of faces and names,

in order to assess the modality- and material-specificity of any

voice processing deficit. Neuroanatomical correlates of voice pro-

cessing performance were assessed using voxel-based morphom-

etry (Ashburner and Friston, 2000). We hypothesized distinct
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profiles of phonagnosia in temporal lobe variant FTLD and

Alzheimer’s disease, with more severe associative impairment in

temporal lobe variant FTLD and relatively more prominent apper-

ceptive impairment in Alzheimer’s disease. We further hypothe-

sized, based on anatomical evidence in the healthy brain, that

semantic deficits in processing voices (in common with other

kinds of person knowledge) would be associated with atrophy

of anterior temporal lobe regions, and voice apperceptive deficits

would be associated with atrophy of more posterior temporo-

parietal regions.

Materials and methods

Subject details
Fourteen consecutive patients with temporal lobe variant FTLD, 22

patients with Alzheimer’s disease and 35 healthy older control subjects

participated. All patients were recruited from the tertiary Cognitive

Disorders Clinic at the National Hospital for Neurology and

Neurosurgery. Patients with temporal lobe variant FTLD were selected

based on the presence of selective, bilateral anterior temporal lobe

atrophy on MRI (atrophy of one or both temporal lobes disproportion-

ate to any accompanying atrophy of other cerebral regions, as as-

sessed visually by an experienced, independent neuroradiologist); the

distribution of temporal lobe atrophy was asymmetric in 13/14 cases.

Clinically, most (13/14) patients with temporal lobe variant FTLD had

a syndrome of semantic dementia according to the consensus criteria

of Neary et al. (1998); within this semantic dementia subgroup, 10

patients presented with progressive semantic aphasia and three pre-

sented with progressive prosopagnosia. One patient within the FTLD

group presented with behavioural variant FTD. All patients with

Alzheimer’s disease had a clinical syndrome of typical Alzheimer’s dis-

ease led by memory decline and fulfilled modified National Institute of

Neurological and Communicative Diseases and Stroke/Alzheimer’s

Disease and Related Disorders Association (NINCDS-ADRDA) criteria

for probable Alzheimer’s disease (Dubois et al., 2007). Twenty out of

22 patients with a clinical diagnosis of Alzheimer’s disease had brain

MRI: 16 patients had disproportionate symmetrical hippocampal atro-

phy and four had generalized cerebral atrophy. Demographic charac-

teristics of the study groups are summarized in Table 1 and further

details are provided in the online Supplementary material. Significance

of differences between groups was assessed using z-tests with boot-

strap (2000 replicates) standard errors. Subject groups did not differ

significantly in age, gender distribution or years of education (all

Table 1 Summary of subject characteristics

Temporal lobe variant FTLD n = 14 Alzheimer’s disease n = 22 Healthy controls n = 35

Mean (SD) Range Mean (SD) Range Mean (SD) Range

Demographic characteristics

Males: females 8:6 10:12 13:22

Right: left-handed 11:3 19:3 31:4

Age (years) 64.2 (6.3) 54–76 66.5 (7.7) 49–79 63.9 (5.7) 54–79

Years of education 13.9 (4.8) 10–25 13.5 (3.6) 9–20 15.2 (3.3) 11–25

Clinical characteristics

Clinical syndrome at presentation Semantic
dementia
(n = 13)a

Amnestic
Alzheimer’s
disease

NA

Behavioural
variant FTD
(n = 1)

Symptom duration (years) 5.4 (1.7) 3–8 5.7 (2.4) 2–11 NA

Mini-Mental State Examination (/30) 21.1 (7.2)** 6–29 21.3 (4.2)** 14–28 29.4 (0.6)b 28–30

Medication 4c 18d NA

Cardinal symptomse

Voice recognition n = 9 (64%) n = 11 (50%) NA

Face recognition n = 7 (50%) n = 8 (36%) NA

Voice familiarity n = 3 (21%) n = 3 (14%) NA

Face familiarity n = 5 (36%) n = 2 (9%) NA

Media exposuree

TV watching (hours per week) 15.1 (9.2) 0–32 15.9 (10.0) 0–35 14.4 (10.5) 0–63

Radio listening (hours per week) 2.4 (4.2)**z 0–13 11.4 (13.3) 0–42 13.8 (12.0) 0.5–55

News exposure (times per week) 8.1 (4.3) **† 1–20 13.0 (8.0) 1–30 13.9 (6.9) 4–35

Assessed using questionnaire (Supplementary material).
a Ten cases with progressive semantic aphasia, three cases with progressive prosopagnosia.
b Twenty-three controls performed a Mini-Mental State Examination.
c Two patients taking a serotonin reuptake inhibitor, one taking anti-Parkinson’s medication, one taking lithium.
d Sixteen patients taking a cholinesterase inhibitor, two taking memantine.

e Assessed using questionnaire (Supplementary material).
NA Not applicable to controls.
*Significantly worse than controls (P50.05); **significantly worse than controls (P50.001); †significantly different from other patient group (P5 0.05); zsignificantly
different from other patient group (P5 0.01).
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P4 0.05); the temporal lobe variant FTLD and Alzheimer’s disease

groups did not differ significantly on two general measures of clinical

severity (symptom duration and Mini-Mental State Examination score).

The study was approved by the local institutional research ethics

committee and all subjects gave informed consent in accord with the

principles of the Declaration of Helsinki.

General neuropsychological assessment

All patients and 19 healthy control subjects had a comprehensive gen-

eral neuropsychological assessment; the remaining 16 control subjects

performed a reduced set of tests. The tests administered are listed in

Table 2. Fisher’s exact test was used to assess group differences in

gender, for all other variables differences in means were assessed using

z-tests with bootstrap (2000 replicates) standard errors.

Peripheral hearing assessment

Most subjects had no clinical history of hearing loss. To assess any

effects of hearing loss on performance in the experimental tasks across

the experimental groups, all subjects underwent pure tone adiometry

on frequencies between 0.5 and 4 kHz. The audiometry procedure and

analysis are described in the online Supplementary material.

Experimental behavioural investiga-
tions: perceptual analysis of voice
attributes
Voices are complex auditory objects and voice perception depends on

encoding spectro-temporal attributes that carry information about

vocal identity such as gender and size (Belin et al., 2002, 2004;

Griffiths and Warren, 2004; Warren et al., 2006). Here we created

novel subtests to assess encoding of the voice attributes of gender and

vocal tract length (an index of vocal size).

Vocal gender

Vocal gender is determined by lower level perceptual properties includ-

ing pitch and vocal tract length; here we were interested in subjects’

ability to assign gender to vocal samples based on all available auditory

Table 2 Results of general neuropsychological assessment

Test (max score) Temporal lobe variant FTLD n = 14 Alzheimer’s disease n = 22 Healthy controls n = 35

Mean (SD) Range Mean (SD) Range Mean (SD) Range

IQ

WASI Verbal IQ 67.6 (21.7)**z 40–111 96.9 (17.2)** 67–121 120.8 (9.2) 100–141

WASI Performance IQ 99.9 (19.1)* 68–133 86.0 (16.3)**† 62–110 116.8 (11.9) 96–142

Reading IQa 88.7 (23.9)**† 45–122 106.4 (15.7)* 68–128 118.9 (7.4) 96–129

Semantic tests

BPVS (/150) 73.8 (49.7)**z 5–148 141.4 (11.9)* 106–150 148.1 (1.5) 144–150

Concrete synonyms (/25) 14.2 (5.3)**†b 7–24 20.9 (2.7)**b 13–24 24.3 (1.3) 19–25

Abstract synonyms (/25) 15.4 (5.8) **†b 8–24 20.9 (3.5)**b 14–25 24.3 (1.2) 20–25

Landmark name (/15) 2.6 (3.7)**†c 0–12 6.1 (4.0)**c 0–15 13.5 (1.3)d 11–15

Landmark identify (/15) 4.6 (4.7)**†c 0–12 8.0 (4.1)**c 0–15 13.7 (1.2)d 11–15

Other non-semantic skills

GNT (/30) 2.2 (6.1)**z 0–23 11.6 (7.9)** 0–26 26.0 (2.4) 19–30

ODT (/20) 16.5 (5.0) 8–29 15.8 (2.8)** 9–19 18.5 (1.2) 16–20

Forwards DS (/12) 7.3 (2.7) 4–12 7.1 (2.3)* 4–11 8.7 (2.0) 4–12

Reverse DS (/12) 6.1 (3.3) 0–10 4.9 (2.7)* 0–10 7.4 (2.6) 2–12

GDA (/24) 8.9 (6.9)** 0–20 5.5 (4.5)** 0–14 15.4 (4.8)e 6–23

Episodic memory

RMT words (/50) 35.4 (7.0)**h 24–47 30.1 (7.3)**† 19–47 47.3 (1.8)e 43–49

RMT faces (/50) 28.9 (4.1)**zh 24–40 35.0 (5.6)** 25–45 42.2 (4.7)e 35–49

Executive function

Stroop word reading: scaled score 5.2 (4.0)*f 1–14 5.8 (4.6)** 1–13 10.7 (2.7)e 3–14

Stroop inhibition: scaled score 6.3 (4.6)**g 1–13 3.6 (3.2)** 1–11 11.5 (2.0)e 7–14

a Reading IQ measured on the National Adult Reading Test (NART) (Nelson, 1982) unless the subject scored 415/50 on this test, in which case the Schonell Graded Word

Reading Test IQ was used (Schonell and Goodacre, 1971).
b Two temporal lobe variant FTLD, one subject with Alzheimer’s disease did not perform synonyms tests.
c Three subjects with temporal lobe variant FTLD, two subjects with Alzheimer’s disease did not perform the London landmarks test.
d 34/35 controls tested on these tasks.
e 19/35 controls tested on these tasks.
f One temporal lobe variant FTLD subject unable to read the words and a scaled score of 1 was used.

g n = 12 (two temporal lobe variant FTLD subjects unable to name colours).
h One temporal lobe variant FTLD subject did not perform recognition memory tasks.
*Significantly worse than controls (P50.01); **significantly worse than controls (P5 0.001); †significantly worse than other patient group (P50.05); zsignificantly worse
than other patient group (P5 0.001).
BPVS = British Picture Vocabulary Scale (McCarthy and Warrington, 1992); Concrete and Abstract Synonyms Test (Warrington et al., 1998); DS = Wechsler Memory
Scale – Revised (WMS-R) digit span (Wechsler, 1987); GDA = Graded Difficulty Arithmetic; GNT = Graded Naming Test (Warrington, 1997); Landmark name/
identify = London landmark naming and identification test (Whiteley and Warrington, 1978); ODT = Object Decision Task (Warrington and James, 1991);

RMT = Recognition Memory Tests (Warrington, 1984); Stroop, Delis-Kaplan Executive Function System Stroop test (Delis et al. 2001); WASI = Wechsler Abbreviated Scale
of Intelligence (Wechsler, 1999).
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cues. Vocal samples (each 5 s in duration) were derived from publicly

available sources. Twenty-four trials (12 male) were presented; the

task was to decide if the voice was male or female.

Vocal size (vocal tract length)

Like voice gender, vocal size is determined by lower-level properties: in

this subtest we were interested in subjects’ ability to make more

fine-grained categorical perceptual judgements of vocal size by manip-

ulating vocal tract length information in isolation, as previously

described in normal subjects (Ives et al., 2005). Stimuli were based

on 10 consonant–vowel syllables recorded by a single male speaker

and digitally resynthesized using a previously described algorithm

(Kawahara and Irino, 2004) that allows apparent vocal tract length

to be varied independently of glottal pulse rate (voice pitch). Each

syllable was presented at two extreme vocal tract length values, one

corresponding to a speaker height of 2 m (equivalent to a very tall

male, ‘big’) and the other to a height of 0.5 m (equivalent to a child,

‘small’), and randomly assigned one of four pitches within the normal

human male vocal range (116, 120, 172, 190 Hz), which was varied

independently of vocal tract length. Examples of stimuli are available

from the authors. Twenty trials (10 ‘big’, 10 ‘small’) were presented;

on each trial, subjects heard a sequence of four repetitions of the same

stimulus, and were asked to judge if the sounds were made by a big

person or a small person.

Experimental behavioural investigations:
voice discrimination
Distinguishing between voices of comparable pitch and vocal tract

length requires comparison between object-level representations of

each voice: this processing stage beyond early perceptual analysis

can be regarded as an auditory analogue of apperceptive processing

in the visual domain (Goll et al., 2010). We created a voice discrim-

ination task in which subjects were required to detect a change in

speaker within a spoken phrase. The verbal content of the phrase

was a highly over-learned series (‘Monday, Tuesday, Wednesday,

Thursday’). All speakers were female, aged 21–31 years, with a stand-

ard Southern English accent. Two versions of the test stimuli were

recorded to create two levels of speaker discrimination task difficulty:

in the ‘easy’ version of the task, voice pitch (f0) was not fixed while in

the ‘difficult’ version of the task, inter-speaker variations in vocal pitch

were controlled by setting f0 of recorded stimuli at 220 Hz using

Goldwave� software. Recorded single words were concatenated with

fixed inter-word gap (0.1 s) to equate overall speech rate. If the se-

quence contained a speaker change, this change always occurred at

the midpoint of the phrase, to maximize available vocal information

for each speaker. Examples of stimuli are available from the authors. In

the ‘easy’ discrimination test 28 trials (14 speaker fixed, 14 speaker

change) were presented; in the ‘difficult’ speaker discrimination test,

12 trials (six speaker fixed, six speaker change) were presented. The

task was to decide whether the spoken phrase contained a change in

speaker.

Patient performance on these vocal tasks was compared with per-

formance on a standard test of perceptual processing of face identity,

the Benton Facial Recognition Test (Benton et al., 1989): this test

depends on successful perceptual encoding of the configuration of a

face, and requires the subject to match a photograph of target face

to one (or three) of six other photographs of the target with dis-

tractor faces under different viewing conditions. The short form of

the test was administered. Scores (/56) were normalized for age and

education.

Experimental behavioural investigations:
voice recognition
In this test we aimed to assess different aspects of semantic process-

ing of famous voices (voice recognition) comprising familiarity,

naming, identification from biographical information and cross-modal

matching, in comparison to recognition of faces and names for

the same famous individuals. Sixty voice samples and face photo-

graphs were initially obtained from publicly available sources on the

internet and chosen so as to minimize other potential semantic

cues to recognition. A set of 24 voice samples of well-known public

figures was selected from this larger set, based on a pilot analysis

in a separate group of healthy older British controls (Hailstone et al.,

2010); the best-recognized samples were included in the final stimulus

set used in all semantic subtests. These 24 famous individuals

(Supplementary Table 1) comprised 10 politicians, five actors, seven

other media personalities from television and radio, and two members

of the British royal family. Examples of stimuli are available from the

authors. Face photographs and names of the same set of 24 famous

individuals were used for the face and name processing tasks,

respectively.

Familiarity of voices, faces and names

In this subtest the set of 24 famous voices was supplemented by 24

unfamiliar voices and faces [as classified by 475% of healthy controls

in the pilot study: (Hailstone et al., 2010)] matched by gender to the

famous set and approximately matched for age and accent. The writ-

ten names of the same 24 famous individuals were supplemented with

24 fabricated personal name foils. For each modality, 48 trials (24

famous, 24 unfamiliar) were presented; each stimulus was presented

once, and the task was to decide if the stimulus was familiar in a

forced choice (‘yes – no’) protocol. As voice familiarity was the primary

focus here, voices were presented first (in order to minimize priming

effects in the voice modality), followed by faces and names.

Identification of voices, faces and names

In this subtest, the task was to identify the person as precisely

as possible; for voices and faces, if the subject was not able to

name the person, they were asked to provide other biographical

details (e.g. an event closely associated with the person, occupa-

tional information), in line with the criteria used by Snowden et al.

(2004). For names, on each trial the subject was required to pro-

vide identifying information about the person. For voices, national or

regional origin was not accepted as evidence of person recognition,

since this could be based on accent cues alone. As voice identifica-

tion was the focus here, voices were presented first (in order to min-

imize priming effects in the voice modality), followed by faces and

names.

Cross-modal recognition of voices and faces

We employed a cross-modal matching task in order to allow patients

to demonstrate recognition of voices and faces using an alternative

procedure that did not rely on word retrieval. For both face and voice

targets, three stimulus arrays were selected using individuals from

the set of 24 individuals; each individual was represented in one

of the arrays. The first array contained the six females from the com-

plete set, a second array contained the nine male politicians, and

the third contained the nine male media figures (as career is likely to

be an important organizational principle in the domain of person

knowledge; Crutch and Warrington, 2004). The set of 24 faces was

presented first, and the task was to match the face to one of the
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names in the array. The set of 24 famous voices was presented with

the same arrays but with simultaneous presentations of faces and

names in each array; the task was to match the voice to one of the

face-name pairs.

Experimental behavioural investigations:
general procedure
The experimental tests were administered to subjects over several ses-

sions. Auditory stimuli were presented from digital wavefiles on a

laptop computer via headphones at a comfortable listening level in a

quiet room. Visual stimuli were presented as high-quality greyscale

photographs. Verbal stimuli were simultaneously presented as written

words and spoken by the examiner (control subjects were presented

with written words only). All stimuli were presented in fixed rando-

mized order. Subject responses were collected for off-line analysis.

Before beginning each test, several practice trials were administered

to ensure the subject understood the task. No feedback about per-

formance was given during the test. Voice stimuli were presented once

only for all tasks, with the exception of the famous voice identification

task, where subjects were permitted a further presentation if re-

quested. No time limit was imposed.

Experimental behavioural
investigations: analyses
Experimental behavioural data were analysed in STATA R9.2 (Stata

Corporation). For the perceptual tests, differences in mean scores be-

tween groups were assessed using z-tests and 95% Wald-type confi-

dence intervals, with standard errors calculated using bootstrapping

(2000 replicates).

For the semantic subtests, the effect of stimulus presentation mo-

dality was assessed using a bootstrapped linear regression model with

2000 replicates, which allowed for the repeated measures from sub-

jects. A global Wald test of interaction was carried out to test the

hypothesis that group differences in scores varied between modalities,

and modality-associated differences in performance between the tem-

poral variant FTLD and Alzheimer’s disease groups were assessed in

pair-wise comparisons between modalities. Using this model, differ-

ences between the two patient groups were adjusted for modality

performance differences exhibited by healthy controls (anticipated

from previous work; Hailstone et al., 2010).

Within each patient group, correlation coefficients between experi-

mental tests were estimated with 95% bias-corrected bootstrap con-

fidence intervals (2000 replicates). Correlations were estimated

between perceptual discrimination subtest scores; between semantic

subtest scores within and between modalities; and between perceptual

and semantic performance. Associations with disease severity measures

were also assessed, using linear regression models with 95% Wald-

type bootstrap confidence intervals with 2000 replicates. As severity

measures, symptom (clinical disease) duration was used for both dis-

ease groups; in addition, Mini-Mental State Examination score was

used for the Alzheimer’s disease group and the British Picture

Vocabulary Scale (a measure of semantic impairment) for the temporal

lobe variant FTLD group. Within the latter group of patients, the

general neuropsychological and experimental test performance of sub-

jects with predominantly left-sided versus predominantly right-sided

temporal lobe atrophy was compared: we report differences in

means with 95% Wald-type bootstrap confidence intervals (2000

replicates).

Neuroimaging protocol and analysis

Brain image acquisition

For 18 patients with Alzheimer’s disease and 11 patients with temporal

lobe variant FTLD, T1-weighted volumetric magnetic resonance images

were acquired on a Siemens Trio TIM 3T scanner (Siemens Medical

Systems). Scans were acquired using a 3D magnetization prepared

rapid gradient echo (MP-RAGE) sequence producing 208 contiguous

1.1 mm thick sagittal slices with 28 cm field of view and a 256 � 256

acquisition matrix, giving approximately isotropic 1.1 mm cubic voxels.

Voxel-based morphometry analyses

Magnetic resonance brain images were processed using MATLAB 7.2

(The MathWorks Inc.) and SPM8 software (Statistical Parametric

Mapping, Version 8; http://www.fil.ion.ucl.ac.uk/spm) with default

settings for all parameters; normalization was performed using the

DARTEL toolbox (Ashburner, 2007). Further details of preprocessing

steps are provided in the Supplementary material.

For each modality in the experimental battery (voices, faces, names),

associations between regional grey matter volume and subtest per-

formance were assessed in both disease groups using linear regression

models. In separate-modality design matrices, grey matter volume was

modelled as a function of the experimental subtest score-by-group

interaction term with group, age and total intracranial volume included

as covariates. Where the interaction was found to be significant,

within-group associations were investigated further. Where no signifi-

cant group interaction was identified, grey matter volume was mod-

elled as a function of experimental subtest score in both disease

groups, with covariates of group, age and total intracranial volume.

The latter was measured outside statistical parametric mapping using a

previously described procedure (Whitwell et al., 2001). In addition to

these separate-modality analyses, joint combined-modalities models

were used to assess the independent partial associations of voice,

face and name modalities for the familiarity subtest and the identifi-

cation subtest and partial associations of voice and face modalities for

the cross-modal recognition subtest. For each subtest, F tests were

used to assess grey matter associations with performance for each

modality (adjusting for the others) and conjointly across modalities.

An explicit analysis mask was used to exclude any voxels for which

420% of the images had an intensity value of 50.1 (Ridgway et al.,

2009). Grey matter associations were assessed over the whole brain

and within the regions of interest specified by our prior anatomical

hypotheses; small volumes covering temporal and parietal lobe regions

specified in our prior anatomical hypotheses were created manually in

MRIcron� (http://www.cabiatl.com/mricro/mricron/index.html) from

a study-specific template image (further details in Supplementary

material). A voxel-wise statistical threshold P5 0.05 family-wise-

error-corrected for multiple comparisons was applied in all analyses (a

global P5 0.05 family-wise error-corrected threshold was applied in

the combined-modalities conjunction analysis). Statistical parametric

maps were displayed as overlays on the study-specific template. A

voxel-wise exclusive masking procedure was applied to display grey

matter areas associated with voice processing performance but not

with performance in other modalities. In order to report coordinates

of local maxima in the standard stereotactic Montreal Neurological

Institute space, the grey matter segment of the final DARTEL template

was affine registered to the a priori grey matter tissue probability map

in statistical parametric maps, and the DARTEL coordinates were trans-

formed using the estimated affine mapping to Montreal Neurological

Institute space.
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Results

General neuropsychological data
Results of the general neuropsychological assessment are pre-

sented in Table 2. Relative to the healthy control group both

the temporal lobe variant FTLD group and the Alzheimer’s disease

group showed reduced verbal and performance IQ and deficits of

executive function and cognitive speed, recognition memory for

words and faces, naming and calculation; the Alzheimer’s disease

group showed additional deficits of visual object perception and

auditory verbal working memory. The temporal lobe variant FTLD

group had lower verbal and reading IQ than the Alzheimer’s dis-

ease group and performed significantly worse than the Alzheimer’s

disease group on tests of naming, tests of semantic knowledge

(verbal comprehension and London landmark identification tests),

reading and recognition memory for faces; while the Alzheimer’s

disease group performed significantly worse than the temporal

lobe variant FTLD group on tests of non-verbal reasoning and

recognition memory for words. Considered together, these pat-

terns of performance support the clinical and neuroanatomical

classification for each disease group.

Peripheral hearing data
On screening assessment of peripheral hearing, increasing age was

associated (as anticipated) with a significant increase in mean de-

tection threshold at the three highest frequencies tested (2, 3 and

4 kHz). Relative to the healthy control group, there was a signifi-

cant difference (P50.05) in mean detection thresholds at 0.5 kHz

for both patient groups (adjusted differences in means from con-

trols: Temporal lobe variant FTLD group = 7.2 dB, Alzheimer’s dis-

ease group = 4.7 dB); these threshold elevations were small and

unlikely to be clinically relevant. No significant differences were

shown by either patient group with respect to controls at any

other frequency tested, and no significant differences were

observed between temporal lobe variant FTLD and Alzheimer’s

disease groups at any frequency.

Experimental behavioural data
Here we report the findings from the group analyses on tests in

the experimental battery. Details of individual subject data are

provided in the Supplementary material.

Perceptual processing of voice attributes
Results for the patient and healthy control groups on early per-

ceptual and apperceptive subtests for each modality are summar-

ized in Table 3 and further details are provided in Supplementary

Table 2.

On the vocal gender subtest, the Alzheimer’s disease group

performed significantly worse (P50.05) than the healthy control

group, however this difference was driven by a subgroup of four

patients with Alzheimer’s disease (the remaining patients scored at

ceiling on this task). The performance of the temporal lobe variant

FTLD group did not differ from healthy controls, however all sub-

jects in the temporal lobe variant FTLD and control groups per-

formed at ceiling on this subtest. On the vocal size subtest, there

were no significant group performance differences and a large

range of scores in all three groups.

On both the ‘easy’ and the ‘difficult’ speaker discrimination

subtests, the Alzheimer’s disease group performed significantly

worse (P50.05) than healthy controls. There were no significant

performance differences between the temporal lobe variant FTLD

group and healthy controls or between the two patient groups.

Recognition of voices, faces and names
Results for the patient and healthy control groups on semantic

subtests for each modality are summarized in Table 4 and further

details are provided in Supplementary Tables 2, 3 and 4.

On all semantic subtests, both the temporal lobe variant FTLD

group (P50.001) and the Alzheimer’s disease group (P50.05)

Table 3 Behavioural data: perceptual and apperceptive processing of voices and faces

Subtest (max score) Temporal lobe
variant FTLD
n = 14

Alzheimer’s
disease
n = 22

Healthy
controls
n = 35

Temporal lobe variant
FTLD–Alzheimer’s
disease

Mean (SD) Range Mean (SD) Range Mean (SD) Range Difference in
means (95%
confidence
interval)

Voice perception

Size perception (/20) 16.7 (2.8) 11–20 17.4 (2.1) 12–20 17.1 (2.9) 9–20 �0.7 (�2.4, 1.0)

Gender perception (/24) 24.0 (0.0) 24–24 23.7 (0.6)* 22–24 24 (0.0) 24–24 0.3 (0.01, 0.5)†

Easy speaker discrimination (/28) 24.7 (1.6) 22–27 24.1 (3.2)* 15–28 25.6 (1.5) 21–28 0.6 (�1.0, 2.2)

Difficult speaker discrimination (/12) 9.2 (1.2) 7–11 8.8 (1.7)** 6–12 9.9 (1.4) 7–12 0.4 (�0.5, 1.4)

Face perception

Benton facial recognition test (/56) 42.8 (4.0)** 37–50 42.2 (5.8)** 32–52 48.0 (3.2) 42–56 0.7 (�2.5, 3.8)

*Significantly worse than controls (P50.05); **significantly worse than controls (P50.01); †Alzheimer’s disease group significantly worse than temporal lobe variant
FTLD group (P5 0.05).
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performed significantly worse than the healthy control group. For

both disease groups and also for the healthy control group, mean

absolute scores across semantic subtests were lower for voice rec-

ognition than for recognition in the other modalities. The temporal

lobe variant FTLD group performed significantly worse than the

Alzheimer’s disease group (P5 0.01) on all familiarity subtests

apart from face familiarity [for which there was a trend

(P = 0.07) to worse performance], on all identification subtests in

each modality, on the cross-modal subtests and on voice and face

naming.

There was a significant interaction between group and modality

for all subtests: familiarity (P50.001), identification (P5 0.05),

cross-modal recognition (P5 0.01) and naming (P50.01). The

temporal lobe variant FTLD group showed a significantly larger

(P50.05) decrease in score compared to the Alzheimer’s disease

group for identification in the name modality compared with

the voice modality; the temporal lobe variant FTLD–Alzheimer’s

disease performance discrepancy did not differ significantly be-

tween modalities for the other subtests. In general, significant per-

formance correlations were observed between voice recognition

subtests in the Alzheimer’s disease group though less consistently

in the temporal lobe variant FTLD group; while voice and

face identification performance was correlated in both disease

groups (Supplementary Table 3). Voice identification perform-

ance was not closely correlated with apperceptive performance

in either disease group (Supplementary Table 2). Voice identifi-

cation and familiarity performance were not correlated with dis-

ease severity measures in either disease group (Supplementary

Table 4).

Right versus left temporal lobe damage
in temporal lobe variant FTLD
Temporal lobe variant FTLD subgroups with predominantly

left-sided (n = 9) versus predominantly right-sided (n = 4) temporal

lobe atrophy did not show significant performance differences on

any of the voice processing subtests. Further details are provided

in the Supplementary material.

Neuroanatomical data

Interactions between disease group and performance

No significant grey matter associations were identified for group–

performance interactions for any of the experimental subtests over

the whole brain volume. Restricting analyses to the pre-specified

anatomical volume of interest there was a significant interaction

between group and performance on the ‘easy’ speaker discrimin-

ation task in the right parahippocampal gyrus (local maximum

Montreal Neurological Institute coordinates: 35-51-6; cluster size

123 voxels, P50.05 after family-wise error correction). Voice dis-

crimination performance in the Alzheimer’s disease group (but not

the temporal lobe variant FTLD group) was positively associated

with grey matter in right inferior parietal cortex (P5 0.05 after

family-wise error correction over the pre-specified small volume of

interest; Table 5); additional associations of voice discrimination

were present in right parahippocampal gyrus and left inferior par-

ietal cortex at an uncorrected threshold (P5 0.001 over the whole

brain volume; Fig. 1).

Table 4 Behavioural data: semantic processing of voices, faces and names

Subtest
(max score)

Temporal lobe variant
FTLD n = 14

Alzheimer’s
disease n = 22

Healthy controls
n = 35

Temporal
lobe variant
FTLD–Alzheimer’s
disease

Mean (SD) Range Mean (SD) Range Mean (SD) Range Difference in means
(95% confidence
interval)

Familiarity

Voice (/48) 27.5 (4.8)** 22–41 34.4 (5.5)** 24–45 41.5 (2.9) 35–46 �6.9z (�10.2, �3.7)

Face (/48) 34.6 (7.1)** 19–45 39.0 (7.1)** 26–48 46.6 (1.7) 41–48 �4.4 (�9.2, 0.3)

Name (/48) 34.6 (7.2)** 24–47 44.8 (3.2)* 33–48 46.6 (1.8) 42–48 �10.1z (�14.1, �6.2)

Naming

Voice (/24) 0.6 (1.6)** 0–6 3.2 (3.4)** 0–11 17.4 (3.9) 9–24 �2.6† (�4.3, �0.9)

Face (/24) 2.2 (3.8)** 0–14 7.0 (5.7)** 0–19 21.6 (2.6) 15–24 �4.7† (�7.8, �1.7)

Identification

Voice (/24) 2.6 (5.1)** 0–19 10.3 (7.0)** 0–22 19.5 (3.1) 14–24 �7.7z (�11.5, �3.8)

Face (/24) 7.7 (7.5)** 0–22 17.4 (6.0)** 2–24 23.6 (0.8) 21–24 �9.7z (�14.2, �5.1)

Name (/24) 7.2 (7.3)** 0–20 19.6 (4.1)** 10–24 23.9 (0.3) 23–24 �12.4z (�16.6, �8.2)

Cross-modal matching

Voice (/24) 6.4 (7.1)**a 1–24 17.4 (6.4)** 5–24 23.6 (0.8) 21–24 �11.2z (�15.7, �6.7)

Face (/24) 10.1 (7.6)** 2–23 19.6 (5.0)** 6–24 24.0 (0.0) 24–24 �9.5z (�13.9, �5.0)

a One patient with temporal lobe variant FTLD scored 1/13 on the first 13 items on the task and declined to continue the test; his results were included in the analysis as a

chance score (3/24).
*Significantly worse than controls (P50.05); **significantly worse than controls (P50.001); †temporal lobe variant FTLD group significantly worse than Alzheimer’s
disease group (P5 0.01); ztemporal lobe variant FTLD group significantly worse than Alzheimer’s disease group (P5 0.001).
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Associations of performance across disease groups

The results of the neuroanatomical analysis across both the tem-

poral lobe variant FTLD and Alzheimer’s disease groups (adjusting

for group membership) are summarized in Table 5; statistical para-

metric maps are presented in Fig. 1.

We consider first the results of analyses for associations of ex-

perimental test performance over the whole brain volume. No

significant associations of voice perceptual performance across both

disease groups were identified. In the separate-modality analyses

of semantic processing, cross-modal recognition of voices and

identification and cross-modal recognition of faces were each posi-

tively associated with grey matter volume at the right temporal

pole; in addition, cross-modal recognition of voices and identifica-

tion of faces and names were each positively associated with grey

matter volume in right anterior fusiform gyrus (all P50.05 after

family-wise error correction over the whole brain volume). In the

combined-modalities analysis, there was a common grey matter

association of voice, face and name identification at the right

temporal pole (P50.05 after family-wise error correction over

the whole brain volume), however no significant partial associ-

ations of voice, face or name identification were identified.

Restricting analyses to the pre-specified anatomical volumes of

interest, a number of additional associations were identified (all

P50.05 after family-wise error correction over the relevant

small volume). In the separate-modality analyses of semantic pro-

cessing, across both disease groups, voice and name identification

were each positively associated with grey matter at the right tem-

poral pole; voice identification (but not face or name identifica-

tion) was positively associated with grey matter in right amygdala

and hippocampus, while face and name identification (but not

voice identification) were each positively associated with grey

matter at the left temporal pole. In the combined-modalities ana-

lysis, a common grey matter association of voice, face and name

familiarity was identified in right fusiform gyrus; common grey

matter associations of voice and face cross-modal recognition

were identified in right temporal pole and anterior fusiform

Table 5 Voxel-based morphometry data: neuroanatomical associations of behavioural performance

Task Neuroanatomical associations

Side Area Cluster size
(voxels)

Local maxima

Coordinates (mm) Z-score

Apperceptive

Voice discriminationa R Inferior parietal cortex 838 56 �50 42 4.13

Familiarity

Face L Temporal pole 678 �55 5 �42 4.29
Anterior middle temporal gyrus �62 2 �30 4.11

R Anterior fusiform gyrus 250 28 4 �53 4.20

Voice, face and nameb R Anterior fusiform gyrus 1203 35 �20 �38 4.39

Identification

Voice R Temporal pole 3829 28 20 �42 4.55
Hippocampus 35 �10 �21 4.26

Entorhinal cortex 32 1 �36 4.21

Amygdala 32 �7 �28 4.18

Face R Temporal pole* 558 25 18 �45 4.18
Anterior fusiform gyrus* 30 8 �50 5.40

L Temporal pole 481 �47 8 �47 5.39

Name R Anterior fusiform gyrus* 18 32 �16 �42 4.76
Temporal pole 2780 25 18 �46 4.39

L Temporal pole 942 �47 3 �45 4.15

Voice, face and nameb R Temporal pole* 1861 25 18 �45 4.76
Anterior fusiform gyrus 32 �17 �41 4.58

Cross-modal matching

Voice R Temporal pole* 16 24 18 �42 4.90
Anterior fusiform gyrus* 3098 32 �17 �41 4.49

Entorhinal cortex 32 1 �40 4.32

Face R Temporal pole* 2712 25 18 �46 4.58
Anterior fusiform gyrus 32 �15 �43 4.20

Voice and faceb R Temporal pole 1159 24 18 �42 4.47
Anterior fusiform gyrus 32 �17 �41 4.20

Results for voice discrimination were derived from the Alzheimer’s disease group only; all other results were derived across the temporal lobe variant FTLD and Alzheimer’s
disease groups. All clusters of size 410 voxels are presented.
a ‘Easy’ version of speaker discrimination task (see text).
b Results based on combined-modalities analyses; other results based on separate-modality analyses (see text).
*Areas with local maxima exceeding voxel-wise significance threshold P50.05 after family-wise error correction over the whole brain; other local maxima after correction

over the pre-specified small volume of interest (co-ordinates in Montreal Neurological Institute stereotactic space).
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gyrus. No significant partial associations were identified for voice,

face or name familiarity or for cross-modal recognition of voices or

faces. No significant grey matter associations of voice or face

naming performance were identified.

Discussion
Here we have described behavioural and neuroanatomical signa-

tures of voice processing deficits in FTLD and Alzheimer’s disease.

The key findings from the study are two-fold. In behavioural

terms, impairments of voice recognition are significant in these

canonical dementia syndromes but particularly severe in temporal

lobe variant FTLD. In neuroanatomical terms, impaired voice rec-

ognition is associated with grey matter loss in the right anterior

temporal lobe, suggesting that this region is critical for voice rec-

ognition as well as other modalities of person knowledge.

On all behavioural measures of voice recognition (familiarity,

identification, naming and cross-modal identity matching), both

disease groups showed deficits relative to healthy controls and

the temporal lobe variant FTLD group performed significantly

worse than the Alzheimer’s disease group. Despite substantial in-

dividual variation in performance, both disease groups showed a

clear overall trend to conjoined deficits of voice recognition with

deficits of other modalities of person knowledge (in particular,

recognition of faces). The largest performance discrepancy be-

tween the disease groups occurred for the processing of personal

names. On measures of perceptual processing of voices, the

Alzheimer’s disease group (but not the temporal lobe variant

FTLD group) showed deficits relative to healthy controls, suggest-

ing that impairments of voice perception may show relative spe-

cificity for Alzheimer’s disease.

The neuroanatomical analysis showed that recognition measures

for voice, face and name processing were associated across both

disease groups with grey matter volume in right temporal pole

and anterior fusiform gyrus. Similar regions have been implicated

in the processing of familiar voices by the healthy brain (Belin

et al., 2000, 2002; Nakamura et al., 2001; Shah et al., 2001;

Belin and Zatorre, 2003; von Kriegstein et al., 2003, 2005; von

Kriegstein and Giraud, 2004; Andics et al., 2010). These same

areas are sites of heavy disease involvement in temporal lobe vari-

ant FTLD, consistent with the more severe person recognition def-

icits in this group compared with the Alzheimer’s disease group.

However, it is unlikely the profile of anatomical associations

observed was driven entirely by the temporal lobe variant FTLD

group, since there was no evidence of significantly different grey

matter associations of semantic test performance between the dis-

ease groups. We do not wish to over-emphasize this apparent

anatomical convergence. Whereas Alzheimer’s disease is patho-

logically homogeneous, temporal lobe variant FTLD is likely to

Figure 1 Statistical parametric maps of grey matter volume associated with voice processing performance. Statistical parametric maps

show grey matter associations of experimental test performance (Table 5). (A) Speaker discrimination (Alzheimer’s disease group only), (B)

voice familiarity, (C) cross-modal matching of familiar voices and faces and (D–F) voice identification (all for temporal lobe variant FTLD

and Alzheimer’s disease groups combined). The colour code indicates areas associated with apperceptive processing of voices (green),

semantic processing of voices as well as faces and names (red) and areas associated with identification of voices but not faces or names

after exclusive masking (blue). Statistical parametric maps are presented on sections of the mean normalized T1-weighted structural brain

image in DARTEL space. Coronal (A, B, E), axial (D) and sagittal (C, F) sections are shown, targeting inferior parietal lobes (A), anterior and

inferior temporal lobes (B–F). The sagittal sections are derived from the right hemisphere and the right hemisphere is shown on the right in

all other sections. All statistical parametric maps are based on regions for which grey matter associations were significant (P50.05) after

correction for multiple comparisons over the pre-specified anatomical small volume (Table 5); statistical parametric maps are thresholded

at P50.001 uncorrected for display purposes.
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be pathologically heterogeneous (Josephs et al., 2011): a shared

macro-anatomical substrate may be underpinned by distinct pat-

terns of cellular involvement and correspondingly distinct patho-

physiological mechanisms. Moreover it remains possible that there

is a more fine-grained segregation of processing for different mod-

alities within the relatively large cortical areas identified here using

voxel-based morphometry (Olson et al., 2007).

Certain mesial temporal lobe structures (amygdala, hippocam-

pus and entorhinal cortex) showed an association with voice iden-

tification but not other modalities of person knowledge at the

prescribed threshold (Fig. 1); the mesial temporal lobe has been

previously implicated in familiar voice processing by healthy sub-

jects (Nakamura et al., 2001; von Kriegstein and Giraud, 2004;

von Kriegstein et al., 2005; Andics et al., 2010) and this region

may be involved in processing sensory object information (Lee

et al., 2005) and particularly in tracking information in sound

(for example, familiar musical melodies): (Samson and Zatorre,

1992; Watanabe et al., 2008). However, any apparent modal-

ity–specificity here should be interpreted with caution; no inde-

pendent associations of recognition in a particular modality

emerged when modalities were assessed together.

Both the behavioural and neuroanatomical findings here are

consistent with a growing body of evidence implicating the anter-

ior temporal lobe in multi-modal processing of semantic know-

ledge and more particularly, person knowledge (Bozeat et al.,

2000; Coccia et al., 2004; Luzzi et al., 2007; Rami et al., 2007;

Lambon Ralph and Patterson, 2008). Previous functional imaging

and lesion evidence suggests that the temporal pole and anterior

fusiform participate in a cooperative network mediating different

aspects of semantic processing (Ellis et al., 1989; Tranel et al.,

1997; Papagno and Capitani, 1998; Grabowski et al., 2001;

Thompson et al., 2004; von Kriegstein et al., 2005; Tranel,

2006; Mion et al., 2010). While we cannot specify the precise

role of anterior fusiform and temporal pole in the present

study, grey matter volume in anterior fusiform was associated

with performance on familiarity and cross-modal judgements

across modalities, consistent with the operation of person identity

nodes in this area (Belin et al., 2004). We do not argue that

processing voice familiarity is a purely semantic capacity: analo-

gously with familiarity for other kinds of stimuli, voice familiarity

may also have perceptual, affective and executive dimensions

(Gainotti, 2007; Lucchelli and Spinnler, 2008). Taken together,

our findings support the existence of multi-modal deficits of

person knowledge in FTLD and Alzheimer’s disease. Rather than

a purely amodal or fully multi-modal organization, the data sug-

gest that verbal (name) and non-verbal (voice, face) modalities

of person knowledge may be partially differentiated, whereas

modalities of non-verbal person knowledge are more closely

aligned (Warrington, 1979; Snowden et al., 2004). The present

data (based on small case numbers) do not resolve the import-

ant issue of potentially asymmetric temporal lobe contributions to

different components of person knowledge (Snowden et al.,

2004).

In this study, deficits of voice perception were restricted to the

Alzheimer’s disease group, and involved voice apperception

(speaker discrimination) and encoding of one perceptual attribute

(vocal gender) while sparing encoding of another attribute (vocal

size). A neuroanatomical association of apperceptive performance

in the Alzheimer’s disease group was identified in the right inferior

parietal lobe. The present findings underline the potential for de-

velopment of semantic deficits of voice recognition (and other

aspects of person recognition) despite intact pre-semantic percep-

tual mechanisms; however, deficits of voice perception may have

contributed to the development of voice recognition impairment in

the Alzheimer’s disease group. Functional imaging work in healthy

subjects has delineated a network of cortical areas including the

parietal lobe for processing voice information under non-canonical

listening conditions (Bishop and Miller, 2009). We propose that

inferior parietal cortex is involved in the structural representation

of voices (Bruce and Young, 1986; Burton et al., 1990; Belin et al.,

2004), perhaps by holding voice information online in working

memory for comparison with incoming alternative auditory

‘views’ of the speaker (e.g. the same voice speaking different

phonemes).

This study suggests clear directions for future work. It has been

proposed that modality-specific deficits of person knowledge

become generalized with the evolution of neurodegenerative dis-

ease (Evans et al., 1995; Gentileschi et al., 1999; Gainotti et al.,

2003, 2008): the present study suggests that the profile of devel-

opment of deficits may hold information about the organization of

processing within and between modalities. This issue will only be

addressed by longitudinal studies based on a systematic analysis of

different levels of processing and comparing modalities and dis-

ease groups. Whereas semantic processing of voices is relatively

easily investigated by adapting standard neuropsychological tech-

niques, a detailed understanding of voice perception and its

disorders will require the design of customized stimuli that allow

particular vocal attributes to be isolated and manipulated. Finally,

there is a need for correlation of voice processing measures with

structural and functional anatomical data and with tissue histo-

pathology in a range of neurodegenerative diseases.
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